

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Contribution of unsuitable packaging and uncontrolled circuits and exposures to the poor quality of medicines collected in sub-Saharan countries

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039252
Article Type:	Original research
Date Submitted by the Author:	08-Apr-2020
Complete List of Authors:	Secretan, Philippe-Henri; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France Antignac, Marie; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France; Hospital Saint-Antoine, Department of pharmacy, Paris, France YAGOUBI, Najet; Université Paris-Sud Faculté de Pharmacie, Laboratoir Matériaux et Santé, EA 401, Chatenay-Malabry, France BERNARD, Melisande; AP-HP, Agence Générale des Equipements et Produits de Sante, department of laboratories, Paris, France PERIER, Marie Cécile; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France PERIER, Marie Cécile; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France TAKOMBE, Jean Laurent; Ngalemia Clinic, Kinshasa, The Democratic Republic of the Congo BALDE, Dadhi ; Hospital Ignace Deen, Department of cardiology, Conakry, Guinea N'GUETTA, Roland; University Hospital Center of Treichville, Institut de cardiologie d'Abidjan, Abidjan, Cote d'Ivoire IKAMA, Méo Stéphane; University Hospital Center of Brazzaville, Departement of cardiology, Brazzaville, Congo ZABSONRE, Patrice; Centre Hospitalier Universitaire Yalgado Ouédraogo Department of cardiology, Ouagadougou, Burkina Faso SIDI ALY, Abdallahi; Cardiology Clinics, Nouakchott, Mauritania JOUVEN, Xavier; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France; Hopital Europeen Georges Pompidou, Department of cardiology, Paris, France DO, Bernard; Universite Paris-Sud Faculte de Pharmacie, Laboratoire Matériaux et Santé, EA 401, Chatenay-Malabry, France; Henri Mondor Hospital Department of Pharmacy, Creteil, France
Keywords:	Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PUBLIC HEALTH, Toxicity < THERAPEUTICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

```
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
```

2 3		
4		
5	1	Contribution of unsuitable packaging and uncontrolled circuits
6 7		
8		
9	2	and exposures to the poor quality of medicines collected in sub-
10 11	2	and expessives to the poor quality of medicines conceted in sub
12		
13		
14	3	Saharan countries
15 16		
17		
18	4	Philippe-Henri Secretan ¹ , Marie Antignac ^{1,2} , Najet Yagoubi ³ , Melisande Bernard ⁴ , Marie-
19 20	5	Cecile Perier ¹ , Jean Laurent Takombe ⁵ , Dadhi Baldé ⁶ , Roland N'Guetta ⁷ , Méo Stéphane
21	6	Ikama ⁸ , Patrice Zabsonre ⁹ , Abdallahi Sidi Aly ¹⁰ , Xavier Jouven ^{1,11} and Bernard Do ^{3,12} .
22	0	
23 24	7	1 Paris Cardiovascular Research Centre, INSERM U970, Paris, France
24 25	•	
26	8	2 Department of Pharmacy, Saint-Antoine Hospital, HUEP, AP-HP, Paris, France
27		
28 29	9	3 Faculty of Pharmacy, Paris-Sud University, UA 401 Matériaux et Santé, Chatenay-Malabry,
30	10	France
31		
32 33	11	4 Department of Laboratories, Agence Générale des Equipements et Produits de Sante, AP HP,
34	12	Paris, France
35		
36 37	13	5 Clinique Ngaliema, Kinshasa, Democratic Republic of Congo
38		
39	14	6 Department of Cardiology, Ignace Deen hospital, Conakry, Guinea
40 41		
42	15	7 Cardiology institute of Abidjan, Treichville hospital, Abidjan, Côte d'Ivoire
43	4.6	
44 45	16	8 Department of Cardiology, Brazzaville hospital, Brazzaville, Congo
45 46	17	9 Yalgado Ouédraogo hospital, Ouagadougou, Burkina Faso
47	17	S raigado Odedraogo nospital, Odagadougod, Burkina Paso
48 49	18	10.Department of Cardiology, Nouakchott, Mauritanie
49 50	10	10.Department of Caralology, Houakehott, Maantame
51	19	11 Department of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France
52		
53 54	20	12 Department of Pharmacy, Henri Mondor Hospital, AP-HP, Créteil, France
55		
56	•	
57 58	21	
59		
60		

22 Abstract

23 Introduction

The incidence of cardiovascular diseases is increasing and there is a growing need to provide access to quality cardio drugs in Africa. In the SEVEN study, we analysed 1530 cardiovascular drug samples randomly collected from ten African countries. By that time, of the seven drugs products analysed, only those containing amlodipine and captopril had very low assay values with active substance contents that could be less than 75% of those expected. In this article we investigate complementary aspects of the amlodipine and captopril samples so to explain the previously observed low assays for these two drugs.

31 Methods

The chromatograms of drug products (amlodipine : n=305 ; captopril : n=235) obtained during the SEVEN study were reprocessed to quantify the relative amounts (% w/w) of impurities and assign their structures. Identification of the main compounds of the drugs packaging was performed by use of infrared spectroscopy.

36 Results

37 Chromatogram analysis showed that 40 amlodipine tablets and 31 captopril tablets contained
38 at least one impurity exceeding the recommended thresholds. The low levels previously
39 observed in several samples could be the result of the use of a degraded drug substance in
40 the manufacture and/or degradation of the drug product due to uncontrolled exposure.

BMJ Open

 Identification of the blister packaging of the samples led to separate both amlodipine and captopril drug samples in two groups. Mann Whitney's bilateral test showed a significant difference (p<0.0001) between the median value of the captopril dosage when tablets are packaged in blisters providing higher protection to humidity (n=105) as opposed to the tablets packaged in blisters providing lower humidity protection (n=130).

46 Conclusion

Based on these results, particular attention should be paid to the materials and types of
packaging used in order to minimize the lack of control over the exposures and drug circuits
present in these different countries.

50 Article summary : strengths and limitations of this study

- Complementary investigation of results obtained during the Seven study, during which 1530 cardiovascular drug samples were prospectively collected in licensed and unlicensed places of sale in Africa
- The specifically low amounts for two drugs, amlodipine and captopril, may be due to degradation during storage and lack of drug protection of these sensitive drugs
- Degradation products and impurities quantities were above the recommended
 thresholds in some amlodipine and captopril samples, raising potential concern about
 the toxicity of the drugs
- Packaging providing high protection from residual humidity could be a leverage to
 reduce the presence of degraded amlodipine and captopril drugs on the African soil

• Other studies should confirm, on these two sensitive drugs and other, that packaging providing better protection could be a mean to provide safer drugs in Africa

63 1. Introduction

Substandard drugs generally pose a serious health concern from several perspectives and this is particularly prevalent in developing countries where control regulations are poorly developed. Numerous cases of quality defects have been reported^{1,2}, mostly in connection with anti-infective drugs³. However, since cardiovascular diseases are currently the most important non-communicable diseases in most low- and middle-income countries, it is critical to ensure that these diseases are addressed in a comprehensive manner⁴. Thus, under the impulse of X. Jouven, the study named SEVEN has been set up with the aim of evaluating the quality of the cardiovascular drugs present in ten African countries^{5–7}, by exploring the case of 7 commonly used cardiac drugs, namely acenocoumarol, simvastatin, furosemide, hydrochlorothiazide, captopril, atenolol and amlodipine. Examination of the identity and assay of the active substances in the various samples collected revealed that among the products tested, only those based on amlodipine and captopril had very low active substance content that could be less than 75% of those expected⁶. The observation that the biggest quality defects were highlighted and circumscribed around these two molecules motivated the team to seek additional information in particular regarding their stability as well as related elements such as packaging, version of drug (i.e. generic versus brand) and place of manufacture.

For drugs where the quality defect is unintentional, according to Johnston et al, low dosage levels of active substance may be the result of a variety of factors, including inadequate package design or quality². Yet, despite the fact that the influence of packaging changes on

BMJ Open

the stability of medicinal products is now well established^{8,9}, to the best of our knowledge, the studies of the quality of real field samples have so far focused only on dosage units without taking into account the type of packaging used or their chemical composition³. However, the concept of packaging is equally important to assess, especially since the drug products need to be kept stable in difficult climatic conditions, where, for example, residual moisture can reach 88% in sub-Saharan Africa¹⁰ and the ability of a plastic blister pack to protect a drug from moisture is highly dependent on its design and composition¹¹.

90 It is in this context that this study was taking place considering samples of captopril and 91 amlodipine products, collected as part of the SEVEN study^{5–7}, as tracer products. On these 92 various samples was carried out the search for degradation products and/or chromatographic 93 related substances as well as the identification of the packaging actually present on the 94 products collected in several African countries, by trying, where possible and relevant, to 95 reconcile the different data and make them meaningful in relation to the potential causes of 96 underdosing previously highlighted for these two drugs.

97 2. Material and method

98 2.1 Sample collection

99 The methodology and design of the samples collection are described in detail in the articles 100 published in the context of the SEVEN study^{5–7}. A multidisciplinary collaborative team of 101 epidemiologists, cardiologists and pharmacists from France and Africa conceived and 102 designed the study. It was registered with the French national drug agency (Agence Nationale 103 Sécurité du Médicament ID_RCB:2014-A01275-42).

1530 drugs samples, including 235 captopril and 305 amlodipine drug samples, were collected as per the Guidelines for Field Surveys of the Quality of Medicines¹². 10 countries were concerned: Benin, Burkina Faso, Congo, Democratic Republic of the Congo, Guinea, Côte d'Ivoire, Mauritania, Niger, Senegal and Togo. In these countries, samples were obtained from licensed (pharmacy) sources selected randomly and unlicensed (street market) places of sale chosen as per the local investigator's convenience. Drug samples were purchased in the capital city and when possible in one city located close to the country's border. Medicines were obtained by the study investigator's staff who posed as customers. For each drug sample, investigators were asked to collect generic versions and brand name versions of the drug if available. After purchase, all drugs were stored at ambient temperature, in a dry place avoiding direct sunlight. Samples were sent via courier to the coordinating centre in France.

115 2.2 Reagents and sample preparation

Amlodipine besylate, captopril, iodine, sodium thiosulfate and triethylamine (>99% pure)
were purchased from Sigma Aldrich (St. Quentin Fallavier, France). Analytical grade
acetonitrile and methanol came from VWR Prolabo[®]Chemicals (Fontenay-sous-Bois, France).
Ultrapure water was produced by the Q-Pod Milli-Q[®] system (Millipore, Molsheim, France).
The stationary phase consisted of a Kinetex[®](Phenomenex, Torrance, U.S.A.) C18 column (4.6
mmx250 mm, i.d., 5 µm).

Standard solutions were prepared as per the recommendations provided in the United States
 Pharmacopeia (USP) monograph of amlodipine besylate and captopril tablets. Captopril
 disulfide was obtained by using the protocol proposed in the European Pharmacopeia (Ph.
 Eur.) monograph of captopril.

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
57	
58	
59	

60

126 2.3. Analytical conditions and data analysis

127 Chromatographic analyses were performed using a Dionex Ultimate 3000 system (DIONEX, 128 Ulis, France) coupled to a diode array detector. Chromatographic conditions as well as 129 suitability tests were performed as per the recommendations provided in the monograph of 130 amlodipine tablet (USP) and captopril (Ph. Eur.).

131 Identification of blisters was achieved using Fourier Transformed Infrared Spectroscopy (FTIR).
132 FTIR Perkin-Elmer Spectrum 2000[®] spectrometer (Villebon-sur-Yvette, France) with a diamond
133 crystal. Resolution, scan range and number of accumulated scans per spectrum were set to
134 0.5 cm⁻¹, 4000 to 400 cm⁻¹ and 3, respectively. Spectrum were acquired on each side of the
135 blisters using attenuated total reflectance mode.

All statistical tests were performed using GraphPad Prism version 8.3.1. for Windows (GraphPad Software, La Jolla California, USA). Nonparametric Spearman's correlation coefficient (r) was calculated to measure the strength of the association between the peak surface area of captopril and that of captopril disulfide. Mann-Whitney tests were used to compare the median between drugs with lower and those with higher protection from humidity packaging blisters.

142 3. Results and discussion

143 3.1. Chromatographic purity profiles of the drugs

144 3.1.1. Captopril samples

The qualitative study of the chromatograms of the 235 captopril drug samples showed that
the 31 samples with drug amounts inferior to 90% (w/w%) contained the same impurity (Fig.
1). The detected impurity was assigned to captopril disulfide as it had the same retention time
than this compound.

Fig. 1: typical chromatographic profiles of captopril solutions: reference active substancestandard solution (black), typical substandard drug sample (blue).

Further, for every chromatogram, the sum of the surface of the peak areas corresponding to captopril and that of captopril disulfide led to obtain areas recoveries between 90 and 110% compared to that of the captopril reference solution. Therefore, one could infer that the lack of drug captopril may be linked to the presence of captopril disulfide. As a result, a correlation study between the surface of the peak of captopril and that of captopril disulfide impurity was carried out and yielded a negative Spearman coefficient with a value of -0.613 (p=0.0069).

157 3.1.2. Amlodipine samples

Unlike captopril, the 305 chromatographic profiles obtained for amlodipine samples strongly
differed from one to the other, implying that the drugs did not contain the same impurities
(Fig. 2). Indeed, under the analytical conditions recommended in the USP monograph, two
categories of chromatographic profiles were obtained as a function of the studied samples.

A first category of chromatographic profiles consisted of samples containing an impurity with a relative retention time of about 0.5 (Fig 2. a) as compared to amlodipine, referred in the USP as amlodipine related compound A. In 10 chromatograms, the surface of the peak of this impurity exceeded the USP acceptance criteria for this impurity (<1.0 %, w/w).

