SUPPLEMENT (Krupenko et al)

1. Supplementary figures S1-S12

2. Supplementary Tables S1-S4

Supplementary Data Files 1-6 (separate Excel files)

Supplementary Data Files 1: liver and pancreas metabolomic data (three genotypes)

Supplementary Data File 2: VIP values (OPLSDA) for metabolomic data, liver and pancreas (three genotypes)

Supplementary Data Files 3: liver and plasma metabolomic data (wild type and Aldh112 KO, second experiment)

Supplementary Data Files 4: VIP values (OPLSDA) for metabolomic data, liver and plasma (wild type and Aldh112 KO, second experiment)

Supplementary Data File 5: list of metabolites overlapping between liver and plasma

Supplementary Data File 6: NanoString data and VIP values (OPLSDA analysis)

Supplementary Fig. S1. Intensity of ALDH1L2 bands (mean ± SE) relative to VDAC (from Fig. 1d; calculated using Image J).

Supplementary Fig. S2. Body weights of *Aldh112^{+/+}* and *Aldh112^{-/-}* male and female mice at the age of 6 months.

Supplementary Fig. S3. Organ to body weight ratio of $Aldh1l2^{+/+}$ and $Aldh1l2^{-/-}$ male and female mice at the age of 6 months.

Supplementary Fig. S4. H&E staining of tissue sections from *Aldh112^{+/+}* and *Aldh112^{-/-}* mice.

Supplementary Fig. S5. NADPH in liver of *Aldh112*^{+/+}(WT) and *Aldh112*^{-/-}(KO) mice measured by a fluorescence kit. 5-6 samples (mice) were analyzed for each genotype. Each sample was measured 4 times (technical replicate). Averages of technical replicates were used to calculate mean \pm SE.

Supplementary Fig. S6. NADP Total (NADPt) in liver of *Aldh112*^{+/+}(WT) and *Aldh112*^{-/-}(KO) mice measured by a fluorescence kit. 5-6 samples (mice) were analyzed for each genotype. Each sample was measured 4 times (technical replicate). Averages of technical replicates were used to calculate mean \pm SE

Supplementary Fig. S7. NADP/NADPH in liver of *Aldh112^{+/+}*(WT) and *Aldh112^{-/-}*(KO) mice measured by a fluorescence kit. 5-6 samples (mice) were analyzed for each genotype. Each sample was measured 4 times (technical replicate). Averages of technical replicates were used to calculate mean \pm SE.

Supplementary Fig S8. Levels of ATP in mitochondria isolated from liver of *Aldh112*^{+/+}(WT) and *Aldh112*^{-/-}(KO) mice measured by a colorimetric assay. Four samples (mice) were analyzed for each genotype. Each sample was measured 4 times (technical replicate). Averages of technical replicates were used to calculate mean \pm SE.

Supplementary Fig S9. Levels of ATP in cytosolic fraction isolated from liver of

Aldh112^{+/+}(WT) and *Aldh112*^{-/-}(KO) mice measured by a colorimetric assay. Four samples (mice)

were analyzed for each genotype. Each sample was measured 4 times (technical replicate).

Averages of technical replicates were used to calculate mean \pm SE.

Supplementary Fig S10. Levels of ATP in whole liver lysate isolated from $Aldh1l2^{+/+}$ (WT) and $Aldh1l2^{-/-}$ (KO) mice measured by a colorimetric assay. Six samples (mice) were analyzed for each genotype. Each sample was measured 4 times (technical replicate). Averages of technical replicates were used to calculate mean \pm SE.

Supplementary Fig S11. Heat map representation of the NanoString data for the four genotypes. Each protein was standardized so that it has mean 0 and standard deviation 1.

Supplementary Fig S12. Heat map representation of the NanoString data for the *Aldh1l*^{+/-} and *Aldh1l*^{2-/-} genotypes (based on the entire panel of 242 genes).

Supplementary Table S1. Primers used for genotyping.

Primers	Sequence	Amplicon size (bp)
WTf	5'- AATTGGTGGTTCTCTCAAGTCTG -3'	338 bp
WTr	5'- GCACCCATAAAGGGGGCTCAAG -3'	
RAF5-L2	5'- CACACCTCCCCTGAACCTGAAA -3'	598 bp
TTR1-L2	5'- GACATATACTGACCTCTGAGGGTGGC-3'	

Supplementary Table S2. List of primary antibodies used for Western blot assays.

Target	Antibody	Source	Cat# or reference*	Dilution
ALDH1L1	Rabbit polyclonal	In-house	[1]	1:10,000
ALDH1L2	Rabbit polyclonal	In-house	[2]	1:10,000
Hsp60	Rabbit polyclonal	Abcam	ab46798	1:20,000
VDAC	Rabbit monoclonal	Abcam	ab154856	1:1,000
Actin	Mouse monoclonal	Abcam	ab8226	1:10,000

1 Krupenko, S. A. and Oleinik, N. V. (2002) 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ. **13**, 227-236

2 Krupenko, N. I., Dubard, M. E., Strickland, K. C., Moxley, K. M., Oleinik, N. V. and Krupenko, S. A. (2010) ALDH1L2 is the mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase. J. Biol. Chem. **285**, 23056-23063

Supplementary Table S3. Fecundity, litter size weight and male/female numbers for different combinations of breeder genotypes. Data are expressed as mean \pm SE.

Parameter	M+/+ X F+/+	M ^{-/-} X F ^{+/+}	M+/+ X F-/-	M ^{-/-} X F ^{-/-}
# of pairs	3	7	6	3
Litter freq/mo	1.4±0.05	1.1±0.05	1.2±0.08	0.95±007
Litter size	5.6±0.35	7±0.38	6.1±0.40	6.1±0.59
No of males	34	115	83	61
Weight(g)	14±0.25	13±0.20	12±0.21	13±0.20
No of females	24	74	78	47
Weight(g)	13±0.26	11±0.26	11±0.17	11±.0.18

Supplementary Table S4. Sex and genotype distribution of progeny from intercrosses of *Aldh1l1*^{+/-} mice.

Genotype	Male	Female	Total
Aldh1l2+/+	20(29%)	43(35%)	63(32%)
Aldh1l2+/-	33(48%)	49(40%)	82(43%)
Aldh112 ^{-/-}	16(23%)	31(25%)	47(25%)
Total	69 (100%)	123 (100%)	192 (100%)