Supporting Information

Total and Syntheses of Fostriecin

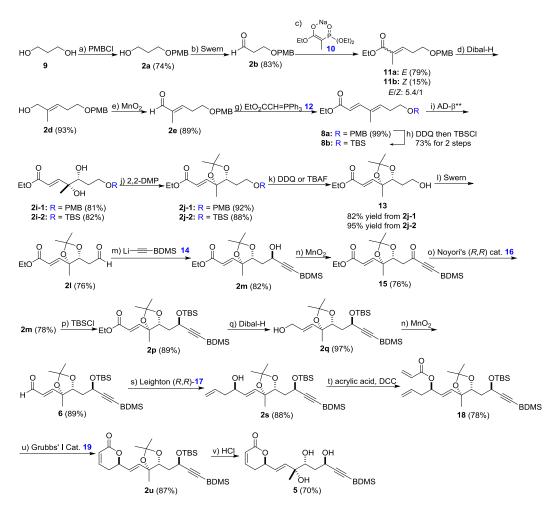
Dong Gao,^{*a*,†} Bohui Li,^{*b*,†} and George A. O'Doherty^{*b*,*}

^a Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, USA

^bDepartment of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA

Corresponding author e-mail: * G.A.O.: G.ODoherty@northeastern.edu

TABLE OF CONTENTS


General Methods	S2
Experimental Procedures	S 4
¹ H and ¹³ C NMR Spectra	S63

General Methods

All reagents were purchased from commercial sources and used without further purification. Dichloromethane, DMF and THF used in reactions were taken from a solvent purification system in which the solvents are purified by successive passage through columns of alumina and copper under argon. Methanol used in reactions was dried in a sealed bottle over activated 3 Å molecular sieves. Air and/or moisture-sensitive reactions were carried out under an atmosphere of argon/nitrogen using oven/flamed-dried glassware and standard syringe/septa techniques. Unless stated otherwise, all reactions were monitored by thin layer chromatography on silica gel 60 F254 (0.25 mm, Merck) glass plates and visualized by quenching of fluorescence and by charring after treatment with *p*-anisaldehyde or phosphomolybdic acid or potassium permanganate stain. R_f values were obtained by elution in the stated solvent ratios (v/v). In the reaction work-up involving extractions, solutions of organic solvents were washed with equal amounts of aqueous solutions, unless otherwise noted. All column chromatography was performed on silica gel 60 (40-60 µm). Melting points were measured on an Electrothermal Mel-Temp apparatus and were not corrected. Optical rotations were measured on a Jasco DIP-370 digital polarimeter in the solvent specified. FTIR spectra were run on Thermo Nicolet (Madison Wisconsin, USA) 8700 main bench with a Continuum FTIR microscope attached, and samples cast from a chloroform solution onto an IR-transparent silicon wafer. ¹H NMR spectra were recorded at 270, 500 and 600 MHz, while ¹³C NMR spectra were recorded at 67.5, 150 and 500 MHz correspondingly. Chemical shifts of both ¹H and ¹³C NMR were referenced to internal tetramethylsilane (0.00 ppm) or CHCl₃ (7.26 ppm, CDCl₃). High resolution electrospray mass spectra were recorded on an Agilent Technologies 6220 Accurate-Mass TOF spectrometer with samples dissolved in a suitable solvent.

The following experimental section outlines the synthetic and spectroscopic details for the all the synthetic pathways explored in the manuscript. Of the experimental detailed, the one for the following compounds are being disclosed for the first time: **24**, **27-37**, **39**, **43-51** and accordingly the procedures include, R_{f} , ¹H NMR, ¹³C NMR, IR, HRMS, melting points, and optical rotation when relevant.

Intermediates related to Scheme 2:

3-((4-methoxybenzyl)oxy)propan-1-ol (2a)¹

Propane-1,3-diol **9** (2 g, 26.28 mmol) was taken in 100 mL of anhydrous THF and NaH (60% dispersion in mineral oil, 1.16 g, 28.91 mmol) was added to it portion wise at 0 °C. The reaction mixture was stirred at 0 °C for 30 min. Tetrabutylammonium iodide (TBAI, 1.07 g, 2.89 mmol) was added to it followed by the addition of 4-methoxybenzylchloride (PMBCl) (4.12 g, 26.28 mmol) in THF (10 mL). The reaction mixture was stirred for a further 8 h at room temperature. H₂O was added carefully to the reaction mixture to quench any excess of NaH. The reaction mixture was then extracted with EtOAc. The organic solution was washed with water, brine,

¹ Spectral data matched which was previously reported, see: (a) Shibahara, S.; Fujino, M.; Tashiro, Y.; Okamoto,

N.; Esumi, T.; Takahashi, K.; Ishihara, J.; Hatakeyama S. Total Synthesis of (+)-Fostriecin and (+)-Phoslactomycin B. *Synthesis*, **2009**, *17*, 293. (b) Kretschmer, M.; Menche, D. Stereocontrolled Synthesis of the C8-C22 Fragment

of Rhizopodin. Org. Lett. 2012, 14, 382.

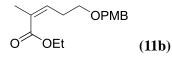
dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 3:2 (v/v) hexane/EtOAc) to afford the PMB mono-protecting compound **2a** (3.80 g, 74% yield) as a yellow liquid. $R_f = 0.214$ (6:4 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3521, 2905, 2856, 1650, 1463, 1366, 1172, 1086, 1033, 819; ¹H NMR (CDCl₃, 500 MHz): δ 7.25 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 4.44 (s, 2H), 3.79 (s, 3H), 3.74 (t, J = 5.8 Hz, 2H), 3.62 (t, J = 5.9 Hz, 2H), 2.71 (s, 1H), 1.84 (p, J = 5.8 Hz, 2H); ¹³C NMR (CDCl₃, 500 MHz): δ 158.8, 130.0, 128.9 (2C), 113.4 (2C), 72.4, 67.8, 60.1, 54.5, 32.3; HRMS (ESI+) calculated for [C₁₁H₁₆O₃ + H]⁺: 197.1172, Found: 197.1176.

3-((4-methoxybenzyl)oxy)propanal (2b)²

To a 5mL anhydrous CH₂Cl₂ solution, DMSO (0.24 g, 3.06 mmol) was added, and the mixture was cooled to -78 °C under argon, followed by the dropwise addition of oxalylchloride (0.26 g, 2.04 mmol). After 30 min, PMB-propanol **2a** (200 mg, 1.02 mmol) in anhydrous CH₂Cl₂ (1 mL) was added and the reaction was stirred at -78 °C for additional 1.5 h under argon. Et₃N (0.52 g, 5.10 mmol) was then added and the reaction mixture was allowed to react 6 h under room temperature. 1 M NaHSO₄ (10 mL) was added carefully to the reaction mixture to quench the excessive Et₃N and oxalylchloride, and the reaction mixture was then extracted with Et₂O. The combined organic phases were washed with saturated aqueous solution of NaHCO₃, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 8:1 (v/v) hexane/EtOAc) to afford the PMB-propanal **2b** (165.0 mg, 83% yield) as a yellow liquid. R_f = 0.237 (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2980, 2905, 2856, 1706, 1463, 1366, 1172, 1086, 1033, 819; ¹H NMR (CDCl₃, 500 MHz): δ 9.78 (s, 1H), 7.25 (d, *J* = 8.5 Hz, 2H), 6.88

² Spectral data matched which was previously reported, see: (a) Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Okado, K.; Toyo, T.; Shoji, M. Formal Total Synthesis of Fostriecin via 1,4-Asymmetric Induction Using Alkyne-Cobalt Complex. *Chem. Eur. J.* **2010**, *16*, 10150. (b) Hernandez, D.; Lindsay, K.B.; Nielsen, L.; Mittag, T.; Bjerglund, K.;Friis, S.; Mose, R.; Skrydstrup, T. Further Studies toward the Stereocontrolled Synthesis of Silicon-Containing Peptide Mimics. *J. Org. Chem.* **2010**, *75*, 3283.

(d, J = 8.5 Hz, 2H), 4.46 (s, 2H), 3.80 (s, 3H), 3.78 (t, J = 6.2 Hz, 2H), 2.68 (td, J = 6.1, 1.7 Hz, 2H); ¹³C NMR (CDCl₃, 500 MHz): δ 201.3, 159.4, 130.0, 129.4 (2C), 113.9 (2C), 73.0, 63.6, 55.3, 43.9. HRMS (ESI+) calculated for $[C_{11}H_{14}O_3 + Na]^+$: 217.0841, Found: 217.0842.


Ethyl (E)-5-((4-methoxybenzyl)oxy)-2-methylpent-2-enoate (11a)³

Triethyl 2-phosphonopropionate 10 (220.77 mg, 0.93 mmol) was added dropwise to a suspension of NaH 60% weight in mineral oil (37.07 mg, 0.93 mmol) in anhydrous THF (7 mL) at 0 °C under an argon atmosphere. After 1 h stirring, PMB-propanal 2b (150 mg, 0.77 mmol) was added, and the reaction was stirred at room temperature for another 2 h. The reaction mixture was quenched by saturated aqueous solution of NH₄Cl, and was then extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 20:1 (v/v) hexane/EtOAc) to afford the PMB-enoate 11a in (142.4 mg, 79% yield) as a colorless oil. $R_f = 0.216$ (10:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2931, 2905, 2856, 1706, 1612, 1512, 1366, 1244, 1086, 1033, 819; ¹H NMR (CDCl₃, 500 MHz): δ 7.25 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.77 (t, J = 7.2 Hz, 1H), 4.45 (s, 2H), 4.18 (q, J) = 7.1 Hz, 2H), 3.80 (s, 3H), 3.53 (t, J = 6.8 Hz, 2H), 2.47 (q, J = 6.9 Hz, 2H), 1.84 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 500 MHz): δ 168.1, 159.3, 138.4, 130.4, 129.5, 129.4 (2C), 113.9 (2C), 72.8, 68.4, 60.6, 55.4, 29.5, 14.4, 12.7. HRMS (MALDI-TOF/CCA) calculated for $[C_{16}H_{22}O_4 + H]^+$: 279.1591, Found: 279.1593.