1 2		
3 4	166	The second category of chromatographic profiles comprised a peak with a relative retention
5 6 7	167	time of about 0.8 (Fig 2.b) corresponding to a degradation related impurity, namely an
7 8 9	168	amlodipine-lactose interaction product. For 30 sample solutions, the area of the peak of this
10 11 12	169	impurity compared to that of amlodipine exceeded the USP acceptance criteria for this
12 13 14 15	170	impurity (<0.5% w/w).
16 17 18	171	Fig. 2 : typical chromatographic profiles for samples containing impurity A (a) and samples
19 20	172	containing amlodipine-lactose interaction product (b)
21 22 23 24 25	173	3.2. Blisters identification
26 27 28 29 30	174	The identity and aspect of the blisters materials strongly differed between amlodipine and
	175	captopril and within drug samples of the same drug.
31 32		
33 34	176	FTIR analysis were performed on each side of the plastic blisters in order to identify its main
35 36	177	compounds. Based on the analysis, two groups could be established: those with a spectrum
37 38 39	178	corresponding to polyvinyl-chloride's one (PVC, red and blue spectrum, Fig. 3) and those which
40 41	179	have two spectral bands (597 and 527 cm $^{-1}$) characteristic of the polyvinylidine-chloride
42 43 44	180	presence ¹³ (PVDC, green spectrum, Fig. 3).
45 46 47	181	Fig. 3 : typical FTIR spectrum of a PVC polymer packaging with (green spectrum) and without
48 49 50	182	(blue and red spectrum) PVDC.
51 52 53	183	The analysis highlighted that 130 out of the 235 captopril drug samples were packaged in
54 55	184	blisters containing PVDC and 105 in blisters only composed of PVC. In the case of amlodipine,
56 57 58	185	none of the plastic blisters used to package 245 amlodipine samples contained PVDC (Table
59 60		

1 2					
3 4	186	1). 60 amlodipine samples were packaged in blisters consisting of foil-foil sealed aluminium			
5 6 7	187	(Table 1).			
7 8 9 10 11	188	Table 1 : number of amlodipine and captopril drug samples as a function of blister identity			
12 13 14		Blister identity Amlodipine Captopril			
15 16		PVC only 60 105			
17 18 19		Aluminium only 245 None			
20 21		PVC-PVDC None 130			
22 23 24 25	189				
26 27 28	190	3.3. Drugs assays as a function of blister identifications			
29 30 31	191	From the results obtained in 3.2., captopril assays results were separated based on the			
32 33 34	192	presence of PVDC or not (PVC only). Amlodipine assay results were divided in two groups: the			
35 36	193	group of samples packaged in foil-foil sealed aluminium blisters and the one packaged in PVC			
37 38 39	$^{37}_{38}$ 194 blisters (PVC only). The results are provided in figure 4.				
40 41	195	Fig.4 : medians of drug assays with interguartile ranges as a function of the drug and the blister			
42 43 44	196	composition, ns: non statistically significant; ****: p<0.0001.			
45 46 47	197	For amlodipine, no statistical difference in dosage (p=0.7684) was observed between the			
48 49	198	group with foil-foil aluminium packaging (median=96.10, n=60) and the group with PVC blister			
50 51 52	199	packaging (median=96.60, n=245).			
53 54 55	200	For captopril, on the other hand, a statistical difference (p<0.0001) was found between the			
56 57	201	group of samples stored in blisters containing only PVC (median=100.0, n=105) and those			
58 59 60	202	stored in blisters containing PVC/PVDC (median=96.60, n=130).			

Sub-standard cardiac medicines represent a serious health hazard and result in significant morbidity and mortality⁴. The SEVEN study was the first major study of cardiovascular drugs in Sub-Saharan Africa^{5–7}. The analysis of samples collected in Africa and through various sales spots of all kinds showed that among the products used in cardiovascular diseases, about 15-20% were of low quality, and the prevalence of poor quality is higher for the products containing amlodipine and captopril. Given this observation and the fact that these two active substances are particularly sensitive to humidity and heat, the question arose as to whether the intrinsic stability of the latter had contributed more to the quality defects highlighted at the time. So, in this follow-up study, we have sought to provide some answers to this question by focusing on the search of associated degradation products and the nature of the packaging used at the time of the on-site collections.

We therefore sought to supplement the assay results with chromatographic purity studies on samples of the various cardiological drugs samples collected during the SEVEN study. We noted that the levels of impurities are particularly high for captopril and amlodipine samples (>0.5% compared to the considered active substance), as is their high prevalence of underdosing relative to other products, as previously mentioned. Of course, this problem could have been caused by the use of poor-quality active ingredient. But the fact that it is specific to these two active substances did not allow us to limit to this aspect alone. We therefore also turned our attention to the stability issue and to what goes hand in hand with this aspect. The identification of chromatographic impurities present concomitantly with the

active substance was carried out to support our hypotheses related to the degradation ofthese compounds.

In the case of the captopril drug samples, the compound detected (Fig. 1) in addition to captopril was identified as captopril disulfide, a well-known degradation product of captopril that is prompt to be formed under moisture and heat¹⁴. In other words, this would mean that the underdoses initially observed in the captopril products⁶ could be attributed to the poor quality of the active substance used and/or, to a larger extent, to degradation occurring either during manufacture and/or during improper storage. However, as it is well depicted that captopril is far more susceptible to degradation in the presence of some excipients than alone ^{15,16}, one can fathom that the presence of captopril disulfide may more likely result from degradation due to uncontrolled exposure. As for amlodipine, chromatographic analyses showed in 30 samples the presence of an impurity due to amlodipine-lactose interaction (Fig. 2 b). Such interaction was shown to occur in time and mostly under high humidity conditions¹⁷, which could, to some extent, explain the poor assays observed in SEVEN study⁷.

These results are consistent with data in the literature in that the moisture vapour transmission rate¹⁸ (MVTR) must be controlled as it is critical to the stability of captopril¹⁴ and amlodipine¹⁹. The corollary is that we have indeed shown, in the case of captopril, a significant difference (p<0.0001, Fig. 4) in active substance content between tablets extracted from PVC blisters and those from PVC-PVDC blisters that exhibit lower MVTR¹⁸. The results for amlodipine are not statistically conclusive, but somehow the trend is noticeable since samples with a peak area of the amlodipine-lactose interaction product greater than 0.5% (w/w) were exclusively from the blisters with higher MVTR i.e. the blisters composed of PVC as opposed to the foil-foil aluminium ones¹⁸. Accordingly, it can be seen that the use of low moisture

BMJ Open

2 3 4	2
5 6 7	2
8 9 10	2
11 12 12	2
13 14 15	2
 11 12 13 14 15 16 17 18 	2
19 20	2
21 22 23	2
24 25 26	2
27 28	2
29 30 31	2
31 32 33	2
34 35 36	2
37 38 39	2
40 41	2
42 43 44	2
45 46 47	2
48 49	2
50 51 52	2
53 54	2
55 56 57	2
58 59 60	2

barrier packaging for these two products among the different cardiac drugs tested appears to
have contributed to their low assay values.

This poor quality, represented by both a lower active substance content and the presence of degradation products, subjects the patient to safety risks. On the one hand, any dose lower than the dose to which the body has developed tolerance may induce an effect that is difficult to predict and may even be contrary to the action of the usual dose²⁰ and on the other hand, the degradation products formed may be toxic²¹.

Captopril disulphide is a well-known metabolite of captopril, which can reversibly interconvert into captopril in the blood²². However, in human pharmacokinetic studies the amount of captopril disulphide in the blood never exceeds 8% of that of captopril^{22,23}. Therefore, clinical consequences of exposure to higher amounts of captopril disulfide are unknown. This is to be considered because the disulfide metabolites of sulfur-based drugs were 50 to 100 times more toxic on hepatocytes from isolated rats than the parent drugs²⁴.

In some amlodipine samples, two main degradation products were detected as mentioned earlier, amlodipine impurity A that corresponds to the oxidation of its dihydropyridine ring and the amlodipine-lactose interaction product. Impurity A has been reported to be among the most found metabolites in urines (7%)²⁵. As its level was always inferior to 2% relative to the active substance in the samples analysed, one can assume that this presence may have a limited impact to the patients. As for the amlodipine-lactose interaction product, no data are currently available on its fate in the body and its toxicity, which makes it a risk to consider.

267 Overall, on the basis of these additional results from the study of the chromatographic profiles
 9 268 of the collected samples, significant quantities of cardio drugs sold on African soil may not

269 only present a lack of efficacy but also safety issues, due to the presence of impurities and/or
270 degradation products resulting from poor storage and packaging conditions.

271 Conclusion

Further studies of captopril and amlodipine samples from Africa showed that their low assays would result in part from the degradation of the active substance, which may indicate that protective measures to avoid degradation of the drug products were not commensurate with their unstable behaviour, particularly in the presence of moisture and heat. FTIR analyses of the samples' blisters disclosed they differ in material composition for a same active substance. In the case of captopril, statistical analysis has shown that the active substance content of products in tighter blister packs is higher than that of products in less moisture-resistant packaging. In the case of amlodipine, only the samples with low moisture resistant packaging had high amounts (>0.5% w/w) of degradation products.

Using packaging with elevated moisture barrier properties could be a significant leverage to reduce the prevalence of substandard drugs in countries where medicines circuit and storage are poorly controlled. It is therefore also important to make the health authorities in these countries aware that the quality of packaging must also be taken into account when evaluating medicines supplied.

⁹ 286 Footnotes

- 2 287 Contributors
- $\frac{3}{4}$ 288 All authors have substantial contributions.

289 Study concept and design: PH. Secretan, B. Do, M. Antignac and X. Jouven

7 290 Responsible of samples collection: S. Ikama Meo, R. N' Guetta, D. Balde, A. Sidy Ali, P. 78 291 Zabsonre, JL. Takombe.

1 2		
2 3 4	292	Chemical analysis: M. Bernard, B. Do, PH Secretan and Najet Yagoubi.
5	293	Interpretation of data: all authors.
6 7	294	Statistical analysis: PH. Secretan, B. Do, MC Perier, M. Antignac and X. Jouven.
8 9	295	Drafting of the manuscript: all authors.
10 11	296	Final approval of the version to be published: all authors.
12 13	297	Funding
14 15	298	The SEVEN study was exclusively supported by a public grant:
16 17	299	- ANSM (Agence Nationale Sécurité du Médicament) (Grant AAP-2014-042).
18 19	300	- INSERM (Institut national de la Santé et de la Recherche Médicale),
20 21	301	- AP-HP (Assistance Publique – Hôpitaux de Paris), Paris Descartes University
22 23	302	Competing interests
24 25	303	None.
26 27		
28 29	304	Patient consent for publication
30 31	305	No patient involved (Not required).
32 33	306	Data sharing statement
34 35	307	No additional data available.
36		
37 38		
39 40		
41 42		
43 44		
45		
46 47		
48 49		
50		
51 52		
53		
54 55		
56 57		
58		
59 60		

3 4 5	308	R	References	
6 7	309	1.	Nayyar, G. M. L. et al. Falsified and Substandard Drugs: Stopping the Pandemic. Am. J.	
8 9 10	310		<i>Trop. Med. Hyg.</i> 100 , 1058–1065 (2019).	
11 12 12	311	2.	Johnston, A. & Holt, D. W. Substandard drugs: a potential crisis for public health:	
13 14 15 16 17 18	312		Substandard drugs. Br. J. Clin. Pharmacol. 78, 218–243 (2014).	
	313	3.	Almuzaini, T., Choonara, I. & Sammons, H. Substandard and counterfeit medicines: a	
19 20	314		systematic review of the literature. BMJ Open 3 , e002923 (2013).	
21 22 23	315	4.	Bowry, A. D. K., Lewey, J., Dugani, S. B. & Choudhry, N. K. The Burden of Cardiovascular	
24 25 26	316		Disease in Low- and Middle-Income Countries: Epidemiology and Management. Can. J.	
26 27 28 29 30 31 32 33 34	317		Cardiol. 31 , 1151–1159 (2015).	
	318	5.	Antignac, M. et al. Quality Assessment of 7 Cardiovascular Drugs in 10 Sub-Saharan	
	319		Countries: The SEVEN Study. JAMA Cardiol. 2, 223 (2017).	
35 36	320	6.	Antignac, M. et al. Fighting fake medicines: First quality evaluation of cardiac drugs in	
37 38 39 40	321		Africa. Int. J. Cardiol. 243, 523–528 (2017).	
40 41 42	322	7.	Macquart de Terline, D. et al. Substandard drugs among five common antihypertensive	
43 44 323 generic medications: an analysis from 10 African countries. J. Hyperter		generic medications: an analysis from 10 African countries. J. Hypertens. 36, 395-401		
45 46 47	324		(2018).	
48 49 50	325	8.	Khan, M. H. et al. Effects of packaging and storage conditions on the quality of amoxicillin-	
51 52	326		clavulanic acid – an analysis of Cambodian samples. BMC Pharmacol. Toxicol. 14, 33	
53 54 55	327		(2013).	
56 57 58	328	9.	Asafu-Adjaye, E. B. et al. Comparative stability study of unit-dose repackaged furosemide	
58 59 329 tablets. <i>Clin. Res. Regul. Aff.</i> 28 , 38–48 (2011). 60			tablets. <i>Clin. Res. Regul. Aff.</i> 28 , 38–48 (2011).	

Page 19 of 22

1

BMJ Open

2		
2 3 4	330	10. Ogbonna, A. C. & Harris, D. J. Thermal comfort in sub-Saharan Africa: Field study report in
5 6 7 8 9 10 11 12 13 14 15	331	Jos-Nigeria. Appl. Energy 85 , 1–11 (2008).
	332	11. Scrivens, G. et al. The Humidity Exposure of Packaged Products. in Accelerated Predictive
	333	<i>Stability</i> 105–146 (Elsevier, 2018). doi:10.1016/B978-0-12-802786-8.00005-X.
	334	12. Newton, P. N. et al. Guidelines for Field Surveys of the Quality of Medicines: A Proposal.
16 17	335	<i>PLOS Med.</i> 6 , e1000052 (2009).
18 19 20	336	13. Bower, D. I. & Maddams, W. F. The Vibrational Spectroscopy of Polymers. (Cambridge
21 22 23	337	University Press, 1989). doi:10.1017/CBO9780511623189.
24 25 26	338	14. França, L. de M. et al. NIR hyperspectral imaging to evaluate degradation in captopril
27 28 29	339	commercial tablets. <i>Eur. J. Pharm. Biopharm.</i> 104 , 180–188 (2016).
29 30 31 32 33 34	340	15. Tôrres, A. R., Grangeiro, S. & Fragoso, W. D. Multivariate control charts for monitoring
	341	captopril stability. Microchem. J. 118, 259–265 (2015).
35 36	342	16. Stulzer, H. K., Rodrigues, P. O., Cardoso, T. M., Matos, J. S. R. & Silva, M. A. S. Compatibility
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	343	studies between captopril and pharmaceutical excipients used in tablets formulations. J.
	344	Therm. Anal. Calorim. 91 , 323–328 (2008).
	345	17. Abdoh, A., Al-Omari, M. M., Badwan, A. A. & Jaber, A. M. Y. Amlodipine Besylate-
	346	Excipients Interaction in Solid Dosage Form. <i>Pharm. Dev. Technol.</i> 9, 15–24 (2004).
	347	18. Waterman, K. C. & Macdonald, B. C. Package Selection for Moisture Protection for Solid,
	348	Oral Drug Products. <i>J. Pharm. Sci.</i> 99 , 4437–4452 (2010).
53 54 55	349	19. Malcolm, L. Accelerated Stability Assessment Program (ASAP) Applications in a
56 57	350	Postapproval Environment. in Accelerated Predictive Stability 287–304 (Elsevier, 2018).
58 59 60	351	doi:10.1016/B978-0-12-802786-8.00012-7.

Page 20 of 22

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
13 14	
15	
16	
16 17 18	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32 33	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

352 20. Peper, A. Aspects of the Relationship between Drug Dose and Drug Effect. *Dose-Response*353 **7**, dose-response.0 (2009).

Melo, S. R. d. O., Homem-de-Mello, M., Silveira, D. & Simeoni, L. A. Advice on Degradation
Products in Pharmaceuticals: A Toxicological Evaluation. *PDA J. Pharm. Sci. Technol.* 68,
221–238 (2014).

357 22. Migdalof, B. H. *et al.* Captopril: Pharmacology, Metabolism, and Disposition. *Drug Metab.*358 *Rev.* 15, 841–869 (1984).

23. Duchin, K. L., McKinstry, D. N., Cohen, A. I. & Migdalof, B. H. Pharmacokinetics of Captopril
 in Healthy Subjects and in Patients with Cardiovascular Diseases: *Clin. Pharmacokinet.* 14, 241–259 (1988).

362 24. Jatoe, S. D., Lauriault, V., McGirr, L. G. & O'Brien, P. J. THE TOXICITY OF DISULPHIDES TO 31 32 363 ISOLATED HEPATOCYTES AND MITOCHONDRIA. *Drug Metabol. Drug Interact.* **6**, (1988).

364 25. Stopher, D. A., Beresford, A. P., Macrae, P. V. & Humphrey, M. J. The Metabolism and
 365 Pharmacokinetics of Amlodipine in Humans and Animals: *J. Cardiovasc. Pharmacol.* 12,

0 366 S55–S59 (1988).

3 367

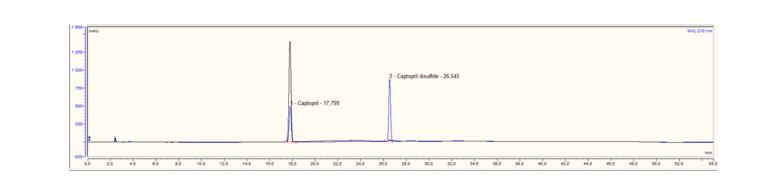


Fig. 1: typical chromatographic profiles of captopril solutions: reference active substance

standard solution (black), typical substandard drug sample (blue).

κ), typic...

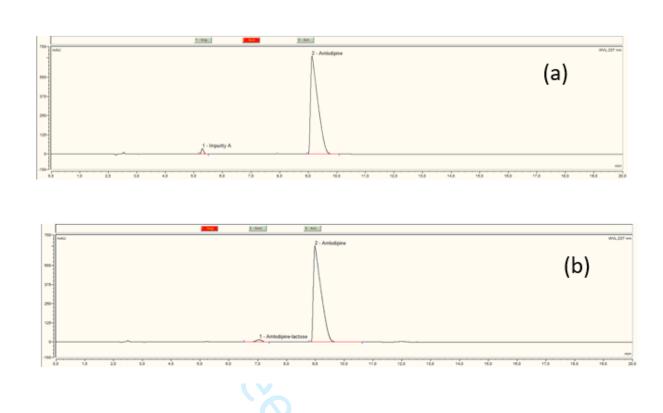


Fig. 2 : typical chromatographic profiles for samples containing impurity A (a) and samples

containing amlodipine-lactose interaction product (b)

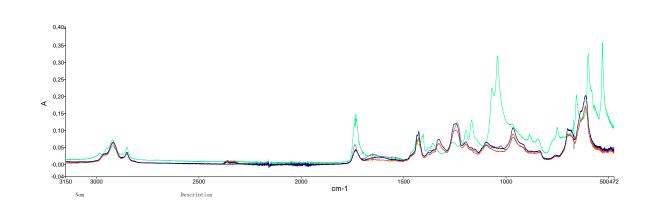


Fig. 3 : typical FTIR spectrum of a PVC polymer packaging with (green spectrum) and without

(blue and red spectrum) PVDC.

-νC poly.

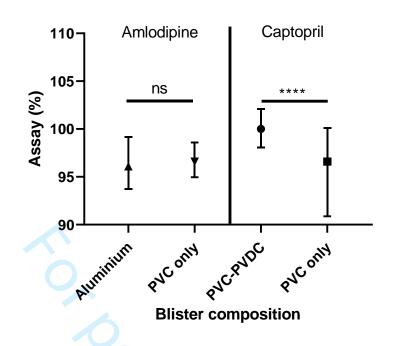


Fig.4 : medians of drug assays with interquartile ranges as a function of the drug and the blister composition, ns: non statistically significant; ****: p<0.0001.

BMJ Open

A post hoc study to investigate the potential causes of poor quality of cardiovascular medicines collected in sub-Saharan countries

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039252.R1
Article Type:	Original research
Date Submitted by the Author:	11-Aug-2020
Complete List of Authors:	Secretan, Philippe-Henri; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France Antignac, Marie; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France; Hospital Saint-Antoine, Department of pharmacy, Paris, France YAGOUBI, Najet; Université Paris-Sud Faculté de Pharmacie, Laboratoire Matériaux et Santé, EA 401, Chatenay-Malabry, France Bernard, Mélisande; AP-HP, Agence Générale des Equipements et Produits de Sante, department of laboratories, Paris, France PERIER, Marie Cécile; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France TAKOMBE, Jean Laurent; Ngalemia Clinic, Kinshasa, The Democratic Republic of the Congo BALDE, Dadhi ; Hospital Ignace Deen, Department of cardiology, Conakry, Guinea N'GUETTA, Roland; University Hospital Center of Treichville, Institut de cardiologie d'Abidjan, Abidjan, Cote d'Ivoire IKAMA, Méo Stéphane; University Hospital Center of Brazzaville, Departement of cardiology, Brazzaville, Congo ZABSONRE, Patrice; Centre Hospitalier Universitaire Yalgado Ouédraogo, Department of cardiology, Ouagadougou, Burkina Faso SIDI ALY, Abdallahi; Cardiology Clinics, Nouakchott, Mauritania JOUVEN, Xavier; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France; Hopital Europeen Georges Pompidou, Department of cardiology, Paris, France; Hopital Europeen Georges Pompidou, Department of cardiology, Paris, France; Hopital Europeen Georges Pompidou, Department of cardiology, Paris, France; Hopital Europeen Georges Pompidou, Ceteil, France
Primary Subject Heading :	Global health
Secondary Subject Heading:	Cardiovascular medicine, Public health
Keywords:	Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PUBLIC HEALTH, Toxicity < THERAPEUTICS, CARDIOLOGY

1	
2	
3 4	
5	SCHOLAR ONE [™]
6	Manuacrinta
7	Manuscripts
8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31	
32 33	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54	
55	
56 57	
57	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1 2				
3 4 5 6	1	A post hoc study to investigate the potential causes of poor		
7 8 9 10 11	2	quality of cardiovascular medicines collected in sub-Saharan		
12 13 14 15 16	3	countries		
17 18				
19	4	Philippe-Henri Secretan ¹ , Marie Antignac ^{1,2} , Najet Yagoubi ³ , Melisande Bernard ⁴ , Marie-		
20 21 22	5 6	Cecile Perier ¹ , Jean Laurent Takombe ⁵ , Dadhi Baldé ⁶ , Roland N'Guetta ⁷ , Méo Stéphane Ikama ⁸ , Patrice Zabsonre ⁹ , Abdallahi Sidi Aly ¹⁰ , Xavier Jouven ^{1,11} and Bernard Do ^{3,12} .		
23 24 25	7	1 Paris Cardiovascular Research Centre, INSERM U970, Paris, France		
26 27	8	2 Department of Pharmacy, Saint-Antoine Hospital, HUEP, AP-HP, Paris, France		
28 29	9	3 Faculty of Pharmacy, Paris-Sud University, UA 401 Matériaux et Santé, Chatenay-Malabry,		
30 31	10	France		
32 33	11	4 Department of Laboratories, Agence Générale des Equipements et Produits de Sante, AP HP,		
34 35	12	Paris, France		
36 37 38	13	5 Clinique Ngaliema, Kinshasa, Democratic Republic of Congo		
39 40	14	6 Department of Cardiology, Ignace Deen hospital, Conakry, Guinea		
41 42 43	15	7 Cardiology institute of Abidjan, Treichville hospital, Abidjan, Côte d'Ivoire		
43 44 45	16	8 Department of Cardiology, Brazzaville hospital, Brazzaville, Congo		
46 47 48	17	9 Yalgado Ouédraogo hospital, Ouagadougou, Burkina Faso		
48 49 50	18	10.Department of Cardiology, Nouakchott, Mauritanie		
51 52	19	11 Department of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France		
53 54 55	20	12 Department of Pharmacy, Henri Mondor Hospital, AP-HP, Créteil, France		
56 57 58	21	Correspondence to Dr Philippe-Henri Secretan ; phsecretan@yahoo.fr		
59 60	22			

23 Abstract

24 Objectives

The incidence of cardiovascular diseases is increasing and there is a growing need to provide access to quality cardio drugs in Africa. In the SEVEN study, we analysed 1530 cardiovascular drug samples randomly collected from ten African countries. By that time, of the seven drugs products analysed, only those containing amlodipine and captopril had very low assay values with active substance contents that could be less than 75% of those expected. In this article we investigate complementary aspects of the amlodipine and captopril samples so to explain the previously observed low assays for these two drugs. Design Post-hoc analysis of the captopril and amlodipine drugs samples and their packages collected in the context of the SEVEN study. Setting 10 countries were concerned: Benin, Burkina Faso, Congo, Democratic Republic of the Congo, Guinea, Côte d'Ivoire, Mauritania, Niger, Senegal and Togo. Studied drug samples 305 amlodipine and 235 captopril drug samples collected during the SEVEN study along with their packaging were studied. Outcome measures

BMJ Open

4	42
5 6 7	43
8 9 10	44
11 12 13 14	45
15 16	46
17 18	47
19 20 21	48
22 23 24	49
25 26 27 28	50
29 30 31	51
32 33	52
34 35 36	53
37 38 39 40 41	54
42 43 44	55
45 46	56
47 48 49	57
50 51	58
52 53	59
54 55 56	60
57 58	61
59 60	62

42 The drug amount and the relative amounts of drug impurities as well as the main compounds43 of the drugs packaging were analysed.

44 Results

Identification of the blister packaging of the samples led to separate both amlodipine and captopril drug samples in two groups. Mann Whitney's bilateral test showed a significant difference (p<0.0001) between the median value of the captopril dosage when tablets are packaged in blisters providing higher protection to humidity (n=105) as opposed to the tablets packaged in blisters providing lower humidity protection (n=130).

50 Conclusion

51 Based on these results, particular attention should be paid to the materials and types of 52 packaging used in order to minimize the lack of control over the exposures and drug circuits 53 present in these different countries.

54 Article summary : strengths and limitations of this study

 Complementary investigation of results obtained during the Seven study, during which 1530 cardiovascular drug samples were prospectively collected in licensed and unlicensed places of sale in Africa

- The specifically low amounts for two drugs, amlodipine and captopril, may be due to degradation during storage and lack of drug protection of these sensitive drugs
- Degradation products and impurities quantities were above the recommended
 thresholds in some amlodipine and captopril samples, raising potential concern about
 the toxicity of the drugs

Packaging providing high protection from residual humidity could be a leverage to reduce the presence of degraded amlodipine and captopril drugs on the African soil
Other studies should confirm, on these two sensitive drugs and other, that packaging providing better protection could be a mean to provide safer drugs in Africa

1. Introduction

Substandard drugs generally pose a serious health concern from several perspectives and this is particularly prevalent in developing countries where control regulations are poorly developed. Numerous cases of quality defects have been reported^{1,2}, mostly in connection with anti-infective drugs³. However, since cardiovascular diseases are currently the most important non-communicable diseases in most low- and middle-income countries, it is critical to ensure that these diseases are addressed in a comprehensive manner⁴. Thus, under the initiative of X. Jouven, the study named SEVEN has been set up with the aim of evaluating the quality of the cardiovascular drugs present in ten African countries^{5–7}, by exploring the case of 7 commonly used cardiac drugs, namely acenocoumarol, simvastatin, furosemide, hydrochlorothiazide, captopril, atenolol and amlodipine. It was showed that branded drugs were less likely to be of poor quality compared to generic or medicines with unknown version (p<0.001); conversely place of sale was not significantly associated with the proportion of poor quality (p = 0.29)⁶. Examination of the identity and assay of the active substances in the various samples collected revealed that among the products tested, only those based on amlodipine and captopril had very low active substance content that could be less than 75% of those expected⁶. The observation that the biggest quality defects were highlighted and

BMJ Open

circumscribed around these two molecules motivated the team to search for additionalinformation in particular regarding their stability.