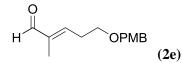
Ethyl (Z)-5-((4-methoxybenzyl)oxy)-2-methylpent-2-enoate (11b)

³ Spectral data matched which was previously reported, see: Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Okado, K.; Toyo, T.; Shoji, M. Formal Total Synthesis of Fostriecin via 1,4-Asymmetric Induction Using Cobalt-Alkyne Complex. *Org. Lett.* **2008**, *10*, 1405.

Triethyl 2-phosphonopropionate 10 (220.77 mg, 0.93 mmol) was added dropwise to a suspension of NaH 60% weight in mineral oil (37.07 mg, 0.93 mmol) in anhydrous THF (7 mL) at 0 °C under an argon atmosphere. After 1 h stirring, PMB-propanal 2b (150 mg, 0.77 mmol) was added, then stirred at room temperature for another 2 h. The reaction mixture was quenched by saturated aqueous solution of NH₄Cl, and was then extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 20:1 (v/v) hexane/EtOAc) to afford the PMB-enoate **11b** in (26.4 mg, 15% yield) as a colorless oil. $R_f = 0.378$ (10:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2931, 2905, 2856, 1706, 1612, 1512, 1463, 1366, 1244, 1086, 1033, 819; ¹H NMR (CDCl₃, 500 MHz): δ 7.26 (d, *J* = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.06 – 5.97 (m, 1H), 4.45 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.51 (t, J = 6.5 Hz, 2H), 2.77 (q, J = 6.5 Hz, 2H), 1.91 – 1.89 (m, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 500 MHz); δ 168.0, 159.3, 139.5, 130.6, 129.4, 128.7 (2C), 113.9 (2C), 72.6, 69.3, 60.2, 55.4, 30.3, 20.8, 14.4. HRMS (MALDI-TOF/CCA) calculated for $[C_{16}H_{22}O_4 + H]^+$: 279.1591, Found: 279.1593.

(E)-5-((4-methoxybenzyl)oxy)-2-methylpent-2-en-1-ol (2d)⁴

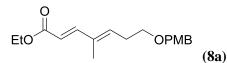
НООРМВ


(2d)

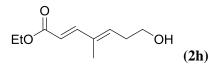
To a solution of enoate **11a** (350 mg, 1.26 mmol) in CH₂Cl₂ (5.0 mL) was dropwise added diisobutylaluminum hydride (*i*-Bu)₂AlH (1.0 M in CH₂Cl₂, 8.80 mL, 8.80 mmol) at -78 °C under an argon atmosphere. After stirring for 2 h at -78 °C, the reaction mixture was allowed warming up to 0 °C and kept stirring for 1 h. Then the reaction mixture was diluted with Et₂O and was quenched with saturated aqueous solution of potassium sodium tartrate (Rochelle's salt, 15 mL). The biphasic mixture

⁴ Spectral data matched which was previously reported, see: Chakraborty, T. K.; Purkait, S.; Das, S. Synthesis of chiral 4-hydroxy-2,3-unsaturated carbonyl compounds from 3,4-epoxy alcohols by oxidation: application in the formal synthesis of macrosphelide A. *Tetrahedron* **2003**, *59*, 9127.

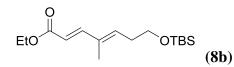
was stirred until two layers separated once stopped stirring. The aqueous layer was extracted with Et₂O. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 3:1 (v/v) hexane/EtOAc) to afford the primary alcohol **2d** (277.30 mg, 93% yield) as a colorless oil. $R_f = 0.219$ (6:4 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3523, 2903, 2857, 1649, 1461, 1367, 1175, 1085, 819; ¹H NMR (CDCl₃, 500 MHz): δ 7.26 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 5.43 (t, *J* = 7.0 Hz, 1H), 4.45 (s, 2H), 3.99 (s, 2H), 3.80 (s, 3H), 3.46 (t, *J* = 7.0 Hz, 2H), 2.36 (q, *J* = 7.0 Hz, 2H), 1.67 (s, 3H), 1.65 (s, 1H); ¹³C NMR (CDCl₃, 500 MHz): δ 159.2, 136.8, 130.5, 129.4 (2C), 122.0, 113.8 (2C), 72.6, 69.5, 68.6, 55.3, 28.4, 13.9. HRMS (MALDI-TOF/CCA) calculated for [C₁₄H₂₀O₃ + H]⁺: 237.1485, Found: 237.1482.


5-((4-methoxybenzyl)oxy)-2-methylpent-2-enal (2e)⁴

To a solution of the Dibal-H reduction product alcohol **2d** (100 mg, 0.423 mmol) in 5.0 mL of anhydrous CH₂Cl₂ was added activated MnO₂ (551.8 mg, 6.348 mmol), and the mixture stirred vigorously for 24 h at room temperature, the reaction mixture was filtered through celite, and the celite was washed with CH₂Cl₂ and ethyl acetate. The filtrate was then dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 12:1 (v/v) hexane/EtOAc) to afford the enal **2e** (88.2 mg, 89% yield) as a colorless oil. Fortunately, at this point we were able to convert the undesired *Z*-isomer to the desired *E*-isomer **2e** by treating the crude mixture with 10 mol % trifluoacetic acid (TFA) in CH₂Cl₂ at room temperature, which gave an 81% yield. R_f = 0.284 (6:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2931, 2857, 1706, 1649, 1612, 1461, 1367, 1175, 1085, 819; ¹H NMR (CDCl₃, 500 MHz): δ 9.41 (s, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 6.55 (t, *J* = 6.9 Hz, 1H), 4.47 (s, 2H), 3.81 (s, 3H), 3.60 (t, *J* = 6.4 H, 2H), 2.64 (q, *J* = 6.6 Hz, 2H), 1.75 (s, 3H). ¹³C NMR (CDCl₃, 500 MHz): δ 195.3, 159.4, 151.2, 140.7, 130.2, 129.5 (2C),


114.0 (2C), 72.9, 68.0, 55.4, 29.8, 9.5. HRMS (MALDI-TOF/CCA) calculated for $[C_{14}H_{18}O_3 + H]^+$: 235.1392, Found: 235.1394.

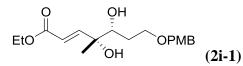
Ethyl (2E,4E)-7-((4-methoxybenzyl)oxy)-4-methylhepta-2,4-dienoate (8a)


To a solution of MnO₂ oxidative enal **2e** (100 mg, 0.427 mmol) in 2.0 mL of anhydrous THF was added (Carboethoxymethylene)-triphenylphosphorane **12** (297.4 mg, 0.854 mmol), the reaction was stirred for 48 h at room temperature. The crude was concentrated in vacuo, then purified by column chromatography (silica gel, 50:1 (v/v) hexane/EtOAc) to afford dienoate **8a** (129.5 mg, 99% yield) as a colorless oil. R_f = 0.289 (15:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3413, 2935, 1714, 1612, 1512, 1444, 1244, 1085, 1033; ¹H NMR (CDCl₃, 500 MHz): δ 7.32 (d, *J* = 15.7 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 5.91 (t, *J* = 7.3 Hz, 1H), 5.80 (d, *J* = 15.7 Hz, 1H), 4.44 (s, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 3.50 (t, *J* = 6.8 Hz, 2H), 2.50 (q, *J* = 6.9 Hz, 2H), 1.78 (d, *J* = 1.6 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 500 MHz): δ 167.5, 159.2, 149.2, 137.8, 134.2, 130.3, 129.3 (2C), 116.0, 113.8 (2C), 72.7, 68.7, 60.2, 55.3, 29.5, 14.3, 12.3. HRMS (MALDI-TOF/CCA) calculated for [C₁₈H₂₄O₄ + H]⁺: 305.1747, Found: 305.1744.

(2E,4E)-ethyl 7-hydroxy)-4-methylhepta-2,4-dienoate (2h)

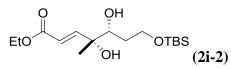
To 0.55 ml of CH₂Cl₂-H₂O (10:1 (v/v)) solution, dienoate 8a (25.0 mg, 0.082 mmol) added stirred temperature for 10 was and at room min, then 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) (28.0 mg, 0.123 mmol) was added and the resulting solution was allowed to stir for 3 h at room temperature, during which time it turned dark green, brown, dark pink and ultimately, pink. The reaction mixture was extracted with Et₂O, and was then washed with saturated aqueous solution of NaHCO₃, brine. The combined organic fraction was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude product. The crude was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the deprotected dienoate **2h** (13.3 mg, 88% yield) as a colorless liquid. R*f* = 0.282 (2:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3546, 3454, 3372, 2922, 2909, 1733, 1168; ¹H NMR (CDCl₃, 500 MHz): δ 7.32 (d, *J* = 15.7 Hz, 1H), 5.91 (t, *J* = 7.4 Hz, 1H), 5.81 (d, *J* = 15.7 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.72 (t, *J* = 6.5 Hz, 2H), 2.48 (q, *J* = 6.8 Hz, 2H), 1.87 (s, 1H), 1.80 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 500 MHz): δ 167.6, 149.2, 137.3, 135.2, 116.4, 61.9, 60.4, 32.4, 14.4, 12.5. HRMS (MALDI-TOF/CCA) calculated for [C₁₀H₁₆O₃ + H]⁺: 185.1172, Found: 185.1171.