For drugs where the quality defect is unintentional, according to Johnston et al, low dosage levels of active substance may be the result of a variety of factors, including inadequate package design or quality². Yet, despite the fact that the influence of packaging changes on the stability of medicinal products is now well established^{8,9}, to the best of our knowledge, the studies of the quality of real field samples have so far focused only on dosage units without taking into account the type of packaging used or their chemical composition³. However, the concept of packaging is equally important to assess, especially since the drug products need to be kept stable in difficult climatic conditions, where, for example, residual moisture can reach 88% in sub-Saharan Africa¹⁰ and the ability of a plastic blister pack to protect a drug from moisture is highly dependent on its design and composition¹¹.

96 It is in this context that this study was taking place considering samples of captopril and 97 amlodipine products, collected as part of the SEVEN study^{5–7}, as tracer products. On these 98 various samples was carried out the search for degradation products and/or chromatographic 99 related substances as well as the identification of the packaging actually present on the 100 products collected in several African countries, by trying, where possible and relevant, to 101 reconcile the different data and make them meaningful in relation to the potential causes of 102 underdosing previously highlighted for these two drugs.

103 2. Material and method

104 2.1. Sample collection

105 The methodology and design of the samples collection are described in detail in the articles 106 published in the context of the SEVEN study^{5–7}. A multidisciplinary collaborative team of 107 epidemiologists, cardiologists and pharmacists from France and Africa conceived and 108 designed the study. It was registered with the French national drug agency (Agence Nationale 109 Sécurité du Médicament ID_RCB:2014-A01275-42).

1530 drugs samples, including 235 captopril and 305 amlodipine drug samples, were collected as per the Guidelines for Field Surveys of the Quality of Medicines¹². 10 countries were concerned: Benin, Burkina Faso, Congo, Democratic Republic of the Congo, Guinea, Côte d'Ivoire, Mauritania, Niger, Senegal and Togo. In these countries, samples were obtained from licensed (pharmacy) sources selected randomly and unlicensed (street market) places of sale chosen as per the local investigator's convenience. Drug samples were purchased in the capital city and when possible in one city located close to the country's border. Medicines were obtained by the study investigator's staff who posed as customers. The pharmacies were randomly chosen from a list provided by the Council of the Order of Pharmacists of each country. Unlicensed markets were identified based on the local investigator's knowledge. For each drug sample, investigators were asked to collect generic versions and brand name versions of the drug if available. After purchase, all drugs were stored at ambient temperature, in a dry place avoiding direct sunlight. Samples were sent via courier to the coordinating centre in France.

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
56	
57	
58	
59	
60	

124 2.2. Reagents and sample preparation

Amlodipine besylate, captopril, iodine, sodium thiosulfate and triethylamine (>99% pure)
were purchased from Sigma Aldrich (St. Quentin Fallavier, France). Analytical grade
acetonitrile and methanol came from VWR Prolabo[®]Chemicals (Fontenay-sous-Bois, France).
Ultrapure water was produced by the Q-Pod Milli-Q[®] system (Millipore, Molsheim, France).
The stationary phase consisted of a Kinetex[®](Phenomenex, Torrance, U.S.A.) C18 column (4.6
mmx250 mm, i.d., 5 µm).

Standard solutions were prepared as per the recommendations provided in the United States
Pharmacopeia (USP) monograph of amlodipine besylate and captopril tablets. Captopril
disulfide was obtained by using the protocol proposed in the European Pharmacopeia (Ph.
Eur.) monograph of captopril.

135 2.3 Analytical conditions

Chemical analyses of samples were achieved by the Department of Laboratories in Paris
(AGEPS, AP-HP). Chromatographic analyses were performed using a Dionex Ultimate 3000
system (DIONEX, Ulis, France) coupled to a diode array detector. Chromatographic conditions
as well as suitability tests were performed as per the recommendations provided in the
monograph of amlodipine tablet (USP) and captopril (Ph. Eur.).

141Identification of blisters was achieved using Fourier Transformed Infrared Spectroscopy (FTIR)142FTIR Perkin-Elmer Spectrum 2000® spectrometer (Villebon-sur-Yvette, France) with a diamond143crystal. Resolution, scan range and number of accumulated scans per spectrum were set to

0.5 cm⁻¹, 4000 to 400 cm⁻¹ and 3, respectively. Spectrum were acquired on each side of the
blisters using attenuated total reflectance mode.

146 2.4. Statistical analysis

All statistical tests were performed using GraphPad Prism version 8.3.1. for Windows (GraphPad Software, La Jolla California, USA). Nonparametric Spearman's correlation coefficient (r) was calculated to measure the strength of the association between the peak surface area of captopril and that of captopril disulfide. Mann-Whitney tests were used to compare the median between drugs with lower and those with higher protection from humidity packaging blisters.

153 3. Results and discussion

154 3.1. Collected drug samples

A total of 305 amlodipine and 235 captopril drug samples were collected in the ten countries. The amount of drug samples collected as a function of the countries and their place of purchase is summarized in Table 1. Overall, 150 of the 305 amlodipine and 140 of the 235 captopril drug samples considered in the study were obtained from licensed places of sale (Table 1). 265 and 195 drug samples were respectively identified as amlodipine and captopril generic drugs.

161 Table 1: number of collected amlodipine and captopril drug samples as a function of country
 162 and place of purchase (i.e. licensed or unlicensed). DRC: Democratic Republic of the Congo;
 163 NA : not applicable.

Amlodipine

Captopril

1										
2 3 4		Benin	Licensed 20	Unlicensed 30	Total 50	Licensed 20	Unlicensed 30	Total 50		
5 6		Burkina Faso	10	NA	10	20	NA	20		
7 8		Congo- Brassaville	NA	30	30	10	10	20		
9		Côte d'Ivoire	30	45	75	30	15	45		
10 11		DRC	20	NA	20	10	NA	10		
12		Guinea	NA	10	10	NA	10	10		
13 14 15 16 17 18 19 20 21 22		Mauritania	20	20	40	30	NA	30		
		Niger	30	NA	30	NA	10	10		
		Senegal	NA	20	20	NA	20	20		
		Тодо	20	NA	20	20	NA	20		
		Total	150	155	305	140	95	235		
	164									
23										
24										
25 26 27	165	3.2. Chromatog	raphic purity p	profiles of the	drugs					
28										
29	166	3.2.1. Captopril s	3.2.1. Captopril samples							
30 31										
32		The qualitative study of the chromatograms of the 22E contentil drug complex showed that								
33	167	167 The qualitative study of the chromatograms of the 235 captopril drug samples showed								
34	100	the 31 samples with drug amounts inferior to 90% (w/w%) contained the same impurity (Fig.								
35 36	168									
37	160	1) The detected i	mouritywasa	cianad to conta	opril diculfi	do as it had th	o como rotontio	n time		
38	169	I). The detected i	1). The detected impurity was assigned to captopril disulfide as it had the same retention time							
39	170	than this compou	und							
40 41	170	than this compot	inu.							
42										
43	171	Fig. 1: typical chr	omatographic	orofiles of canto	opril soluti	ons: reference	active substan	re		
44			Fig. 1: typical chromatographic profiles of captopril solutions: reference active substance							
45 46	172	standard solutior	ı (black), typica	l substandard d	lrug sampl	le (blue).				
47										
48										
49 50	173	Further, for every	y chromatogra	m, the sum of t	he surface	of the peak a	reas correspond	ding to		
50 51										
52	174	captopril and tha	t of captopril o	lisulfide led to o	obtain are	as recoveries b	etween 90 and	110%		
53										
54	175	compared to that	t of the captop	ril reference so	lution. The	erefore, one co	uld infer that tl	ne lack		
55 56					_					
57	176	of drug captopril	may be linked	to the presence	of captop	ril disulfide. As	a result, a corre	elation		
58										
59										
60										

study between the surface of the peak of captopril and that of captopril disulfide impurity was carried out and yielded a negative Spearman coefficient with a value of -0.613 (p=0.0069). 3.2.2. Amlodipine samples Unlike captopril, the 305 chromatographic profiles obtained for amlodipine samples strongly differed from one to the other, implying that the drugs did not contain the same impurities (Fig. 2). Indeed, under the analytical conditions recommended in the USP monograph, two categories of chromatographic profiles were obtained as a function of the studied samples. A first category of chromatographic profiles consisted of samples containing an impurity with a relative retention time of about 0.5 (Fig 2. a) as compared to amlodipine, referred in the USP as amlodipine related compound A. In 10 chromatograms, the surface of the peak of this impurity exceeded the USP acceptance criteria for this impurity (<1.0 %, w/w). The second category of chromatographic profiles comprised a peak with a relative retention time of about 0.8 (Fig 2.b) corresponding to a degradation related impurity, namely an amlodipine-lactose interaction product. For 30 sample solutions, the area of the peak of this impurity compared to that of amlodipine exceeded the USP acceptance criteria for this impurity (<0.5% w/w). Fig. 2: typical chromatographic profiles for samples containing impurity A (a) and samples containing amlodipine-lactose interaction product (b). 3.3. Blisters identification The identity and aspect of the blisters materials strongly differed between amlodipine and

⁹ 197 captopril and within drug samples of the same drug.

Page 13 of 25

 BMJ Open

)						
<u>2</u> 3 1	198	FTIR analysis were perf	ormed on each side	of the plastic	blisters in o	order to identify its main
5	199	compounds. Based on	the analysis, two gro	oups could be	established	: those with a spectrum
3	200	corresponding to polyvi	nyl-chloride's one (F	VC, red and bl	ue spectrum	n, Fig. 3) and those which
10 11	201	have two spectral bar	ids (597 and 527 c	m ⁻¹) characte	ristic of the	e polyvinylidine-chloride
2 3 4 5	202	presence ¹³ (PVDC, gree	n spectrum, Fig. 3).			
6 7	203	Fig. 3: typical FTIR spe	ectrum of a polyvin	yl-chloride (P\	VC) polymer	packaging with (green
18 19 20 21	204	spectrum) and without	(blue and red spect	rum) polyvinyl	idine-chlorid	de (PVDC).
22 23 24	205	The analysis highlighte	d that 105 out of t	he 235 captop	oril drug sar	nples were packaged in
25 26	206	blisters containing PVD	C and 130 in blisters	only compose	ed of PVC. In	the case of amlodipine,
27 28	207	none of the plastic bli	sters used to packa	ige the 245 ar	mlodipine sa	amples contained PVDC
29 30 31	208	(Table 2). 60 amlodipi	ne samples were	backaged in b	listers cons	isting of foil-foil sealed
32 33 34	209	aluminium (Table 2).				
35 36 37	210	Table 2: number of am	lodipine and captor	oril drug samp	oles as a fun	ction of blister identity.
38 39 10	211	PVC: polyvinyl-chloride	; PVDC: polyvinylidir	ne-chloride.		
41 42 43			Blister identity	Amlodipine	Captopril	
14 15			PVC only	245	130	
16 17 18			Aluminium only	60	None	
19 50 51			PVC-PVDC	None	105	
52 53 54 55 56 57	212					

213 3.4. Drugs assays as a function of blister identifications

From the results obtained in 3.2., captopril assays results were separated based on the presence of PVDC or not (PVC only). Amlodipine assay results were divided in two groups: the group of samples packaged in foil-foil sealed aluminium blisters and the one packaged in PVC blisters (PVC only). The results are provided in figure 4.

Fig.4: medians of drug assays with interquartile ranges as a function of the drug and the blister
composition. PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride; ns: non statistically
significant; ****: p<0.0001.

For amlodipine, no statistical difference in dosage (p=0.7684) was observed between the group with foil-foil aluminium packaging (median=96.10, n=60) and the group with PVC blister packaging (median=96.60, n=245).

For captopril, on the other hand, a statistical difference (p<0.0001) was found between the group of samples stored in blisters containing only PVC (median=96.60, n=130) and those stored in blisters containing PVC/PVDC (median=100.0, n=105).

227 4. Discussion

Sub-standard cardiac medicines represent a serious health hazard and result in significant morbidity and mortality⁴. The SEVEN study was the first major study of cardiovascular drugs in Sub-Saharan Africa^{5–7}. The analysis of samples collected in Africa and through various sales spots of all kinds showed that among the products used in cardiovascular diseases, about 15-20% were of low quality, and the prevalence of poor quality is higher for the products containing amlodipine and captopril. Given this observation and the fact that these two active Page 15 of 25

BMJ Open

substances are particularly sensitive to humidity and heat, the question arose as to whether
the intrinsic stability of the latter had contributed more to the quality defects highlighted at
the time. So, in this follow-up study, we have sought to provide some answers to this question
by focusing on the search of associated degradation products and the nature of the packaging
used at the time of the on-site collections.

We therefore sought to supplement the assay results with chromatographic purity studies on samples of the various cardiological drugs samples collected during the SEVEN study. We noted that the levels of impurities are particularly high for captopril and amlodipine samples (>0.5% compared to the considered active substance), as is their high prevalence of underdosing relative to other products, as previously mentioned. Of course, this problem could have been caused by the use of poor-quality active ingredient. But the fact that it is specific to these two active substances did not allow us to limit to this aspect alone. We therefore also turned our attention to the stability issue and to what goes hand in hand with this aspect. The identification of chromatographic impurities present concomitantly with the active substance was carried out to support our hypotheses related to the degradation of these compounds.

In the case of the captopril drug samples, the compound detected (Fig. 1) in addition to captopril was identified as captopril disulfide, a well-known degradation product of captopril that is prompt to be formed under moisture and heat¹⁴. In other words, this would mean that the underdoses initially observed in the captopril products⁶ could be attributed to the poor quality of the active substance used and/or, to a larger extent, to degradation occurring either during manufacture and/or during improper storage. However, as it is well depicted that captopril is far more susceptible to degradation in the presence of some excipients than alone

^{15,16}, one can fathom that the presence of captopril disulfide may more likely result from
degradation due to uncontrolled exposure. As for amlodipine, chromatographic analyses
showed in 30 samples the presence of an impurity due to amlodipine-lactose interaction (Fig.
2 b). Such interaction was shown to occur in time and mostly under high humidity conditions¹⁷,
which could, to some extent, explain the poor assays observed in SEVEN study⁷.

These results are consistent with data in the literature in that the moisture vapour transmission rate¹⁸ (MVTR) must be controlled as it is critical to the stability of captopril¹⁴ and amlodipine¹⁹. The corollary is that we have indeed shown, in the case of captopril, a significant difference (p<0.0001, Fig. 4) in active substance content between tablets extracted from PVC blisters and those from PVC-PVDC blisters that exhibit lower MVTR¹⁸. The results for amlodipine are not statistically conclusive, but somehow the trend is noticeable since samples with a peak area of the amlodipine-lactose interaction product greater than 0.5% (w/w) were exclusively from the blisters with higher MVTR i.e. the blisters composed of PVC as opposed to the foil-foil aluminium ones¹⁸. Accordingly, it can be seen that the use of low moisture barrier packaging for these two products among the different cardiac drugs tested appears to have contributed to their low assay values.

This poor quality, represented by both a lower active substance content and the presence of degradation products, subjects the patient to safety risks. On the one hand, any dose lower than the dose to which the body has developed tolerance may induce an effect that is difficult to predict and may even be contrary to the action of the usual dose²⁰. On the other hand, the degradation products formed may be toxic²¹. Page 17 of 25

BMJ Open

Captopril disulphide is a well-known metabolite of captopril, which can reversibly interconvert
into captopril in the blood²². However, in human pharmacokinetic studies the amount of
captopril disulphide in the blood never exceeds 8% of that of captopril^{22,23}. Therefore, clinical
consequences of exposure to higher amounts of captopril disulfide are unknown. This is to be
considered because the disulfide metabolites of sulfur-based drugs were 50 to 100 times more
toxic on hepatocytes from isolated rats than the parent drugs²⁴.

In some amlodipine samples, two main degradation products were detected as mentioned earlier, amlodipine impurity A that corresponds to the oxidation of its dihydropyridine ring and the amlodipine-lactose interaction product. Impurity A has been reported to be among the most found metabolites in urines (7%)²⁵. As its level was always inferior to 2% relative to the active substance in the samples analysed, one can assume that this presence may have a limited impact to the patients. As for the amlodipine-lactose interaction product, no data are currently available on its fate in the body and its toxicity, which makes it a risk to consider.

Overall, on the basis of these additional results from the study of the chromatographic profiles
 of the collected samples, significant quantities of cardio drugs sold on African soil may not
 only present a lack of efficacy but also safety issues, due to the presence of impurities and/or
 degradation products resulting from poor storage and packaging conditions.

295 4.1. Limitations of the study

This study is of an observational type and even if as much information as possible has been collected for the research and attribution of causes likely to be at the origin of the active substance dosage defect, other factors than those related to packaging and storage problems may be involved. The lack of active substance is most likely multi-factorial and it may be usefulto explore with more samples when applicable.

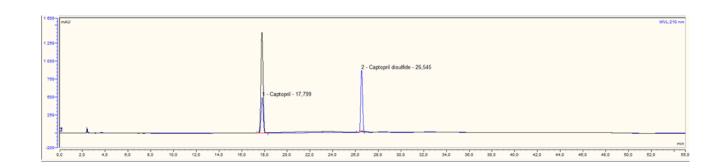
301 Conclusion

Further studies of captopril and amlodipine samples from Africa showed that their low assays would result in part from the degradation of the active substance, which may indicate that protective measures to avoid degradation of the drug products were not commensurate with their unstable behaviour, particularly in the presence of moisture and heat. FTIR analyses of the samples' blisters disclosed they differ in material composition for a same active substance. In the case of captopril, statistical analysis has shown that the active substance content of products in tighter blister packs is higher than that of products in less moisture-resistant packaging. In the case of amlodipine, only the samples with low moisture resistant packaging had high amounts (>0.5% w/w) of degradation products.

Using packaging with elevated moisture barrier properties could be a significant leverage to reduce the prevalence of substandard drugs in countries where medicines circuit and storage are poorly controlled. It is therefore also important to make the health authorities in these countries aware that the quality of packaging must also be taken into account when evaluating medicines supplied.

⁴⁹ 316 Figure legend/caption

Table 1: number of collected amlodipine and captopril drug samples as a function of country
and place of purchase (i.e. licensed or unlicensed). DRC: Democratic Republic of the Congo;
NA : not applicable.


1 2		
3 4	320	Table 2: number of amlodipine and captopril drug samples as a function of blister identity.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	321	PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride.
	322	Fig. 1: typical chromatographic profiles of captopril solutions: reference active substance
	323	standard solution (black), typical substandard drug sample (blue).
	324	Fig. 2: typical chromatographic profiles for samples containing impurity A (a) and samples
	325	containing amlodipine-lactose interaction product (b).
20 21 22	326	Fig. 3: typical FTIR spectrum of a polyvinyl-chloride (PVC) polymer packaging with (green
23 24	327	spectrum) and without (blue and red spectrum) polyvinylidine-chloride (PVDC).
25 26		
27	328	Fig. 4: medians of drug assays with interquartile ranges as a function of the drug and the blister
28 29	329	composition. PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride; ns: non statistically
30 31 32	330	significant; ****: p<0.0001.
33 34 35	331	Footnotes
36 37	332	Contributors
38	333	All authors have substantial contributions.
39 40 41	334	Study concept and design: PH. Secretan, B. Do, M. Antignac and X. Jouven
41 42 43 44	335 336	Responsible of samples collection: S. Ikama Meo, R. N' Guetta, D. Balde, A. Sidy Ali, P. Zabsonre, JL. Takombe.
45	337	Chemical analysis: M. Bernard, B. Do, PH Secretan and Najet Yagoubi.
46 47	338	Interpretation of data: all authors.
48 49	339	Statistical analysis: PH. Secretan, B. Do, MC Perier, M. Antignac and X. Jouven.
50 51	340	Drafting of the manuscript: all authors.
52 53	341	Final approval of the version to be published: all authors.
54 55	342	Funding
56 57	343	The SEVEN study was exclusively supported by a public grant:
58	344	- ANSM (Agence Nationale Sécurité du Médicament) (Grant AAP-2014-042).
59 60	345	- INSERM (Institut national de la Santé et de la Recherche Médicale),

1 2		
3 4	346	- AP-HP (Assistance Publique – Hôpitaux de Paris), Paris Descartes University
5 6	347	Competing interests
7	348	None.
8 9		
10 11	349	Patient consent for publication
12	350	No patient involved (Not required).
13 14	550	
15		
16 17	351	Data sharing statement
18	352	No additional data available.
19 20		
21		
22 23		
24		
25 26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52 53		
54		
55 56		
57		
58 59		
60		

1 2			
3 4 5	353	R	eferences
5 6 7	354	1.	Nayyar, G. M. L. et al. Falsified and Substandard Drugs: Stopping the Pandemic. Am. J.
8 9 10	355		Trop. Med. Hyg. 100 , 1058–1065 (2019).
11 12 13	356	2.	Johnston, A. & Holt, D. W. Substandard drugs: a potential crisis for public health:
14 15	357		Substandard drugs. Br. J. Clin. Pharmacol. 78, 218–243 (2014).
16 17 18	358	3.	Almuzaini, T., Choonara, I. & Sammons, H. Substandard and counterfeit medicines: a
19 20 21	359		systematic review of the literature. BMJ Open 3 , e002923 (2013).
22 23	360	4.	Bowry, A. D. K., Lewey, J., Dugani, S. B. & Choudhry, N. K. The Burden of Cardiovascular
24 25 26	361		Disease in Low- and Middle-Income Countries: Epidemiology and Management. Can. J.
27 28 29	362		Cardiol. 31 , 1151–1159 (2015).
30 31	363	5.	Antignac, M. et al. Quality Assessment of 7 Cardiovascular Drugs in 10 Sub-Saharan
32 33 34	364		Countries: The SEVEN Study. JAMA Cardiol. 2, 223 (2017).
35 36	365	6.	Antignac, M. et al. Fighting fake medicines: First quality evaluation of cardiac drugs in
37 38 39	366		Africa. Int. J. Cardiol. 243, 523–528 (2017).
40 41 42	367	7.	Macquart de Terline, D. et al. Substandard drugs among five common antihypertensive
43 44	368		generic medications: an analysis from 10 African countries. J. Hypertens. 36, 395-401
45 46 47	369		(2018).
48 49 50	370	8.	Khan, M. H. et al. Effects of packaging and storage conditions on the quality of amoxicillin-
51 52	371		clavulanic acid – an analysis of Cambodian samples. BMC Pharmacol. Toxicol. 14, 33
53 54 55	372		(2013).
56 57	373	9.	Asafu-Adjaye, E. B. et al. Comparative stability study of unit-dose repackaged furosemide
58 59 60	374		tablets. <i>Clin. Res. Regul. Aff.</i> 28 , 38–48 (2011).

3 4	375	10.	Ogbonna, A. C. & Harris, D. J. Thermal comfort in sub-Saharan Africa: Field study report in
5 6 7	376		Jos-Nigeria. Appl. Energy 85 , 1–11 (2008).
8 9 10	377	11.	Scrivens, G. et al. The Humidity Exposure of Packaged Products. in Accelerated Predictive
10 11 12 13	378		<i>Stability</i> 105–146 (Elsevier, 2018). doi:10.1016/B978-0-12-802786-8.00005-X.
14 15	379	12.	Newton, P. N. et al. Guidelines for Field Surveys of the Quality of Medicines: A Proposal.
16 17 18	380		PLOS Med. 6, e1000052 (2009).
19 20 21	381	13.	Bower, D. I. & Maddams, W. F. The Vibrational Spectroscopy of Polymers. (Cambridge
21 22 23	382		University Press, 1989). doi:10.1017/CBO9780511623189.
24 25 26	383	14.	França, L. de M. et al. NIR hyperspectral imaging to evaluate degradation in captopril
27 28	384		commercial tablets. Eur. J. Pharm. Biopharm. 104, 180–188 (2016).
29 30 31	385	15.	Tôrres, A. R., Grangeiro, S. & Fragoso, W. D. Multivariate control charts for monitoring
32 33 34	386		captopril stability. Microchem. J. 118, 259–265 (2015).
34 35 36 37 38 39	387	16.	Stulzer, H. K., Rodrigues, P. O., Cardoso, T. M., Matos, J. S. R. & Silva, M. A. S. Compatibility
	388		studies between captopril and pharmaceutical excipients used in tablets formulations. J.
40 41 42	389		Therm. Anal. Calorim. 91 , 323–328 (2008).
43 44	390	17.	Abdoh, A., Al-Omari, M. M., Badwan, A. A. & Jaber, A. M. Y. Amlodipine Besylate-
45 46 47	391		Excipients Interaction in Solid Dosage Form. <i>Pharm. Dev. Technol.</i> 9, 15–24 (2004).
48 49 50	392	18.	Waterman, K. C. & Macdonald, B. C. Package Selection for Moisture Protection for Solid,
51 52	393		Oral Drug Products. J. Pharm. Sci. 99, 4437–4452 (2010).
53 54 55	394	19.	Malcolm, L. Accelerated Stability Assessment Program (ASAP) Applications in a
56 57	395		Postapproval Environment. in Accelerated Predictive Stability 287–304 (Elsevier, 2018).
58 59 60	396		doi:10.1016/B978-0-12-802786-8.00012-7.

3 4	397	20.	Peper, A. Aspects of the Relationship between Drug Dose and Drug Effect. Dose-Response
5 6 7	398		7 , dose-response.0 (2009).
8 9 10	399	21.	Melo, S. R. d. O., Homem-de-Mello, M., Silveira, D. & Simeoni, L. A. Advice on Degradation
11 12	400		Products in Pharmaceuticals: A Toxicological Evaluation. PDA J. Pharm. Sci. Technol. 68,
13 14 15	401		221–238 (2014).
16 17	402	22.	Migdalof, B. H. et al. Captopril: Pharmacology, Metabolism, and Disposition. Drug Metab.
18 19 20	403		<i>Rev.</i> 15 , 841–869 (1984).
21 22 23	404	23.	Duchin, K. L., McKinstry, D. N., Cohen, A. I. & Migdalof, B. H. Pharmacokinetics of Captopril
24 25	405		in Healthy Subjects and in Patients with Cardiovascular Diseases: <i>Clin. Pharmacokinet.</i> 14,
26 27 28	406		241–259 (1988).
29 30 31	407	24.	Jatoe, S. D., Lauriault, V., McGirr, L. G. & O'Brien, P. J. THE TOXICITY OF DISULPHIDES TO
32 33 34	408		ISOLATED HEPATOCYTES AND MITOCHONDRIA. Drug Metabol. Drug Interact. 6 , (1988).
35 36	409	25.	Stopher, D. A., Beresford, A. P., Macrae, P. V. & Humphrey, M. J. The Metabolism and
37 38 39	410		Pharmacokinetics of Amlodipine in Humans and Animals: J. Cardiovasc. Pharmacol. 12,
40 41	411		S55–S59 (1988).
42 43 44	412		
45 46			
47 48			
49			
50 51			
52 53			
54			
55 56			
57 58			
59			
60			

Fig. 1: typical chromatographic profiles of captopril solutions: reference active substance

standard solution (black), typical substandard drug sample (blue).

x), typica

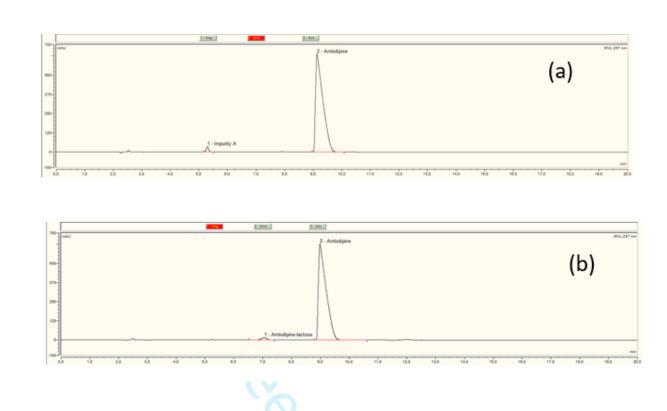


Fig. 2 : typical chromatographic profiles for samples containing impurity A (a) and samples

containing amlodipine-lactose interaction product (b)

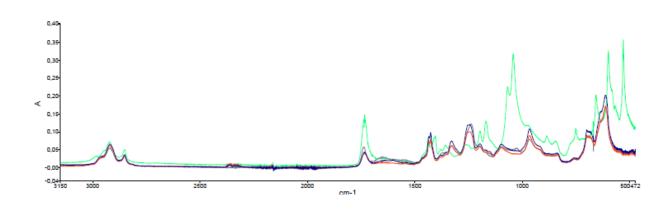
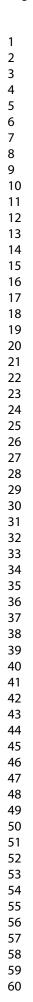



Fig. 3 : typical FTIR spectrum of a polyvinyl-chloride (PVC) polymer packaging with (green spectrum) and without (blue and red spectrum) polyvinylidine-chloride (PVDC).

 i a polyviny

 .d red spectrum) po.