(2E,4E)-ethyl 7-(tert-butyldimethylsilyloxy)-4-methylhepta-2,4-dienoate (8b)⁵

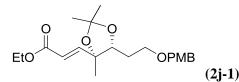


To a solution of previous deprotected dienoate **2h** (30.0 mg, 0.16 mmol) in dry DMF (1.0 mL), imidazole (33.3 mg, 0.48 mmol) was added in one portion, and the reaction mixture was stirred at room temperature for 30 min. Then *tert*-Butyldimethylsilyl chloride (49.1 mg, 0.32 mmol) was added into the above solution and stirred for 10 h at room temperature. The reaction mixture was quenched by H₂O, extracted by Et₂O, and was then washed with brine. The combined organic fraction was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the yellow liquid crude product. The crude was purified by column chromatography (silica gel, 249:1 (v/v) hexane/EtOAc) to afford the TBS-protected dienoate **8b** (40.3 mg, 83% yield) as a colorless liquid. R*f* = 0.430 (40:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2928, 2857, 1698; ¹H NMR (CDCl₃, 500 MHz): δ 7.31 (d, *J* = 15.7 Hz, 1H), 5.91 (t, *J* = 7.3 Hz, 1H), 5.80 (d, *J* = 15.7 Hz, 1H), 4.20 (q, *J* = 7.0 Hz, 2H), 3.67 (t, *J* = 6.7 Hz, 2H), 2.42 (q, *J* = 6.8 Hz, 2H), 1.78 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H), 0.88 (s, 9H), 0.04

⁵ Spectral data matched which was previously reported, see: Clarke, P. A.; Davie, R. L.; Peace, S. Synthesis of the B-ring of FR182877. Investigation of the reactions of 6-fumaryl 1,3,8-nonatrienes. *Tetrahedron*, **2005**, *61*, 2335.

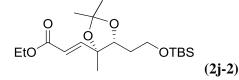

(s, 6H). ¹³C NMR (CDCl₃, 500 MHz): δ 167.7, 149.5, 138.2, 134.4, 116.0, 62.2, 60.3, 32.7, 26.0 (3C), 18.4, 14.5, 12.5, -5.2 (2C). HRMS (MALDI-TOF/CCA) calculated for [C₁₆H₃₀O₃Si + H]⁺: 299.2037, Found: 299.2035.

(*E*,4*R*,5*R*)-ethyl-7-(4-methoxybenzyloxy)-4,5-dihydroxy-4-methylhept-2-enoate (2i-1)


To a 250 mL round bottom flask was added 1:1 *t*-butyl alcohol (30 mL)/H₂O (30 mL), K₃Fe(CN)₆ (9.81 g, 30.0 mmol), K₂CO₃ (4.14 g, 30.0 mmol), KHCO₃ (3.01 g, 30.0 mmol), CH₃SO₂NH₂ (0.95 g, 10.0 mmol), (DHQD)₂-PHAL (401 mg, 0.5 mmol, 2 mol %) and OsO₄ (51 mg, 0.2 mmol, 1 mol %). The mixture was stirred at room temperature for 15 min and then cooled to 0 °C. To this solution was added solution of dienoate 8a (3.00 g, 16.8 mmol) in 2 mL of CH₂Cl₂ dropwise and the reaction was stirred vigorously at 0 °C overnight. Saturated aqueous solution of Na₂SO₃ was added to quench the reaction while stirring vigorously. EtOAc was added to the reaction mixture, and after separation of the layers, the aqueous layer was further extracted with EtOAc. The combined organic phases were washed with 2 M KOH and brine to remove the methanesulfonamide, dried over anhydrous Na_2SO_4 , and concentrated to afford the crude product. The residue was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford compound **2i-1** (2.74 g, 81% yield). $R_f = 0.20$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3510, 2989, 1736; $[\alpha]^{25} = -6^{\circ}$ (c 2.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.22 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 15.8 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.10 (d, J = 15.6 Hz, 1H), 4.43 (s, 2H), 4.17 (q, J = 7.2Hz, 2H), 3.78 (s, 3H), 3.74-3.59 (m, 3H), 1.81-1.75 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.6, 159.3, 152.1, 129.4 (2C), 120.2, 113.8 (2C), 76.6, 74.7, 73.0, 68.7, 60.4, 55.2, 30.2, 22.8, 14.2; HRMS (CI) calcd for $[C_{18}H_{26}O_6 + Na]^+$: 361.1627, Found: 361.1621.

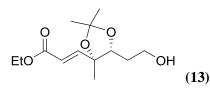
(*E*,4*R*,5*R*)-ethyl-4,5-dihydroxy-7-*tert*-butyldimethylsilyl-4-methylhept-2-enoate (2i-2)

To a 250 mL round bottom flask was added 1:1 *t*-butyl alcohol (50 mL)/H₂O (50 mL), K₃Fe(CN)₆ (16.5 g, 50.3 mmol), K₂CO₃ (6.94 g, 50.3 mmol), KHCO₃ (5.08 g, 50.3 mmol), CH₃SO₂NH₂ (1.59 g, 16.8 mmol), (DHQD)₂-PHAL (270 mg, 0.34 mmol, 2 mol %) and OsO₄ (43 mg, 0.17 mmol, 1 mol %). The mixture was stirred at room temperature for 15 min and then cooled to 0 °C. To this solution was added enoate 8b (5.01 g, 16.8 mmol) dropwise and the reaction was stirred vigorously at 0 °C overnight. Saturated aqueous solution of Na₂SO₃ was added to quench the reaction while stirring vigorously. EtOAc was added to the reaction mixture, and after separation of the layers, the aqueous layer was further extracted with EtOAc. The combined organic phases were washed with 2 M KOH and brine to remove the methanesulfonamide, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The residue was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford compound **2i-2** (4.57 g, 82% yield). R_f = 0.25 (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3430, 2980, 1758; [α]²⁵ _D –11° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.99 (d, J = 15.6 Hz, 1H), 6.11 (d, J = 15.8 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.95-3.72 (m, 4H), 2.94 (bs, 1H), 1.74-1.67 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.25 (s, 3H), 0.87 (s, 9H), 0.06 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.6, 152.3, 120.2, 77.2, 74.6, 62.6, 60.3, 32.1, 25.8 (3C), 26.8, 18.0, 14.2, -5.64 (2C); HRMS (CI) calcd for $[C_{16}H_{32}O_6Si + Na]^+$: 371.1806, Found: 371.1861.


(E)-ethyl-3-((4R,5R)-5-(2-(4-methoxybenzyloxy)ethyl-2,2,4-trimethyl-1,3-dioxola n-4-yl)acrylate (2j-1)

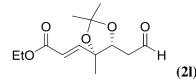
To a solution of diol 2i-1 (3.38 g, 10.0 mmol) in 30 mL acetone was added

2,2-dimethoxypropane (10.42 g, 100.0 mmol) and CSA (223 mg, 1.0 mmol) at room temperature. In an hour, the reaction was quenched by adding saturated solution of NaHCO₃ and the mixture was filtered through a pad of celite. The aqueous layer was separated and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The residue was purified by column chromatography (silica gel, (9:1 (v/v) hexane/EtOAc) to afford compound **2j-1** (3.48 g, 92% yield) as a colorless oil. $R_f = 0.25$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2990, 1728; [α]²⁵_D –15° (*c* 2.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.25 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 15.8 Hz, 1H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.10 (d, *J* = 15.6 Hz, 1H), 4.44 (s, 2H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.95 (dd, *J* = 8.9, 3.9 Hz, 1H), 3.80 (s, 3H), 3.64-3.49 (m, 2H), 1.93-1.72 (m, 2H), 1.46 (s, 3H), 1.36 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.21 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.4, 159.1, 149.4, 130.2, 129.2 (2C), 120.3, 113.7 (2C), 108.0, 81.6, 78.8, 72.7, 67.0, 60.5, 55.2, 29.5, 28.3, 26.3, 20.8, 14.2; HRMS (CI) calcd for [C₂₁H₃₀O₆ + Na]⁺: 401.1934, Found: 401.1940.


(*E*)-ethyl-3-((4*R*,5*R*)-5-(2-*tert*-butyldimethylsilylethyl-2,2,4-trimethyl-1,3-dioxola n-4-yl)acrylate (2j-2)

To a solution of diol **2i-2** (2.20 g, 6.62 mmol) in 25 mL acetone was added 2,2-dimethoxypropane (13.80 g, 132.5 mmol) and CSA (0.15 g, 0.66 mmol) at room temperature. In an hour, the reaction was quenched by adding saturated aqueous solution of NaHCO₃ and the mixture was filtered through a pad of celite. The aqueous layer was separated and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The residue was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afforded compound **2j-2** (2.17 g, 88% yield) as a colorless oil. $R_f = 0.60$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2980, 1710; [α]²⁵ D –14° (*c* 1.0,

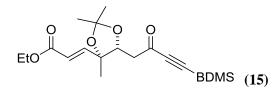
CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.89 (d, *J* = 15.8 Hz, 1H), 6.04 (d, *J* = 15.8 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.96 (dd, *J* = 8.9, 3.7 Hz, 1H), 3.81-3.65 (m, 2H), 1.83-1.68 (m, 2H), 1.46 (s, 3H), 1.36 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.21 (s, 3H), 0.88 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.4, 149.5, 120.3, 107.9, 81.5, 78.3, 60.5, 60.1, 32.2, 28.3, 26.3, 25.9 (3C), 20.9, 18.3, 14.2, -5.4, -5.4; HRMS (CI) calcd for [C₁₉H₃₆O₅Si + Na]⁺: 395.2224, Found: 395.2229.