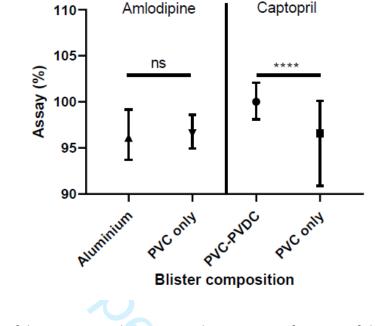


Fig.4: medians of drug assays with interquartile ranges as a function of the drug and the blister composition. PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride; ns: non statistically significant; ****: p<0.0001.

BMJ Open

A post hoc study to investigate the potential causes of poor quality of cardiovascular medicines collected in sub-Saharan countries

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039252.R2
Article Type:	Original research
Date Submitted by the Author:	05-Oct-2020
Complete List of Authors:	Secretan, Philippe-Henri; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France Antignac, Marie; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France; Hospital Saint-Antoine, Department of pharmacy, Paris, France YAGOUBI, Najet; Université Paris-Sud Faculté de Pharmacie, Laboratoire Matériaux et Santé, EA 401, Chatenay-Malabry, France Bernard, Mélisande; AP-HP, Agence Générale des Equipements et Produits de Sante, department of laboratories, Paris, France PERIER, Marie Cécile; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France TAKOMBE, Jean Laurent; Ngalemia Clinic, Kinshasa, The Democratic Republic of the Congo BALDE, Dadhi ; Hospital Ignace Deen, Department of cardiology, Conakry, Guinea N'GUETTA, Roland; University Hospital Center of Treichville, Institut de cardiologie d'Abidjan, Abidjan, Cote d'Ivoire IKAMA, Méo Stéphane; University Hospital Center of Brazzaville, Departement of cardiology, Brazzaville, Congo ZABSONRE, Patrice; Centre Hospitalier Universitaire Yalgado Ouédraogo, Department of cardiology, Ouagadougou, Burkina Faso SIDI ALY, Abdallahi; Cardiology Clinics, Nouakchott, Mauritania JOUVEN, Xavier; INSERM U970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, Paris, France; Hopital Europeen Georges Pompidou, Department of cardiology, Paris, France DO, Bernard; Universite Paris-Sud Faculte de Pharmacie, Laboratoire Matériaux et Santé, EA 401, Chatenay-Malabry, France; Henri Mondor Hospital Department of Pharmacy, Creteil, France
Primary Subject Heading :	Global health
Secondary Subject Heading:	Cardiovascular medicine, Public health
Keywords:	Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PUBLIC HEALTH, Toxicity < THERAPEUTICS, CARDIOLOGY

1	
2	
3	
4 5	
5 6	SCHOLARONE [™]
7	Manuscripts
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 58	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~ ~	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1 2		
3 4 5 6	1	A post hoc study to investigate the potential causes of poor
7 8 9 10 11	2	quality of cardiovascular medicines collected in sub-Saharan
12 13 14 15 16	3	countries
17 18		
19	4	Philippe-Henri Secretan ¹ , Marie Antignac ^{1,2} , Najet Yagoubi ³ , Melisande Bernard ⁴ , Marie-
20 21 22	5 6	Cecile Perier ¹ , Jean Laurent Takombe ⁵ , Dadhi Baldé ⁶ , Roland N'Guetta ⁷ , Méo Stéphane Ikama ⁸ , Patrice Zabsonre ⁹ , Abdallahi Sidi Aly ¹⁰ , Xavier Jouven ^{1,11} and Bernard Do ^{3,12} .
23 24 25	7	1 Paris Cardiovascular Research Centre, INSERM U970, Paris, France
26 27	8	2 Department of Pharmacy, Saint-Antoine Hospital, HUEP, AP-HP, Paris, France
28 29	9	3 Faculty of Pharmacy, Paris-Sud University, UA 401 Matériaux et Santé, Chatenay-Malabry,
30 31	10	France
32 33	11	4 Department of Laboratories, Agence Générale des Equipements et Produits de Sante, AP HP,
34 35	12	Paris, France
36 37	13	5 Clinique Ngaliema, Kinshasa, Democratic Republic of Congo
38 39 40	14	6 Department of Cardiology, Ignace Deen hospital, Conakry, Guinea
41 42	15	7 Cardiology institute of Abidjan, Treichville hospital, Abidjan, Côte d'Ivoire
43 44 45	16	8 Department of Cardiology, Brazzaville hospital, Brazzaville, Congo
46 47	17	9 Yalgado Ouédraogo hospital, Ouagadougou, Burkina Faso
48 49 50	18	10.Department of Cardiology, Nouakchott, Mauritanie
51 52	19	11 Department of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France
53 54 55	20	12 Department of Pharmacy, Henri Mondor Hospital, AP-HP, Créteil, France
56 57 58	21	Correspondence to Dr Philippe-Henri Secretan; phsecretan@yahoo.fr
59 60	22	

23 Abstract

24 Objectives

The incidence of cardiovascular diseases is increasing and there is a growing need to provide access to quality cardio drugs in Africa. In the SEVEN study, we analysed 1530 cardiovascular drug samples randomly collected from ten African countries. By that time, of the seven drugs products analysed, only those containing amlodipine and captopril had very low assay values with active substance contents that could be less than 75% of those expected. In this article we investigate complementary aspects of the amlodipine and captopril samples so to explain the previously observed low assays for these two drugs. Design Post-hoc analysis of the captopril and amlodipine drugs samples and their packages collected in the context of the SEVEN study. Setting 10 countries were concerned: Benin, Burkina Faso, Congo, Democratic Republic of the Congo, Guinea, Côte d'Ivoire, Mauritania, Niger, Senegal and Togo. Participants Local scientists and hospital practitioners collected the drug samples in the 10 African countries. Outcome measures

BMJ Open

4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
16 17	
17 18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56 57	
57 58	
59	
60	

55

56

57

58

59

60

42 The drug amount and the relative amounts of drug impurities as well as the main compounds43 of the drugs packaging were analysed.

44 Results

Identification of the blister packaging of the samples led to separate both amlodipine and captopril drug samples in two groups. Mann Whitney's bilateral test showed a significant difference (p<0.0001) between the median value of the captopril dosage when tablets are packaged in blisters providing higher protection to humidity (n=105) as opposed to the tablets packaged in blisters providing lower humidity protection (n=130).

50 Conclusion

51 Based on these results, particular attention should be paid to the materials and types of 52 packaging used in order to minimize the lack of control over the exposures and drug circuits 53 present in these different countries.

54 Article summary : strengths and limitations of this study

- Captopril and amlodipine-based drug samples were randomly collected in licensed and unlicensed places of sale in Africa to be analysed
- The countries involved in this study were Benin, Burkina Faso, Congo, Democratic Republic of the Congo, Guinea, Côte d'Ivoire, Mauritania, Niger, Senegal and Togo
- Assay and impurity profile were performed for quality and stability assessment considering, where applicable, the type of primary packaging used

61 1. Introduction

Substandard drugs generally pose a serious health concern from several perspectives and this is particularly prevalent in developing countries where control regulations are poorly developed. Numerous cases of quality defects have been reported^{1,2}, mostly in connection with anti-infective drugs³. However, since cardiovascular diseases are currently the most important non-communicable diseases in most low- and middle-income countries, it is critical to ensure that these diseases are addressed in a comprehensive manner⁴. Thus, under the initiative of X. Jouven, the study named SEVEN has been set up with the aim of evaluating the quality of the cardiovascular drugs present in ten African countries^{5–7}, by exploring the case of 7 commonly used cardiac drugs, namely acenocoumarol, simvastatin, furosemide, hydrochlorothiazide, captopril, atenolol and amlodipine. It was showed that branded drugs were less likely to be of poor quality compared to generic or medicines with unknown version (p<0.001); conversely place of sale was not significantly associated with the proportion of poor quality $(p = 0.29)^6$. Examination of the identity and assay of the active substances in the various samples collected revealed that among the products tested, only those based on amlodipine and captopril had very low active substance content that could be less than 75% of those expected⁶. The observation that the biggest quality defects were highlighted and circumscribed around these two molecules motivated the team to search for additional information in particular regarding their stability.

For drugs where the quality defect is unintentional, according to Johnston et al, low dosage
levels of active substance may be the result of a variety of factors, including inadequate
package design or quality². Yet, despite the fact that the influence of packaging changes on

BMJ Open

the stability of medicinal products is now well established^{8,9}, to the best of our knowledge, the studies of the quality of real field samples have so far focused only on dosage units without taking into account the type of packaging used or their chemical composition³. However, the concept of packaging is equally important to assess, especially since the drug products need to be kept stable in difficult climatic conditions, where, for example, residual moisture can reach 88% in sub-Saharan Africa¹⁰ and the ability of a plastic blister pack to protect a drug from moisture is highly dependent on its design and composition¹¹.

90 It is in this context that this study was taking place considering samples of captopril and 91 amlodipine products, collected as part of the SEVEN study^{5–7}, as tracer products. On these 92 various samples was carried out the search for degradation products and/or chromatographic 93 related substances as well as the identification of the packaging actually present on the 94 products collected in several African countries, by trying, where possible and relevant, to 95 reconcile the different data and make them meaningful in relation to the potential causes of 96 underdosing previously highlighted for these two drugs.

97 2. Material and method

98 2.1. Sample collection

99 The methodology and design of the samples collection are described in detail in the articles 100 published in the context of the SEVEN study^{5–7}. A multidisciplinary collaborative team of 101 epidemiologists, cardiologists and pharmacists from France and Africa conceived and 102 designed the study. It was registered with the French national drug agency (Agence Nationale 103 Sécurité du Médicament ID RCB:2014-A01275-42).

1530 drugs samples, including 235 captopril and 305 amlodipine drug samples, were collected as per the Guidelines for Field Surveys of the Quality of Medicines¹². 10 countries were concerned: Benin, Burkina Faso, Congo, Democratic Republic of the Congo, Guinea, Côte d'Ivoire, Mauritania, Niger, Senegal and Togo. In these countries, samples were obtained from licensed (pharmacy) sources selected randomly and unlicensed (street market) places of sale chosen as per the local investigator's convenience. Drug samples were purchased in the capital city and when possible in one city located close to the country's border. Medicines were obtained by the study investigator's staff who posed as customers. The pharmacies were randomly chosen from a list provided by the Council of the Order of Pharmacists of each country. Unlicensed markets were identified based on the local investigator's knowledge. For each drug sample, investigators were asked to collect generic versions and brand name versions of the drug if available. After purchase, all drugs were stored at ambient temperature, in a dry place avoiding direct sunlight. Samples were sent via courier to the coordinating centre in France.

118 2.2. Reagents and sample preparation

Amlodipine besylate, captopril, iodine, sodium thiosulfate and triethylamine (>99% pure)
were purchased from Sigma Aldrich (St. Quentin Fallavier, France). Analytical grade
acetonitrile and methanol came from VWR Prolabo®Chemicals (Fontenay-sous-Bois, France).
Ultrapure water was produced by the Q-Pod Milli-Q® system (Millipore, Molsheim, France).
The stationary phase consisted of a Kinetex®(Phenomenex, Torrance, U.S.A.) C18 column (4.6
mmx250 mm, i.d., 5 µm).

1 2		
3 4	125	Standard solutions were prepared as per the recommendations provided in the United States
5 6 7	126	Pharmacopeia (USP) monograph of amlodipine besylate and captopril tablets. Captopril
8 9	127	disulfide was obtained by using the protocol proposed in the European Pharmacopeia (Ph.
10 11 12 13	128	Eur.) monograph of captopril.
14 15 16 17	129	2.3 Analytical conditions
17 18 19	130	Chemical analyses of samples were achieved by the Department of Laboratories in Paris
20 21 22	131	(AGEPS, AP-HP). Chromatographic analyses were performed using a Dionex Ultimate 3000
22 23 24	132	system (DIONEX, Ulis, France) coupled to a diode array detector. Chromatographic conditions
25 26	133	as well as suitability tests were performed as per the recommendations provided in the
27 28 29 30	134	monograph of amlodipine tablet (USP) and captopril (Ph. Eur.).
31 32	135	Identification of blisters was achieved using Fourier Transformed Infrared Spectroscopy (FTIR)
33 34 35	136	FTIR Perkin-Elmer Spectrum 2000 [®] spectrometer (Villebon-sur-Yvette, France) with a diamond
36 37	137	crystal. Resolution, scan range and number of accumulated scans per spectrum were set to
38 39 40	138	0.5 cm ⁻¹ , 4000 to 400 cm ⁻¹ and 3, respectively. Spectrum were acquired on each side of the
41 42 43 44	139	blisters using attenuated total reflectance mode.
45 46 47	140	2.4. Statistical analysis
48 49 50	141	All statistical tests were performed using GraphPad Prism version 8.3.1. for Windows
51 52	142	(GraphPad Software, La Jolla California, USA). Nonparametric Spearman's correlation
53 54 55	143	coefficient (r) was calculated to measure the strength of the association between the peak
56 57 58 59 60	144	surface area of captopril and that of captopril disulfide. Mann-Whitney tests were used to

145 compare the median between drugs with lower and those with higher protection from146 humidity packaging blisters.

147 3. Results

148 3.1. Collected drug samples

A total of 305 amlodipine and 235 captopril drug samples were collected in the ten countries. The amount of drug samples collected as a function of the countries and their place of purchase is summarized in Table 1. Overall, 150 of the 305 amlodipine and 140 of the 235 captopril drug samples considered in the study were obtained from licensed places of sale (Table 1). 265 and 195 drug samples were respectively identified as amlodipine and captopril generic drugs.

Table 1: number of collected amlodipine and captopril drug samples as a function of country
 and place of purchase (i.e. licensed or unlicensed). DRC: Democratic Republic of the Congo;
 NA : not applicable.

39 40			Amlodipine			Captopril	
41		Licensed	Unlicensed	Total	Licensed	Unlicensed	Total
42	Benin	20	30	50	20	30	50
43 44	Burkina Faso	10	NA	10	20	NA	20
45 46	Congo- Brassaville	NA	30	30	10	10	20
47	Côte d'Ivoire	30	45	75	30	15	45
48 49	DRC	20	NA	20	10	NA	10
50	Guinea	NA	10	10	NA	10	10
51	Mauritania	20	20	40	30	NA	30
52	Niger	30	NA	30	NA	10	10
53 54	Senegal	NA	20	20	NA	20	20
55	Togo	20	NA	20	20	NA	20
56 57 58	Total	150	155	305	140	95	235

⁵⁹ 158 ₆₀

1 2		
3 4 5 6	159	3.2. Chromatographic purity profiles of the drugs
6 7 8 9	160	3.2.1. Captopril samples
10 11 12	161	The qualitative study of the chromatograms of the 235 captopril drug samples showed that
13 14	162	the 31 samples with drug amounts inferior to 90% (w/w%) contained the same impurity (Fig.
15 16 17	163	1). The detected impurity was assigned to captopril disulfide as it had the same retention time
17 18 19 20	164	than this compound.
20 21 22 23	165	Fig. 1: typical chromatographic profiles of captopril solutions: reference active substance
24 25 26	166	standard solution (black), typical substandard drug sample (blue).
27 28	167	Further, for every chromatogram, the sum of the surface of the peak areas corresponding to
29 30 31 32 33 34 35 36	168	captopril and that of captopril disulfide led to obtain areas recoveries between 90 and 110%
	169	compared to that of the captopril reference solution. Therefore, one could infer that the lack
	170	of drug captopril may be linked to the presence of captopril disulfide. As a result, a correlation
37 38	171	study between the surface of the peak of captopril and that of captopril disulfide impurity was
39 40 41	172	carried out and yielded a negative Spearman coefficient with a value of -0.613 (p=0.0069).
42 43 44	173	3.2.2. Amlodipine samples
45 46 47	174	Unlike captopril, the 305 chromatographic profiles obtained for amlodipine samples strongly
47 48 49	175	differed from one to the other, implying that the drugs did not contain the same impurities
50 51	176	(Fig. 2). Indeed, under the analytical conditions recommended in the USP monograph, two
52 53 54	177	categories of chromatographic profiles were obtained as a function of the studied samples.
55 56 57 58	178	A first category of chromatographic profiles consisted of samples containing an impurity with
59 60	179	a relative retention time of about 0.5 (Fig 2. a) as compared to amlodipine, referred in the USP

2	
3	
4	
-	
5	
6	
7	
8	
9	
-	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

as amlodipine related compound A. In 10 chromatograms, the surface of the peak of this
impurity exceeded the USP acceptance criteria for this impurity (<1.0 %, w/w).

The second category of chromatographic profiles comprised a peak with a relative retention time of about 0.8 (Fig 2.b) corresponding to a degradation related impurity, namely an amlodipine-lactose interaction product. For 30 sample solutions, the area of the peak of this impurity compared to that of amlodipine exceeded the USP acceptance criteria for this impurity (<0.5% w/w).

187 Fig. 2: typical chromatographic profiles for samples containing impurity A (a) and samples188 containing amlodipine-lactose interaction product (b).

189 3.3. Blisters identification

190 The identity and aspect of the blisters materials strongly differed between amlodipine and
 191 captopril and within drug samples of the same drug.

FTIR analysis were performed on each side of the plastic blisters in order to identify its main compounds. Based on the analysis, two groups could be established: those with a spectrum corresponding to polyvinyl-chloride's one (PVC, red and blue spectrum, Fig. 3) and those which have two spectral bands (597 and 527 cm⁻¹) characteristic of the polyvinylidine-chloride presence¹³ (PVDC, green spectrum, Fig. 3).

Fig. 3: typical FTIR spectrum of a polyvinyl-chloride (PVC) polymer packaging with (green
 spectrum) and without (blue and red spectrum) polyvinylidine-chloride (PVDC).

The analysis highlighted that 105 out of the 235 captopril drug samples were packaged in
 blisters containing PVDC and 130 in blisters only composed of PVC. In the case of amlodipine,

1 2						
3 4	201	none of the plastic blisters used to package the 245 amlodipine samples contained PVDC				
5 6	202	(Table 2). 60 amlodipine samples were packaged in blisters consisting of foil-foil sealed				
7 8 9	203	aluminium (Table 2).				
10 11 12 13	204	Table 2: number of amlodipine and captopril drug samples as a function of blister identity.				
14 15 16	205	PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride.				
17 18 19		Blister identity Amlodipine Captopril				
20 21		PVC only 245 130				
22 23		Aluminium only 60 None				
24 25		PVC-PVDC None 105				
26 27 28 29	206					
30 31 32 33 34	207	3.4. Drugs assays as a function of blister identifications				
35 36	208	From the results obtained in 3.2., captopril assays results were separated based on the				
37 38 39	209	presence of PVDC or not (PVC only). Amlodipine assay results were divided in two groups: the				
40 41	210	group of samples packaged in foil-foil sealed aluminium blisters and the one packaged in PVC				
42 43 44 45	211	blisters (PVC only). The results are provided in figure 4.				
46 47	212	Fig.4: medians of drug assays with interquartile ranges as a function of the drug and the blister				
48 49	213	composition. PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride; ns: non statistically				
50 51	214	significant; ****: p<0.0001.				
52 53 54	215	For amlodipine, no statistical difference in dosage (p=0.7684) was observed between the				
55 56	216	group with foil-foil aluminium packaging (median=96.10, n=60) and the group with PVC blister				
57 58 59 60	217	packaging (median=96.60, n=245).				

For captopril, on the other hand, a statistical difference (p<0.0001) was found between the group of samples stored in blisters containing only PVC (median=96.60, n=130) and those stored in blisters containing PVC/PVDC (median=100.0, n=105).

4. Discussion

Sub-standard cardiac medicines represent a serious health hazard and result in significant morbidity and mortality⁴. The SEVEN study was the first major study of cardiovascular drugs in Sub-Saharan Africa^{5–7}. The analysis of samples collected in Africa and through various sales spots of all kinds showed that among the products used in cardiovascular diseases, about 15-20% were of low quality, and the prevalence of poor quality is higher for the products containing amlodipine and captopril. Given this observation and the fact that these two active substances are particularly sensitive to humidity and heat, the question arose as to whether the intrinsic stability of the latter had contributed more to the quality defects highlighted at the time. So, in this follow-up study, we have sought to provide some answers to this question by focusing on the search of associated degradation products and the nature of the packaging used at the time of the on-site collections.

We therefore sought to supplement the assay results with chromatographic purity studies on samples of the various cardiological drugs samples collected during the SEVEN study. We noted that the levels of impurities are particularly high for captopril and amlodipine samples (>0.5% compared to the considered active substance), as is their high prevalence of underdosing relative to other products, as previously mentioned. Of course, this problem could have been caused by the use of poor-quality active ingredient. But the fact that it is specific to these two active substances did not allow us to limit to this aspect alone. We

BMJ Open

therefore also turned our attention to the stability issue and to what goes hand in hand with this aspect. The identification of chromatographic impurities present concomitantly with the active substance was carried out to support our hypotheses related to the degradation of these compounds.

In the case of the captopril drug samples, the compound detected (Fig. 1) in addition to captopril was identified as captopril disulfide, a well-known degradation product of captopril that is prompt to be formed under moisture and heat¹⁴. In other words, this would mean that the underdoses initially observed in the captopril products⁶ could be attributed to the poor quality of the active substance used and/or, to a larger extent, to degradation occurring either during manufacture and/or during improper storage. However, as it is well depicted that captopril is far more susceptible to degradation in the presence of some excipients than alone ^{15,16}, one can fathom that the presence of captopril disulfide may more likely result from degradation due to uncontrolled exposure. As for amlodipine, chromatographic analyses showed in 30 samples the presence of an impurity due to amlodipine-lactose interaction (Fig. 2 b). Such interaction was shown to occur in time and mostly under high humidity conditions¹⁷, which could, to some extent, explain the poor assays observed in SEVEN study⁷.

These results are consistent with data in the literature in that the moisture vapour transmission rate¹⁸ (MVTR) must be controlled as it is critical to the stability of captopril¹⁴ and amlodipine¹⁹. The corollary is that we have indeed shown, in the case of captopril, a significant difference (p<0.0001, Fig. 4) in active substance content between tablets extracted from PVC blisters and those from PVC-PVDC blisters that exhibit lower MVTR¹⁸. The results for amlodipine are not statistically conclusive, but somehow the trend is noticeable since samples with a peak area of the amlodipine-lactose interaction product greater than 0.5% (w/w) were

exclusively from the blisters with higher MVTR i.e. the blisters composed of PVC as opposed
to the foil-foil aluminium ones¹⁸. Accordingly, it can be seen that the use of low moisture
barrier packaging for these two products among the different cardiac drugs tested appears to
have contributed to their low assay values.

This poor quality, represented by both a lower active substance content and the presence of degradation products, subjects the patient to safety risks. On the one hand, any dose lower than the dose to which the body has developed tolerance may induce an effect that is difficult to predict and may even be contrary to the action of the usual dose²⁰. On the other hand, the degradation products formed may be toxic²¹.

Captopril disulphide is a well-known metabolite of captopril, which can reversibly interconvert
into captopril in the blood²². However, in human pharmacokinetic studies the amount of
captopril disulphide in the blood never exceeds 8% of that of captopril^{22,23}. Therefore, clinical
consequences of exposure to higher amounts of captopril disulfide are unknown. This is to be
considered because the disulfide metabolites of sulfur-based drugs were 50 to 100 times more
toxic on hepatocytes from isolated rats than the parent drugs²⁴.

In some amlodipine samples, two main degradation products were detected as mentioned earlier, amlodipine impurity A that corresponds to the oxidation of its dihydropyridine ring and the amlodipine-lactose interaction product. Impurity A has been reported to be among the most found metabolites in urines (7%)²⁵. As its level was always inferior to 2% relative to the active substance in the samples analysed, one can assume that this presence may have a limited impact to the patients. As for the amlodipine-lactose interaction product, no data are currently available on its fate in the body and its toxicity, which makes it a risk to consider.

BMJ Open

Overall, on the basis of these additional results from the study of the chromatographic profiles of the collected samples, significant quantities of cardio drugs sold on African soil may not only present a lack of efficacy but also safety issues, due to the presence of impurities and/or degradation products resulting from poor storage and packaging conditions.

289 4.1. Limitations of the study

This study is of an observational type and even if as much information as possible has been collected for the research and attribution of causes likely to be at the origin of the active substance dosage defect, other factors than those related to packaging and storage problems may be involved. The lack of active substance is most likely multi-factorial and it may be useful to explore with more samples when applicable.

295 Conclusion

Further studies of captopril and amlodipine samples from Africa showed that their low assays would result in part from the degradation of the active substance, which may indicate that protective measures to avoid degradation of the drug products were not commensurate with their unstable behaviour, particularly in the presence of moisture and heat. FTIR analyses of the samples' blisters disclosed they differ in material composition for a same active substance. In the case of captopril, statistical analysis has shown that the active substance content of products in tighter blister packs is higher than that of products in less moisture-resistant packaging. In the case of amlodipine, only the samples with low moisture resistant packaging had high amounts (>0.5% w/w) of degradation products.

305 Using packaging with elevated moisture barrier properties could be a significant leverage to 50 306 reduce the prevalence of substandard drugs in countries where medicines circuit and storage

3	
4	
5	
6 7	
/	
8	
8 9 10 11 12 13 14 15 16 17 18 19	
10	
11	
12	
13	
1/	
15	
15	
16	
17	
18	
19	
20	
21	
20 21 22 23	
22	
25	
24	
25	
26	
26 27	
28	
29	
30	
21	
31 32 33 34 35	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

are poorly controlled. It is therefore also important to make the health authorities in these
 countries aware that the quality of packaging must also be taken into account when evaluating
 medicines supplied.

310 Figure legend/caption

Table 1: number of collected amlodipine and captopril drug samples as a function of country
and place of purchase (i.e. licensed or unlicensed). DRC: Democratic Republic of the Congo;
NA : not applicable.

314 Table 2: number of amlodipine and captopril drug samples as a function of blister identity.

315 PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride.

⁹ 316 Fig. 1: typical chromatographic profiles of captopril solutions: reference active substance

317 standard solution (black), typical substandard drug sample (blue).

5 318 Fig. 2: typical chromatographic profiles for samples containing impurity A (a) and samples

319 containing amlodipine-lactose interaction product (b).