(*E*)-ethyl-3-((4*R*,5*R*)-5-(2-hydroxyethyl-2,2,4-trimethyl-1,3-dioxolan-4-yl)acrylate (13)

To a 10 mL round bottom flask was added 2.75 ml of 10:1 CH₂Cl₂ (2.50 mL)/H₂O (0.25 mL) and ether 2j-1 (155.2 mg, 0.41 mmol) at room temperature and stirred for 10 min, then 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ) (140.3 mg, 0.62 mmol) was added and the resulting solution was stirred at room temperature for 3 h. The reaction mixture was extracted by Et₂O. The combined organic phases were washed with saturated aqueous solution of NaHCO₃, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to afford crude product. The crude was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford compound 13 (93.2 mg, 88% yield) as a colorless liquid. Similarly, to a solution of silvl ether 2j-2 (2.45 g, 6.58 mmol) in 20 mL THF was added TBAF (9.87 mL, 9.87 mmol) at 0 °C. In two hour, the reaction was quenched by adding saturated aqueous solution of NH₄Cl. The aqueous layer was separated, extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford compound 13 (1.61 g, 95% yield) as a colorless oil. $R_f = 0.30$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3498, 2980, 1720; $[\alpha]^{25}$ D -25° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.89 (d, J = 15.6 Hz, 1H), 6.10 (d, J = 15.6 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.95 (dd, J = 10.1, 2.7 Hz, 1H),

3.79 (dd, J = 6.4, 5.2 Hz, 2H), 2.22 (bs, 1H), 1.91-1.65 (m, 2H), 1.46 (s, 3H), 1.37 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.22 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.7, 149.1, 120.5, 108.5, 81.8, 80.5, 60.9, 60.6, 31.4, 28.3, 26.4, 20.9, 14.2; HRMS (CI) calcd for [C₁₃H₂₂O₅ + Na]⁺: 281.1359, Found: 281.1368.

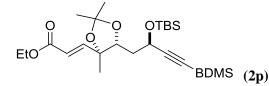
(*E*)-ethyl-3-((4*R*,5*R*)-5-(formylethyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl)acrylate (2l)



To a solution of oxalyl chloride (0.98 g, 7.7 mmol) in 30 mL of CH₂Cl₂ was added DMSO (0.69 g, 8.85 mmol) at -78 °C. After stirring for 30 min, alcohol 13 (1.52 g, 5.9 mmol) in 5 mL of CH₂Cl₂ was added dropwise. The mixture was stirred for another 90 min, and then Et₃N (1.98 g, 19.5 mmol) was added. In 2 h, the reaction was quenched with saturated aqueous solution of NaHCO₃, and the reaction mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford compound **21** (1.14 g, 76% yield) as a colorless oil. $R_f = 0.51$ (1:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1720; $[\alpha]^{25} - 26^{\circ}$ (c 1.0, CHCl₃): ¹H NMR $(CDCl_3, 270 \text{ MHz}) \delta 9.78 \text{ (t, } J = 2.0 \text{ Hz}, 1\text{H}), 6.87 \text{ (d, } J = 15.6 \text{ Hz}, 1\text{H}), 6.11 \text{ (d, } J = 15.6 \text{ Hz}, 1\text{H})$ 15.6 Hz, 1H), 4.31 (dd, J = 9.4, 3.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 2.74 (ddd, J = 16.8, 9.4, 2.2 Hz, 1H), 2.52 (ddd, *J* = 16.6, 3.5, 1.5 Hz, 1H), 1.46 (s, 3H), 1.39 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.21 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 198.9, 166.2, 148.4, 121.0, 108.9, 81.3, 76.2, 60.6, 43.2, 28.1, 26.3, 21.0, 14.2; HRMS (CI) calcd for $[C_{13}H_{20}O_5Si + Na]^+$: 279.1203, Found: 279.1205.

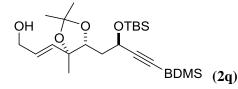
(*E*)-ethyl-3-((4*R*,5*R*)-5-((*R*)-4-(benzyldimethylsilyl)-2-hydroxybut-3-ynyl)-2,2,4-tr imethyl-1,3-dioxolan-4-yl)acrylate (2m)

To a solution of benzyldimethylsilane 14 (0.13 g, 0.75 mmol) in 4 mL of THF was added n-BuLi (0.31 mL, 0.75 mmol) at -78 °C, and the reaction was stirred for 0.5 h. Then a solution of aldehyde 2l (0.18 g, 0.68 mmol) in 1 mL THF was added into the above mixture at -78 °C. After stirring for 2 h, the reaction was quenched with saturated aqueous solution of NH₄Cl. The aqueous layer was extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude product was purified by column chromatography (silica gel, 7:3 (v/v) hexane/EtOAc) to afford compound 2m and its enantiomer (0.14 g, 82% yield) as a yellow oil. $R_f = 0.35$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3432, 2986, 1718; [α]²⁵ _D -15° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.23-7.17 (m, 2H), 7.10-7.03 (m, 3H), 6.88 (d, J = 15.8 Hz, 1H), 6.10 (d, J = 15.6 Hz, 1H), 4.56 (bs, 1H), 4.19 (q, J = 7.2 Hz, 2H), 2.74 (d, J = 7.2 Hz, 1H), 2.15 (s, 2H), 1.95 (ddd, J = 17.3, 10.6, 3.2 Hz, 1H), 1.77 (ddd, J = 14.1, 7.4, 2.2 Hz, 1H), 1.46 (s, 3H), 1.36 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.23 (s, 3H), 0.11 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.3, 148.8, 138.7, 128.3 (2C), 128.1 (2C), 124.4, 120.6, 108.6, 107.0, 88.1, 81.5, 78.1, 60.5, 60.3, 36.0, 28.2, 26.3, 26.0, 21.1, 14.2, -2.3 (2C); HRMS (CI) calcd for [C₂₄H₃₄O₅Si + Na]⁺: 453.2073, Found: 453.2067.


(*E*)-ethyl-3-((4*R*,5*R*)-5-(4-(benzyldimethylsilyl)-2-oxobut-3-ynyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl)acrylate (15)

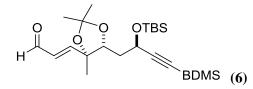
To a mixture alcohol **2m** and its enantiomer (105 mg, 0.25 mmol) in 2 mL of CH_2Cl_2 was added MnO₂ (213 mg, 2.45 mmol) at room temperature. In 24 h, the reaction

mixture was filtered through a pad of celite and washed with EtOAc. The organic phases were washed with brine and dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford ketone **15** (80 mg, 76% yield) as a colorless oil. $R_f = 0.45$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2989, 1680; $[\alpha]^{25} D -15^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.24-7.21 (m, 2H), 7.14-7.04 (m, 3H), 6.89 (d, *J* = 15.6 Hz, 1H), 6.12 (d, *J* = 15.6 Hz, 1H), 4.38 (dd, *J* = 9.2, 3.7 Hz, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 2.87 (dd, *J* = 16.6, 9.2 Hz, 1H), 2.64 (dd, *J* = 16.8, 4.0 Hz, 1H), 2.26 (s, 2H), 1.46 (s, 3H), 1.38 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.22 (s, 3H), 0.21 (s, 3H), 0.20 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 183.1, 166.2, 148.6, 137.7, 128.4 (2C), 128.3 (2C), 124.8, 120.9, 102.4, 98.1, 81.2, 76.8, 60.6, 44.7, 28.2, 26.2, 25.2, 21.1, 14.2, -2.8, -2.9; HRMS (CI) calcd for [C₂₄H₃₂O₅Si + Na]⁺: 451.1911, Found: 451.1928.

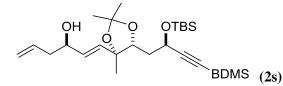

(*E*)-ethyl-3-((4*R*,5*R*)-5-((*R*)-4-(benzyldimethylsilyl)-2-*tert*-butyldimethylsiloxy-but -3-ynyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl)acrylate (2p)

To a solution of **2m** (220 mg, 0.51 mmol) in dry DMF (5.0 mL), imidazole (104.2 mg, 1.53 mmol) was added in one portion, and the reaction mixture was allowed to stir at room temperature for 30 min. Then *tert*-butyldimethylsilyl chloride (153.7 mg, 1.02 mmol) was added into the above solution and stirred for 3 h at room temperature. The reaction mixture was quenched by H₂O, extracted by Et₂O, and was then washed with brine. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the crude product. The residue was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford compound **2p** (213 mg, 89% yield) as a colorless oil. R_f = 0.32 (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1752; $[\alpha]^{25}_{D}$ +62° (*c* 1.0, CHCl₃); ¹H NMR

(CDCl₃, 270 MHz): δ 7.26-7.19 (m, 2H), 7.11-7.05 (m, 3H), 6.90 (d, J = 15.6 Hz, 1H), 6.08 (d, J = 15.6 Hz, 1H), 4.54-4.49 (m, 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.04-3.99 (m, 1H), 2.19 (s, 2H), 1.83 (ddd, J = 7.9, 4.5, 4.5 Hz, 2H), 1.46 (s, 3H), 1.34 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.22 (s, 3H), 0.89 (s, 9H) 0.11 (s, 6H), 0.09 (s, 3H), 0.06 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.3, 149.1, 138.1, 128.3 (2C), 128.1 (2C), 124.3, 120.4, 108.5, 108.2, 81.3, 77.2, 60.5, 60.1, 38.2, 28.3, 26.4, 26.0, 25.7 (3C), 21.1, 18.2, 14.2, -2.3 (2C), -4.6, -5.1; HRMS (CI) calcd for [C₃₀H₄₈O₅Si₂ + Na]⁺: 567.2932, Found: 567.2934.