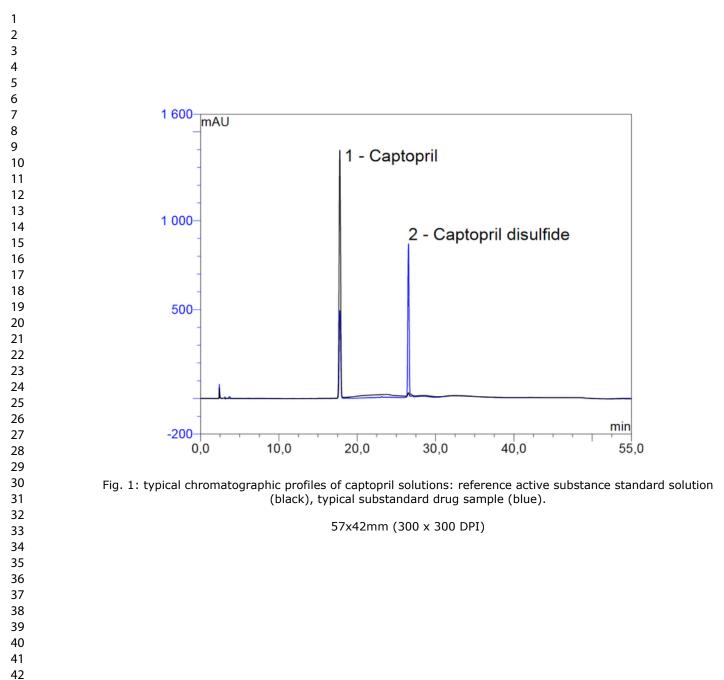
320 Fig. 3: typical FTIR spectrum of a polyvinyl-chloride (PVC) polymer packaging with (green

321 spectrum) and without (blue and red spectrum) polyvinylidine-chloride (PVDC).

Fig. 4: medians of drug assays with interquartile ranges as a function of the drug and the blister
 323 composition. PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride; ns: non statistically
 324 significant; ****: p<0.0001.

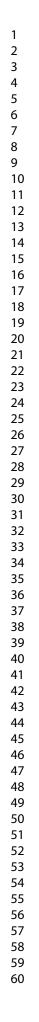
- 4 325 Footnotes
- 56 326 Contributors
- All authors have substantial contributions.
- 60 328 Study concept and design: PH. Secretan, B. Do, M. Antignac and X. Jouven

1 2		
3 4 5	329 330	Responsible of samples collection: S. Ikama Meo, R. N' Guetta, D. Balde, A. Sidy Ali, P. Zabsonre, JL. Takombe.
6 7	331	Chemical analysis: M. Bernard, B. Do, PH Secretan and Najet Yagoubi.
, 8 9	332	Interpretation of data: all authors.
10	333	Statistical analysis: PH. Secretan, B. Do, MC Perier, M. Antignac and X. Jouven.
11 12	334	Drafting of the manuscript: all authors.
13 14 15	335	Final approval of the version to be published: all authors.
16 17	336	Funding
18 19 20 21 22 23	337 338 339 340 341	The SEVEN Study was exclusively supported by grant AAP-2014-042 from the Agence Nationale de Sécurité du Médicament et des Produits de Santé as well as by Institut National de la Santé et de la Recherche Médicale (grant : N/A), Assistance Publique - Hôpitaux de Paris (grant : N/A), and Paris Descartes University (grant : N/A).
24 25		Competing interests
26 27	342 343	Competing interests None declared.
28 29	515	
29 30 31	344	Patient and public involvement
32 33	345	Patients and/or the public were not involved in the design, conduct, reporting or
34 35	346	dissemination of this research.
36	347	Patient consent for publication
37 38 39	348	Not required.
40 41	349	Data sharing statement
42 43	350	Data sharing statement No additional data available.
44		
45 46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		


2 3				
4 5	351	References		
6 7	352	1.	Nayyar, G. M. L. et al. Falsified and Substandard Drugs: Stopping the Pandemic. Am. J.	
8 9 10	353		<i>Trop. Med. Hyg.</i> 100 , 1058–1065 (2019).	
11 12 13	354	2.	Johnston, A. & Holt, D. W. Substandard drugs: a potential crisis for public health:	
14 15 16	355		Substandard drugs. Br. J. Clin. Pharmacol. 78, 218–243 (2014).	
10 17 18	356	3.	Almuzaini, T., Choonara, I. & Sammons, H. Substandard and counterfeit medicines: a	
19 20 21	357		systematic review of the literature. BMJ Open 3, e002923 (2013).	
22 23	358	4.	Bowry, A. D. K., Lewey, J., Dugani, S. B. & Choudhry, N. K. The Burden of Cardiovascular	
24 25 26	359		Disease in Low- and Middle-Income Countries: Epidemiology and Management. Can. J.	
20 27 28 29	360		Cardiol. 31 , 1151–1159 (2015).	
30 31	361	5.	Antignac, M. et al. Quality Assessment of 7 Cardiovascular Drugs in 10 Sub-Saharan	
32 33 34	362		Countries: The SEVEN Study. JAMA Cardiol. 2, 223 (2017).	
35 36 37	363	6.	Antignac, M. et al. Fighting fake medicines: First quality evaluation of cardiac drugs in	
37 38 39	364		Africa. Int. J. Cardiol. 243, 523–528 (2017).	
40 41 42	365	7.	Macquart de Terline, D. et al. Substandard drugs among five common antihypertensive	
43 44	366		generic medications: an analysis from 10 African countries. J. Hypertens. 36, 395-401	
45 46 47	367		(2018).	
48 49 50	368	8.	Khan, M. H. et al. Effects of packaging and storage conditions on the quality of amoxicillin-	
51 52	369		clavulanic acid – an analysis of Cambodian samples. BMC Pharmacol. Toxicol. 14, 33	
53 54 55	370		(2013).	
56 57	371	9.	Asafu-Adjaye, E. B. et al. Comparative stability study of unit-dose repackaged furosemide	
58 59 60	372		tablets. <i>Clin. Res. Regul. Aff.</i> 28 , 38–48 (2011).	

Page 21 of 24

BMJ Open


1 2		
3 4	373	10. Ogbonna, A. C. & Harris, D. J. Thermal comfort in sub-Saharan Africa: Field study report in
5 6 7	374	Jos-Nigeria. Appl. Energy 85, 1–11 (2008).
8 9 10	375	11. Scrivens, G. et al. The Humidity Exposure of Packaged Products. in Accelerated Predictive
11 12	376	<i>Stability</i> 105–146 (Elsevier, 2018). doi:10.1016/B978-0-12-802786-8.00005-X.
13 14 15	377	12. Newton, P. N. et al. Guidelines for Field Surveys of the Quality of Medicines: A Proposal.
16 17 18	378	PLOS Med. 6 , e1000052 (2009).
19 20	379	13. Bower, D. I. & Maddams, W. F. The Vibrational Spectroscopy of Polymers. (Cambridge
21 22 23	380	University Press, 1989). doi:10.1017/CBO9780511623189.
24 25 26	381	14. França, L. de M. et al. NIR hyperspectral imaging to evaluate degradation in captopril
27 28	382	commercial tablets. <i>Eur. J. Pharm. Biopharm.</i> 104 , 180–188 (2016).
29 30 31	383	15. Tôrres, A. R., Grangeiro, S. & Fragoso, W. D. Multivariate control charts for monitoring
32 33 34	384	captopril stability. Microchem. J. 118, 259–265 (2015).
35 36	385	16. Stulzer, H. K., Rodrigues, P. O., Cardoso, T. M., Matos, J. S. R. & Silva, M. A. S. Compatibility
37 38 39	386	studies between captopril and pharmaceutical excipients used in tablets formulations. J.
40 41 42	387	Therm. Anal. Calorim. 91 , 323–328 (2008).
43 44	388	17. Abdoh, A., Al-Omari, M. M., Badwan, A. A. & Jaber, A. M. Y. Amlodipine Besylate-
45 46 47	389	Excipients Interaction in Solid Dosage Form. <i>Pharm. Dev. Technol.</i> 9, 15–24 (2004).
48 49 50	390	18. Waterman, K. C. & Macdonald, B. C. Package Selection for Moisture Protection for Solid,
51 52	391	Oral Drug Products. <i>J. Pharm. Sci.</i> 99, 4437–4452 (2010).
53 54 55	392	19. Malcolm, L. Accelerated Stability Assessment Program (ASAP) Applications in a
56 57 58	393	Postapproval Environment. in Accelerated Predictive Stability 287–304 (Elsevier, 2018).
58 59 60	394	doi:10.1016/B978-0-12-802786-8.00012-7.

3 4	395	20.	Peper, A. Aspects of the Relationship between Drug Dose and Drug Effect. Dose-Response
5 6 7	396		7 , dose-response.0 (2009).
8 9 10	397	21.	Melo, S. R. d. O., Homem-de-Mello, M., Silveira, D. & Simeoni, L. A. Advice on Degradation
11 12	398		Products in Pharmaceuticals: A Toxicological Evaluation. PDA J. Pharm. Sci. Technol. 68,
13 14 15	399		221–238 (2014).
16 17 18	400	22.	Migdalof, B. H. et al. Captopril: Pharmacology, Metabolism, and Disposition. Drug Metab.
19 20	401		<i>Rev.</i> 15 , 841–869 (1984).
21 22 23	402	23.	Duchin, K. L., McKinstry, D. N., Cohen, A. I. & Migdalof, B. H. Pharmacokinetics of Captopril
24 25 26	403		in Healthy Subjects and in Patients with Cardiovascular Diseases: Clin. Pharmacokinet. 14,
27 28	404		241–259 (1988).
29 30 31	405	24.	Jatoe, S. D., Lauriault, V., McGirr, L. G. & O'Brien, P. J. THE TOXICITY OF DISULPHIDES TO
32 33 34	406		ISOLATED HEPATOCYTES AND MITOCHONDRIA. Drug Metabol. Drug Interact. 6, (1988).
35 36	407	25.	Stopher, D. A., Beresford, A. P., Macrae, P. V. & Humphrey, M. J. The Metabolism and
37 38 39	408		Pharmacokinetics of Amlodipine in Humans and Animals: J. Cardiovasc. Pharmacol. 12,
40 41 42	409		S55–S59 (1988).
43 44	410		
45 46 47			
48 49			
50			
51 52			
53 54			
55			
56 57			
58 59			
60			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

l

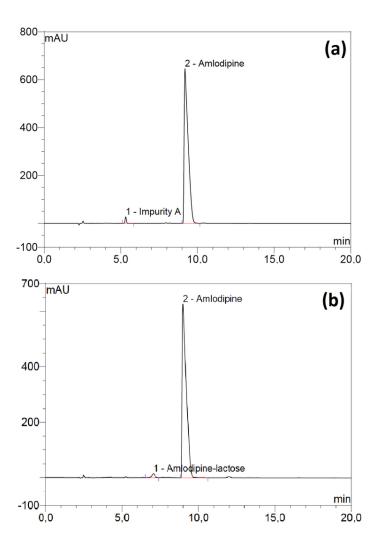
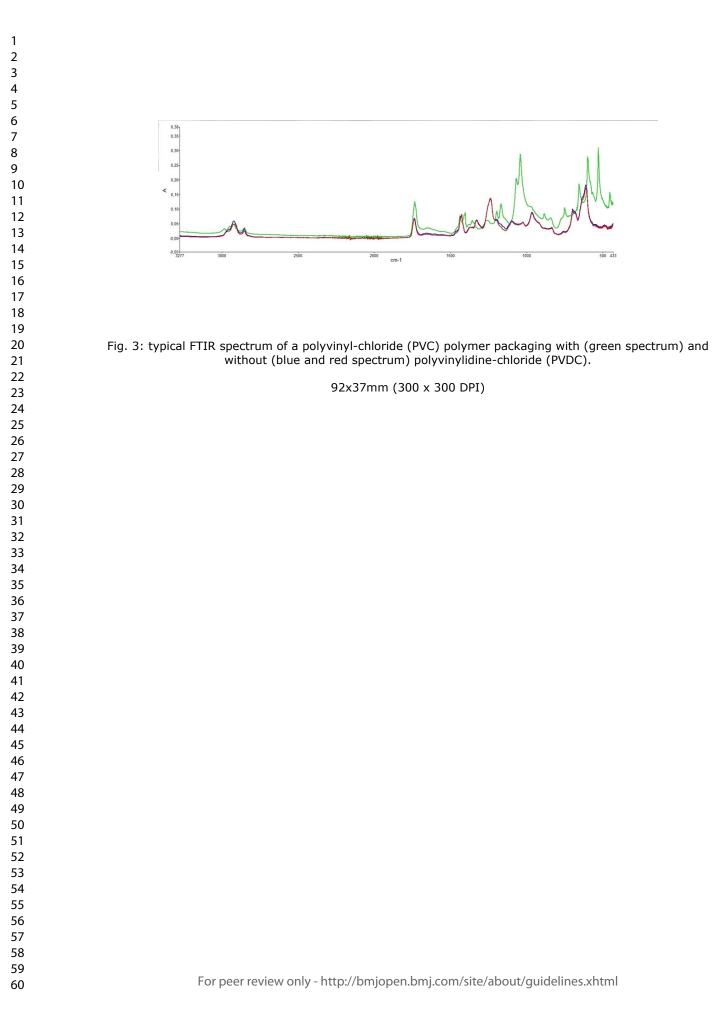



Fig. 2: typical chromatographic profiles for samples containing impurity A (a) and samples containing amlodipine-lactose interaction product (b).

90x91mm (300 x 300 DPI)

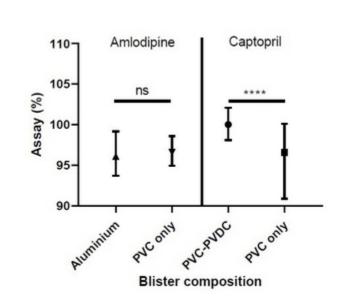


Fig.4: medians of drug assays with interquartile ranges as a function of the drug and the blister composition. PVC: polyvinyl-chloride; PVDC: polyvinylidine-chloride; ns: non statistically significant; ****: p<0.0001.

27x24mm (300 x 300 DPI)