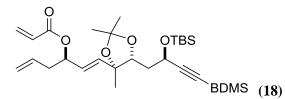

(*R*)-4-(benzyldimethylsilyl)-1-((*4R*,5*R*)-5-((*E*)-3-tert-butyldimethylsiloxyprop-1-e nyl)-2,2,5-trimethyl-1,3-dioxolan-4-yl)but-3-yn-2-ol (2q)

To a solution of ester **2p** (380 mg, 0.70 mmol) in 3 mL of THF was added DIBAL-H (1.61 ml, 1.0 M in hexanes, 1.61 mmol) dropwise at -78 °C. In 1 h, the reaction was quenched by adding 1 mL of acetone and saturated aqueous solution of sodium potassium tartrate solution (Rochelle's salt, 10 mL), warmed to room temperature, diluted with ether and stirred for 1 h. The aqueous layer was extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The residue was purified by column chromatography (silica gel, 7:3 (v/v) hexane/EtOAc) to afford the allylic alcohol **2q** (341 mg, 97% yield) as a colorless oil. $R_f = 0.24$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3402, 2989; [α]²⁵ _D +76° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): 7.24-7.19 (m, 2H), 7.11-7.04 (m, 3H), 5.93 (ddd, *J* = 15.6, 5.2, 5.2 Hz, 1H), 5.71 (d, *J* = 15.8 Hz, 1H), 4.54-4.49 (m, 1H), 4.15 (d, *J* = 4.5 Hz, 2H), 4.01-3.96 (m, 1H), 2.18 (s, 2H), 1.83 (ddd, *J* = 7.9, 3.5, 3.5 Hz, 2H), 1.45 (s, 3H), 1.34 (s, 3H), 1.21 (s, 3H), 0.90 (s, 9H) 0.13 (s, 3H), 0.11 (s, 6H), 0.10 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 138.8, 133.7, 129.7, 128.3 (2C), 128.1 (2C), 124.3, 108.7, 107.6, 81.3, 77.9, 63.1,


60.2, 38.0, 28.4, 26.7, 26.0, 25.8 (3C), 20.9, 18.2, -2.3 (2C), -4.6, -5.1; HRMS (CI) calcd for [C₂₈H₄₆O₄Si₂ + Na]⁺: 525.2827, Found: 525.2835.

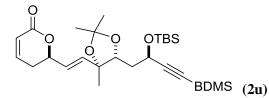
(*E*)-3-((4*R*,5*R*)-5-((*R*)-4-(benzyldimethylsilyl)-2-*tert*-butyldimethylsiloxybut-3-yny l)-2,2,4-trimethyl-1,3-dioxolan-4-yl)acrylaldehyde (6)

To a solution of alcohol **2q** (336 mg, 0.69 mmol) in 3 mL of CH₂Cl₂ was added MnO₂ (0.6 g, 6.9 mmol) at room temperature. In 8 h, the reaction mixture was filtered through a pad of celite. The filtrate was concentrated to afford the crude product. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford compound **6** (307 mg, 89% yield) as a colorless oil. $R_f = 0.58$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1758; $[\alpha]^{25} D + 84^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 9.56 (d, J = 7.7 Hz, 1H), 7.24-7.19 (m, 2H), 7.11-7.05 (m, 3H), 6.73 (d, J = 15.6 Hz, 1H), 6.35 (dd, J = 15.6, 7.9 Hz, 1H), 4.52 (dd, J = 10.1, 3.0 Hz, 1H), 4.05 (dd, J = 9.9, 2.5 Hz, 1H), 2.19 (s, 2H), 1.85-1.75 (m, 2H), 1.48 (s, 3H), 1.35 (s, 3H), 1.27 (s, 3H), 0.89 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.11 (s, 3H), 0.10 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 193.2, 157.7, 138.7, 130.7, 128.3 (2C), 128.1 (2C), 124.3, 108.4, 108.2, 87.3, 81.3, 77.1, 60.0, 38.2, 28.2, 26.2, 25.9, 25.6 (3C), 20.8, 18.1, -2.3, -2.3, -4.6, -5.1; HRMS (CI) calcd for [C₂₈H₄₄O₄Si₂ + Na]⁺: 523.2670, Found: 523.2665.


(*R*,*E*)-1-((4*R*,5*R*)-5-((*R*)-4-(benzyldimethylsilyl)-2-*tert*-butyldimethylsiloxybut-3-y nyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl)hexa-1,5-dien-3-ol (2s)

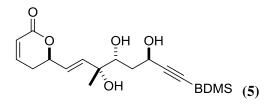
To a solution of (R,R)-17 (983 mg, 1.78 mmol) in 5 mL of CH₂Cl₂ was added a

solution of aldehyde 6 (297 mg, 0.60 mmol) in 4 mL of CH₂Cl₂ dropwise at -10 °C. The reaction flask was stirred at -10 °C for 48 h, was then diluted with EtOAc and quenched by adding 1 M NaHSO₄. The mixture was vigorously stirred at room temperature for 30 min, and filtered through a pad of celite. The filtrate was extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford compound 2s (283 mg, 88% yield) as a light vellow oil. $R_f = 0.32$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3630, 2932; $[\alpha]^{25}$ D +55° (c 1.0, CHCl₃); ¹H NMR $(CDCl_3, 600 \text{ MHz})$: δ 7.22-7.20 (m, 2H), 7.10-7.06 (m, 3H), 5.81 (dd, J = 15.6, 6.0Hz, 1H), 5.82-5.76 (m, 1H), 5.70 (d, J = 15.6 Hz, 1H), 5.15 (d, J = 6.0 Hz, 1H), 5.12 (s, 1H), 4.52 (dd, *J* = 9.6, 3.6 Hz, 1H), 4.19 (dd, *J* = 6.0, 6.0 Hz, 1H), 3.97 (dd, *J* = 9.6, 2.4 Hz, 1H), 2.33 (ddd, J = 13.2, 6.6, 6.6 Hz, 1H), 2.28 (ddd, J = 13.8, 7.2, 6.6 Hz, 1H), 2.19 (s, 2H), 1.83-1.74 (m, 2H), 1.45 (s, 3H), 1.34 (s, 3H), 1.20 (s, 3H), 0.91 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.11 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 138.9, 134.0, 133.4, 132.3, 128.4 (2C), 128.2 (2C), 124.3, 118.3, 108.8, 107.6, 87.1, 81.3, 78.0, 71.1, 60.2, 41.8, 38.1, 28.4, 26.6, 26.1, 25.8 (3C), 21.1, 18.2, -2.3, -2.3, -4.6, -5.1; HRMS (CI) calcd for $[C_{31}H_{50}O_4Si_2 + Na]^+$: 565.3140, Found: 565.3132.

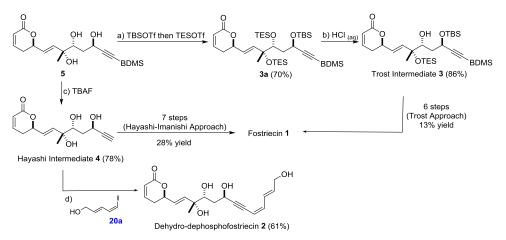

(*R*,*E*)-1-((4*R*,5*R*)-5-((*R*)-4-(benzyldimethylsilyl)-2-*tert*-butyldimethylsiloxybut-3-y nyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl)hexa-1,5-dien-3-ylacrylate (18)

To a solution of alcohol **2s** (317 mg, 0.59 mmol) in 5 mL of CH_2Cl_2 was added acrylic acid (127 mg, 1.76 mmol), DCC (362 mg, 1.76 mmol) and catalytic amount of DMAP (5 mg, 7 mmol %). In 5 h, the reaction mixture was diluted with Et₂O and filtered through a pad of celite and washed with Et₂O. The organic phase was washed with saturated aqueous solution of NaHSO₄, saturated aqueous solution of NaHCO₃, brine

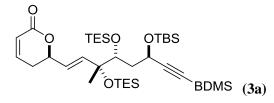
and dried over anhydrous Na₂SO₄. The organic phase was then concentrated under reduced pressure to afford the crude product. The crude was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to provide the ester **18** (274 mg, 78% yield) as a colorless oil. $R_f = 0.71$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2987, 1727; $[\alpha]^{25}_{D} + 50^{\circ}$ (*c* 0.7, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.22-7.20 (m, 2H), 7.10-7.06 (m, 3H), 6.39 (dd, *J* = 17.4, 1.2 Hz, 1H), 6.10 (dd, *J* = 17.4, 10.2 Hz, 1H), 5.81 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.79 (dd, *J* = 15.6, 6.6 Hz, 1H), 5.76-5.69 (m, 1H), 5.75 (s, 1H), 5.41 (dd, *J* = 6.6, 6.0 Hz, 1H), 5.10 (dd, *J* = 3.0, 1.2 Hz, 1H), 5.08-5.06 (m, 1H), 5.51 (dd, *J* = 10.2, 2.4 Hz, 1H), 3.96 (dd, *J* = 10.2, 2.4 Hz, 1H), 2.42 (ddd, *J* = 6.9, 6.9, 1.2 Hz, 1H), 2.19 (s, 2H), 1.82-1.72 (m, 2H), 1.45 (s, 3H), 1.33 (s, 3H), 1.17 (s, 3H), 0.90 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H), 0.10 (s, 3H), 0.10 (s, 3H), 1.13 (S, 34.9, 28.4, 26.5, 26.1, 25.8 (3C), 21.4, 18.2, -2.2, -2.3, -4.6, -5.1; HRMS (CI) calcd for [C₃₄H₅₂O₅Si₂+ Na]⁺: 619.3245, Found: 619.3234.


(*R*)-6-((*E*)-2-((4*R*,5*R*)-5-((*R*)-4-(benzyldimethylsilyl)-2-*tert*-butyldimethylsiloxybu t-3-ynyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl)vinyl-5,6-dihydropyran-2-one (2u)

To a solution of triene **18** (177 mg, 0.30 mmol) in 15 mL CH₂Cl₂ was added Grubbs catalyst I **19** (25 mg, 10 mmol %) in 15 mL CH₂Cl₂. The reaction was refluxed for 2 h. Solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, 7:3 (v/v) hexane/EtOAc) to afford the lactone **2u** (142 mg, 87% yield) as a colorless oil. $R_f = 0.16$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2930, 1731; $[\alpha]^{25}_{D}$ +137° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.22-7.20 (m, 2H), 7.10-7.06 (m, 3H), 6.88-6.85 (m, 1H), 6.05 (d, *J* = 9.6 Hz, 1H), 5.91 (dd, *J* = 15.6, 5.4 Hz, 1H), 5.84 (dd, *J* = 15.6 Hz, 1H), 4.94 (ddd, *J* = 10.2, 5.4, 4.8 Hz, 1H),

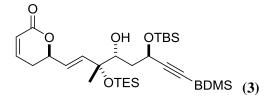

4.51 (dd, J = 9.0, 2.4 Hz, 1H), 3.97 (dd, J = 9.6, 2.4 Hz, 1H), 2.44-2.41 (m, 2H), 2.19 (s, 2H), 1.82-1.75 (m, 2H), 1.45 (s, 3H), 1.33 (s, 3H), 1.20 (s, 3H), 0.90 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.11 (s, 3H), 0.10 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 163.7, 144.4, 138.9, 130.6, 128.7, 128.4 (2C), 128.2 (2C), 126.8, 124.4, 121.7, 109.8, 107.8, 81.2, 77.9, 77.1, 60.1, 38.1, 29.8, 28.4, 26.6, 26.1, 25.8 (3C), 21.0, 18.2, -2.2, -2.3, -4.5, -5.1; HRMS (CI) calcd for [C₃₂H₄₈O₅Si₂ + Na]⁺: 591.2932, Found: 591.2930.

(*R*)-6-((*E*,3*R*,4*R*,5*R*)-8-(benzyldimethylsilyl)-3,4,6-trihydroxy-3-methyloct-1-en-7ynyl)-5,6-dihydropyran-2-one (5)

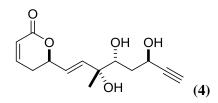


To a 10 mL round bottom flask was added acetonide 2u (53 mg, 0.093 mmol) and 10 mol % aqueous solution of 1:1 HCl (0.7 mL)/THF (0.7 mL). The mixture was stirred at 65 °C for 0.5 h, then cooled down to room temperature and quenched by saturated aqueous solution of NaHCO₃. The solution was extracted with Et₂O, and combined organic phases were washed with brine, dried over anhydrous Na2SO4, and concentrated to afford the crude product. The crude was purified by column chromatography (silica gel, 1:4 (v/v) hexane/EtOAc) to provide the pyranone 5 (27 mg, 70% yield) as a colorless oil. $R_f = 0.31$ (2:8 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3407, 2981, 1742; [α]²⁵ _D +66° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.24-7.21 (m, 2H), 7.11-7.06 (m, 3H), 6.88 (ddd, *J* = 9.0, 6.0, 3.0 Hz, 1H), 6.05 (dd, *J* = 9.6, 2.4 Hz, 1H, 5.97-5.94 (m, 2H), 4.97 (ddd, J = 10.2, 4.8, 4.2 Hz, 1H), 4.60 (dd, J = 4.8, 4.2 Hz, 1H), 3.69 (d, J = 9.6 Hz, 1H), 3.13 (d, J = 2.4 Hz, 1H), 2.76 (s, 1H), 2.46 (dddd, J = 18.6, 14.4, 5.4, 4.8 Hz, 2H), 2.21 (s, 2H), 1.93-1.80 (m, 2H), 1.28 (s, 3H), 0.14 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 164.1, 145.0, 138.8, 137.9, 128.3 (2C), 128.2 (2C), 126.6, 124.4, 121.4, 107.5, 88.3, 77.3, 74.5, 74.0, 60.8, 37.1, 29.8, 26.0, 22.4, -2.2 (2C); HRMS (CI) calcd for $[C_{23}H_{30}O_5Si + Na]^+$: 437.1755, Found: 437.1756.

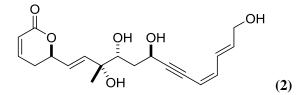
Intermediates related to Scheme 3:


(*R*)-6-((*E*, 3*R*, 4*R*, 5*R*)-8-(benzyldimethylsilyl)-3,4-bistrimethylsiloxy-6-*tert*-butyl dimethylsiloxybut-3-methyloct-1-en-7-ynyl)-5,6-dihydropyran-2-one (3a)

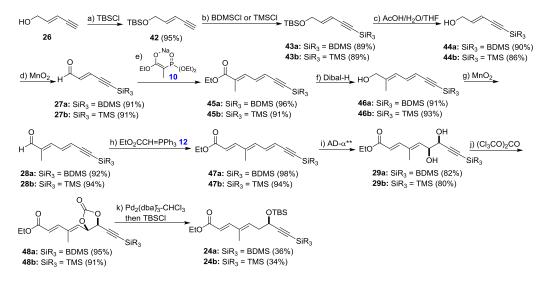
To a solution of lactone 5 (22 mg, 0.053 mmol) in 1.0 mL of CH₂Cl₂ was added 2,6-lutidine (62 µl, 0.53 mmol) at -78 °C and stirred for 10 min. TBSOTf (34.4 mg, 0.13 mmol) was added to the reaction mixture, and monitored by the TLC. After the spot representing for the starting material disappeared, TESOTf (113.7 mg, 0.43 mmol) was added into the reaction. The reaction was stirred at -78 °C for 1 h, was then diluted with CH_2Cl_2 and quenched by saturated aqueous solution of NaHCO₃. The reaction mixture was extracted with CH_2Cl_2 . The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude was purified by column chromatography (silica gel, 1:4 (v/v) hexane/EtOAc) to provide compound **3a** (28 mg, 70% yield) as a colorless oil. $R_f =$ 0.88 (3:7 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2956, 1736; $[\alpha]^{25} D + 38^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.22-7.19 (m, 2H), 7.09-7.06 (m, 3H), 6.86 (ddd, J = 8.4, 4.8, 3.0 Hz, 1H), 6.05 (ddd, J = 10.2, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 10.2, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 10.2, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 10.2, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 10.2, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 10.2, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 10.2, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 10.2, 1.8, 1.8 Hz, 10.2, 1.8, 1.8 Hz)16.2, 1.2 Hz, 1H), 5.79 (dd, J = 15.6, 6.0 Hz, 1H), 4.97 (ddd, J = 9.6, 6.0, 1.2 Hz, 1H), 4.50 (dd, J = 7.8, 6.6 Hz, 1H), 3.68 (dd, J = 6.0, 5.4 Hz, 1H), 2.47-2.42 (m, 2H), 2.19 (s, 2H), 1.97 (ddd, J = 13.2, 7.8, 2.4 Hz, 2H), 1.37 (s, 3H), 0.97 (t, J = 8.4 Hz, 18H),


0.89 (s, 9H), 0.67-0.63 (m, 12H), 0.13 (s, 3H), 0.11 (s, 3H), 0.10 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 164.0, 144.4, 138.9, 138.2, 128.3 (2C), 128.2 (2C), 125.9, 124.3, 121.7, 109.5, 87.6, 78.1, 77.9, 76.0, 61.0, 43.6, 30.0, 26.1, 25.9 (3C), 25.7, 18.2, 7.3 (3C), 7.1 (3C), 7.0 (3C), 5.4 (3C), -2.3 (2C), -3.9, -4.4; HRMS (CI) calcd for [C₄₁H₇₂O₅Si₄ + Na]⁺: 779.4349, Found: 779.4354.

(*R*)-6-((*E*,3*R*,4*R*,5*R*)-8-(benzyldimethylsilyl)-3-trimethylsiloxy-4-hydroxy-6-*tert*-b utyldimethylsiloxybut-3-methyloct-1-en-7-ynyl)-5,6-dihydropyran-2-one (3)


A solution of silvl ether **3a** (23 mg, 0.03 mmol) in a mixture of 1M HCl/THF/CH₃CN : 1/3/6 was stirred at -10 °C. In 1.5 h, the reaction was then diluted with EtOAc and quenched by saturated aqueous solution of NaHCO₃. The reaction mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude was purified by column chromatography (silica gel, 1:9 (v/v) hexane/EtOAc) to provide compound **3** (17 mg, 86% yield) as a colorless oil. $R_f = 0.51$ (3:7 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3511, 2957, 1726; $[\alpha]^{25}_{D} + 54^{\circ}$ (c 0.8, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.22-7.20 (m, 2H), 7.10-7.05 (m, 3H), 6.88 (ddd, *J* = 9.8, 4.8, 3.0 Hz, 1H), 6.06 (ddd, *J* = 9.6, 1.8, 1.8 Hz, 1H), 5.91 (dd, *J* = 16.2, 1.2 Hz, 1H), 5.82 (dd, *J* = 16.2, 6.0 Hz, 1H), 4.97 (dddd, J = 9.6, 6.0, 6.0, 1.2 Hz, 1H), 4.66 (dd, J = 7.2, 3.0 Hz, 1H), 3.75 (dd, J = 10.8, 1.2 Hz, 1H), 2.95 (d, J = 2.4 Hz, 1H), 2.46-2.43 (m, 2H), 2.19 (s, 10.16 Hz), 2.10 Hz), 2.10 (s, 10.16 Hz), 2.10 Hz), 2.102H), 1.84 (ddd, J = 14.4, 7.8, 1.2 Hz, 1H), 1.51 (ddd, J = 14.4, 10.8, 3.6 Hz, 1H), 1.37 (s, 3H), 0.95 (t, J = 8.4 Hz, 9H), 0.90 (s, 9H), 0.60 (q, J = 8.4 Hz, 6H), 0.13 (s, 3H), 0.12 (s, 3H), 0.11 (s, 3H), 0.10 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 163.9, 144.4, 138.9, 137.7, 128.3 (2C), 128.2 (2C), 126.7, 124.3, 121.7, 108.2, 87.8, 77.5, 76.9, 75.1, 61.7, 38.9, 29.6, 26.1, 25.8 (3C), 22.6, 18.1, 7.1 (3C), 6.75 (3C), -2.3, -2.4, -4.6, -5.2; HRMS (CI) calcd for $[C_{35}H_{58}O_5Si_3 + Na]^+$: 665.3484, Found: 665.3469.

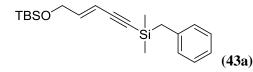
(*R*)-5,6-dihydro-6-((*E*,3*R*,4*R*,6*R*)-3,4,6-trihydroxy-3-methyloct-1-en-7-ynyl)pyran -2-one (4)


To a solution of lactone **5** (37 mg, 0.089 mmol) in 0.5 mL of THF was added TBAF (0.13 mL, 1.0 M in THF) at 0 °C. After stirring at 0 °C for 2 h, the reaction was quenched by saturated aqueous solution of NaHCO₃. The reaction mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude was purified by column chromatography (silica gel, 1:9 (v/v) hexane/EtOAc) to provide compound **4** (18 mg, 78% yield) as a colorless oil. $R_f = 0.21$ (1:9 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3406, 2907, 1739; [α]²⁵ _D +33° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.88 (ddd, *J* = 8.4, 6.0, 3.0 Hz, 1H), 6.04 (dd, *J* = 9.6, 1.2 Hz, 1H), 5.96 (d, *J* = 15.6 Hz, 1H), 5.93 (ddd, *J* = 15.6, 4.8, 4.8 Hz, 1H), 4.97 (ddd, *J* = 9.6, 4.8, 4.8 Hz, 1H), 4.68 (bs, 1H), 4.00 (d, *J* = 9.0 Hz, 1H), 3.4 (d, *J* = 9.6 Hz, 1H), 2.53-2.41 (m, 3H), 1.91-1.82 (m, 2H), 1.27 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 164.1, 145.1, 138.6, 126.8, 121.4, 84.4, 77.2, 74.6, 74.2, 73.4, 60.4, 36.8, 29.8, 22.5; HRMS (CI) calcd for [C₁₄H₁₈O₅ + Na]⁺: 289.1046, Found: 289.1045.

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,9*Z*,11*E*)-3,4,6,13-tetrahydroxy-3-methyltrideca-1,9,11-trien-7-ynyl)-pyran-2-one (2)

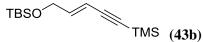
To a solution of vinyl iodide **20a** (27 mg, 0.13 mmol) in 0.5 mL of Et_3N was added $Pd_2(PPh_3)_2Cl_2$ (9 mg, 0.013 mmol) and CuI (7 mg, 0.026 mmol) at room temperature. After 10 min, alkyne **4** (17 mg, 0.064 mmol) in 0.5 mL of Et_3N was added into the reaction and kept stirring at room temperature for 2 h. Then the reaction was diluted

with EtOAc and quenched by saturated aqueous solution of NH₄Cl. The reaction mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The crude was purified by column chromatography (silica gel, 1:9 (v/v) hexane/EtOAc) to provide compound **2** (13 mg, 61% yield) as a colorless oil. $R_f = 0.35$ (9:1 (v/v) CH₂Cl₂/MeOH); IR (neat, cm⁻¹): 3486, 2942, 1712; $[\alpha]^{25}_{D} + 52^{\circ}$ (*c* 0.8, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.90-6.84 (m, 2H), 6.40 (dd, *J* = 10.8, 10.8 Hz, 1H), 6.01-5.92 (m, 3H), 5.89 (ddd, *J* = 15.6, 6.0, 6.0 Hz, 1H), 5.40 (d, *J* = 10.2 Hz, 1H), 4.97 (dddd, *J* = 9.6, 6.0, 6.0, 1.2 Hz, 1H), 4.95 (ddd, *J* = 15.6, 10.2, 4.8 Hz, 1H), 4.80 (d, *J* = 2.4 Hz, 1H), 4.26 (d, *J* = 2.4 Hz, 1H), 4.09 (ddd, *J* = 7.2, 3.0, 3.0 Hz, 1H), 3.53 (ddd, *J* = 7.2, 7.2, 7.2 Hz, 1H), ¹³C NMR (CDCl₃, 150 MHz): δ 164.4, 145.3, 140.1, 139.6, 137.9, 136.0, 134.3, 126.3, 121.3, 108.3, 95.6, 82.5, 74.8, 62.2, 61.6, 36.2, 29.9, 29.7, 22.4; HRMS (CI) calcd for [C₁₉H₂₄O₆ + Na]⁺: 371.1465, Found: 371.1458.

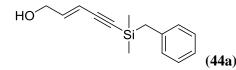

Intermediates related to Scheme 5:

((*E*)-pent-2-en-4-ynyloxy)(*tert*-butyl)dimethylsiane (42)

TBSO (42)


To the solution of 2-penten-4-yn-1-ol **26** (10.0 g, 121.8 mmol) in 100 mL of CH₂Cl₂, Et₃N (30.8 g, 304.5 mmol), TBSCl (23.8 g, 158.4 mmol) and DMAP (0.73 g, 6.1 mmol) were added at room temperature. The reaction mixture was stirred at room temperature for 15 h, and quenched with saturated aqueous solution of NaHCO₃. The aqueous layer was extracted with CH₂Cl₂, and the combined organic solution was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the TBS protecting alkyne **42** (22.7g, 95% yield) as a viscous oil. R_{*f*} = 0.59 (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2955, 1740, 1463; ¹H NMR (CDCl₃, 270 MHz): δ 6.30 (ddd, *J* = 15.8, 4.0, 4.0 Hz, 1H), 5.75 (dddd, *J* = 15.8, 2.2, 2.2, 2.2 Hz, 1H), 4.23 (dd, *J* = 3.7, 2.5 Hz, 2H), 2.87 (d, *J* = 1.7 Hz, 1H), 0.91 (s, 9H), 0.69 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 144.3, 107.5, 82.1, 77.3, 62.7, 25.8 (3C), 18.3, -5.4 (2C); HRMS (CI) calcd for [C₁₁H₂₀OSi + Na]⁺: 219.1175, Found: 219.1181.

(E)- 5-(benzyldimethylsilyl)pent-2-en-4-ynyloxy)(tert-butyl)dimethylsiane (43a)

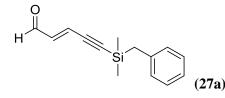

To a solution of alkyne **42** (5.0 g, 25.5 mmol) in 60 mL of THF flask was added *n*-BuLi (1.7 g, 26.8 mmol) at -78 °C. BDMSCl (5.0 g, 27.6 mmol) was dissolved in 5 mL of THF and then added dropwise into the previous solution. The reaction mixture was stirred at -78 °C for 2 h and quenched with saturated aqueous solution of NH₄Cl. The aqueous layer was extracted with EtOAc, and the combined organic solution was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the silyl ether **43a** (7.81 g, 89% yield) as a viscous oil. $R_f = 0.56$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2959, 1600, 1494; ¹H NMR (CDCl₃, 270 MHz): δ 7.28-7.23 (m, 2H), 7.15-7.10 (m, 3H), 6.30 (ddd, *J* = 15.8, 4.2, 4.0 Hz, 1H), 5.84 (ddd, *J* = 15.8, 2.2, 2.2 Hz, 1H), 4.27 (dd, *J* = 4.0, 2.2 Hz, 2H), 2.26 (s, 2H), 0.96 (s, 9H), 0.18 (s, 6H), 0.11 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 143.9, 138.9, 128.3 (2C), 128.1 (2C), 124.3, 108.5, 104.9, 92.9, 62.7, 26.3, 25.8 (3C), 18.3, -2.2 (2C), -5.4 (2C); HRMS (CI) calcd for [C₂₀H₃₂OSi₂ + Na]⁺: 219.1175, Found: 219.1171.

(E)- 5-(benzyldi methylsilyl)pent-2-en-4-ynyloxy)(tert-butyl)dimethylsilane (43b)

To a solution of alkyne **42** (25.1 g, 128.1 mmol) in 150 mL of THF flask was added *n*-BuLi (9.8 g, 153.0 mmol) at –78 °C. TMSCl (18.1 g, 166.4 mmol) was dissolved in 30 mL of THF and then added dropwise into the previous solution. The reaction mixture was stirred at –78 °C for 2 h and quenched with saturated aqueous solution of NH₄Cl. The aqueous layer was extracted with EtOAc, and the combined organic solution was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the silyl ether **43b** (30.6 g, 89% yield) as a viscous oil. $R_f = 0.58$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2980; ¹H NMR (CDCl₃, 270 MHz): δ 6.25 (ddd, *J* = 15.8, 4.2, 4.0 Hz, 1H), 5.79 (ddd, *J* = 15.8, 2.2, 2.0 Hz, 1H), 4.21 (dd, *J* = 4.2, 2.2 Hz, 2H), 0.90 (s, 9H), 0.18 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 143.6, 108.6, 103.6, 94.4, 62.7, 25.8 (3C), 18.3, -0.07 (3C), -5.4 (2C); HRMS (CI) calcd for [C₁₄H₂₀OSi₂ + Na]⁺: 291.1571, Found: 291.1577.

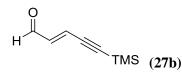
(E)-5-(benzyldimethylsilyl)pent-2-en-4-yn-1-ol (44a)

A mixture of 50 mL AcOH/H₂O/THF: 3/1/1 was added to silyl ether **43a** (2.98 g, 8.65 mmol) at room temperature. The reaction was stirred at room temperature for 12 h and quenched with saturated aqueous solution of K₂CO₃. The aqueous layer was extracted with Et₂O and the combined organic solution was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the primary alcohol **44a** (1.79 g, 90% yield) as a colorless oil. R*f* = 0.16 (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3363, 2959, 1600, 1494; ¹H NMR (CDCl₃, 270 MHz):

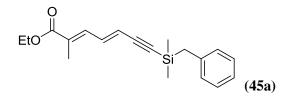

δ 7.27-7.21 (m, 2H), 7.13-7.07 (m, 3H), 6.30 (ddd, *J* = 16.1, 5.0, 4.9 Hz, 1H), 5.77 (ddd, *J* = 16.1, 2.0, 1.7 Hz, 1H), 4.20 (dd, *J* = 4.9, 2.0 Hz, 2H), 2.23 (s, 2H), 0.16 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 143.0, 138.8, 128.3 (2C), 128.1 (2C), 124.3, 110.0, 104.2, 93.5, 62.5, 26.1, 20.7, -2.3 (2C); HRMS (CI) calcd for [C₁₄H₁₈OSi + Na]⁺: 253.1019, Found: 253.1022.

(E)-5-(trimethylsilyl)pent-2-en-4-yn-1-ol (44b)

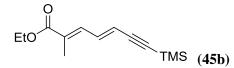
A mixture of 150 mL AcOH/H₂O/THF: 3/1/1 was added to silyl ether **43b** (26.8 g, 100 mmol) at room temperature. The reaction was stirred at room temperature for 12 h and quenched with saturated aqueous solution of K₂CO₃. The aqueous layer was extracted with Et₂O and the combined organic solution was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the primary alcohol **44b** (13.2 g, 86% yield) as a colorless oil. R*f* = 0.25 (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3363, 2959, 1600, 1494; ¹H NMR (CDCl₃, 270 MHz): δ 6.27 (ddd, *J* = 15.8, 5.2, 5.0 Hz, 1H), 5.74 (ddd, *J* = 16.1, 2.0, 1.8 Hz, 1H), 4.20 (dd, *J* = 4.4, 3.7 Hz, 2H), 2.20 (bs, 1H), 0.17 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 142.9, 110.2, 103.0, 95.2, 62.6, -0.2 (3C) ; HRMS (CI) calcd for [C₁₄H₁₈OSi + Na]⁺: 176.2722, Found: 176.2727.


(E)-5-(benzyldimethylsilyl)pent-2-en-4-yna1 (27a)

To a solution of primary alcohol **44a** (1.79 g, 7.79 mmol) in 20 mL of CH_2Cl_2 was added MnO_2 (6.78 g, 77.85 mmol) at room temperature. The reaction mixture was stirred at room temperature for 16 h and then filtered through a pad of celite and washed


with Et₂O. The filtrate was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the aldehyde **27a** (1.62 g, 91% yield) as a colorless oil. $R_f = 0.53$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2989, 1710, 1456; ¹H NMR (CDCl₃, 270 MHz): δ 9.56 (d, J = 7.2, Hz, 1H), 7.28-7.22 (m, 2H), 7.15-7.06 (m, 3H), 6.57 (d, J = 16.1 Hz, 1H), 6.46 (dd, J = 15.8, 7.2 Hz, 1H), 2.27 (s, 2H), 0.21 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 193.1, 140.2, 138.2, 131.8, 128.3 (4C), 124.6, 109.6, 101.7, 25.6, -2.6 (2C); HRMS (CI) calcd for [C₁₄H₁₆OSi + Na]⁺: 251.0862, Found: 251.0855.

(E)-5-(trimethylsilyl)pent-2-en-4-yna1 (27b)

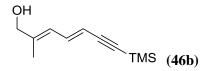

To a solution of primary alcohol **44b** (10.4 g, 67.5 mmol) in 100 mL of CH₂Cl₂ was added MnO₂ (58.0 g, 672 mmol) at room temperature. The reaction mixture was stirred at room temperature for 16 h and then filtered through a pad of celite and washed with Et₂O. The filtrate was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the aldehyde **27b** (9.3 g, 91% yield) as a colorless oil. $R_f = 0.23$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3369, 2989, 1680; ¹H NMR (CDCl₃, 270 MHz): δ 9.54 (d, *J* = 7.2, Hz, 1H), 6.57 (d, *J* = 15.8 Hz, 1H), 6.44 (dd, *J* = 15.8, 7.4 Hz, 1H), 0.22 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 193.1, 140.1, 132.1, 111.4, 100.6, -0.6 (3C); HRMS (CI) calcd for [C₈H₁₂OSi + H]⁺: 153.0736, Found: 153.0730.

(2E, 4E)-ethyl-7-(benzyldimethylsilyl)-2-methylhepta-2,4-dien-ynoate (45a)

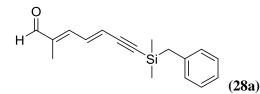
Triethyl 2-phosphonopropionate **10** (2.07 g, 8.67 mmol) was added dropwise to *n*-BuLi (0.56 g, 2.3 M, 8.67 mmol) in THF (30 mL) at –78 °C under an argon atmosphere. After 30 min stirring, aldehyde **27a** (1.52 g, 6.67 mmol) in 1 mL of THF was added dropwise, and the reaction was stirred at room temperature for another 2 h. The reaction mixture was quenched by saturated aqueous solution of NH₄Cl, and was then extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the dienynoate **45a** (1.99 g, 96% yield) as a colorless oil. $R_f = 0.63$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2982, 1705; ¹H NMR (CDCl₃, 270 MHz): δ 7.26-7.18 (m, 2H), 7.13-7.07 (m, 3H), 6.90 (d, *J* = 15.3 Hz, 1H), 6.88 (d, *J* = 15.3 Hz, 1H), 5.91 (d, *J* = 15.3 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 2.25 (s, 2H), 1.99 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 0.17 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 167.8, 137.7, 136.4, 130.1, 128.3 (2C), 128.1 (2C), 124.4, 117.2, 105.3, 99.4, 82.6, 60.8, 26.1, 14.2, 13.0, –2.3 (2C); HRMS (CI) calcd for [C₁₉H₂₄O₂Si + Na]⁺: 335.1438, Found: 335.1433.

(2E, 4E)-ethyl-2-methyl-7-(trimethylsilyl)hepta-2,4-dien-6-ynoate (45b)

Triethyl 2-phosphonopropionate **10** (15.6 g, 65.7 mmol) was added dropwise to *n*-BuLi (3.86 g, 2.3 M, 60.2 mmol) in THF (200 mL) at -78 °C under an argon atmosphere. After 30 min stirring, aldehyde **27b** (8.32 g, 54.8 mmol) in 10 mL of THF was added dropwise, and the reaction was stirred at room temperature for another 2 h. The reaction mixture was quenched by saturated aqueous solution of NH₄Cl, and was then extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the dienynoate **45b** (12.2 g, 91% yield) as a colorless oil. R_f = 0.32 (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1708; ¹H NMR (CDCl₃, 270 MHz): δ 7.14 (dd, *J*

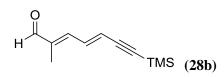

= 11.9, 1.2 Hz, 1H), 6.90 (dd, J = 15.3, 11.9 Hz, 1H), 5.90 (d, J = 15.3 Hz, 1H), 4.20 (q, J = 7.2, 2H), 1.96 (d, J = 1.2 Hz, 3H), 1.29 (t, J = 7.2, 3H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 167.8, 137.4, 136.5, 129.9, 117.3, 103.9, 100.8, 60.8, 14.2, 12.9, -0.3 (3C); HRMS (CI) calcd for [C₁₃H₂₀O₂Si + H]⁺: 237.1311, Found: 237.1306.

(2E,4E)-7-(benzyldimethylsilyl)-2-methylhepta-2,4-dien-6-yn-1-ol (46a)

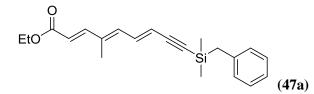

To a solution of dienynoate 45a (1.68 g, 5.38 mmol) in CH₂Cl₂ (15 mL) was dropwise added diisobutylaluminum hydride (*i*-Bu)₂AlH (1.0 M in CH₂Cl₂, 16.1 mL, 16.1 mmol) at -78 °C under an argon atmosphere. After stirring for 30 min at -78 °C, the reaction mixture was allowed warming up to 0 °C and kept stirring for 30 min. Then the reaction mixture was diluted with Et₂O and was quenched with saturated aqueous solution of potassium sodium tartrate (Rochelle's salt, 15 mL). The biphasic mixture was stirred until two layers separated once stopped stirring. The aqueous layer was extracted with Et₂O. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the primary alcohol 46a (443 mg, 91% yield) as a colorless oil. $R_f = 0.21$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3429, 2982; ¹H NMR (CDCl₃, 270 MHz): δ 7.26-7.21 (m, 2H), 7.12-7.07 (m, 3H), 6.90 (dd, J = 15.6, 11.4 Hz, 1H), 6.14 (d, J = 11.4 Hz, 1H), 5.61 (d, J = 15.6 Hz, 1H), 4.11 (s, 2H), 2.24 (s, 2H), 1.82 (s, 3H), 0.16 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 141.2, 138.7, 128.4 (2C), 128.1 (2C), 124.3, 123.5, 110.3, 106.2, 95.4, 67.8, 26.3, 14.4, 13.0, -2.1 (2C); HRMS (CI) calcd for $[C_{17}H_{22}OSi + Na]^+$: 293.1332, Found: 293.1327.

(2E, 4E)-2-methyl-7-(trimethylsilyl)hepta-2,4-dien-6-yn-1-ol (46b)

To a solution of dienynoate **45b** (8.69 g, 36.8 mmol) in CH₂Cl₂ (100 mL) was dropwise added diisobutylaluminum hydride (*i*-Bu)₂AlH (1.0 M in CH₂Cl₂, 92.0 mL, 92.0 mmol) at -78 °C under an argon atmosphere. After stirring for 30 min at -78 °C, the reaction mixture was allowed warming up to 0 °C and kept stirring for 30 min. Then the reaction mixture was diluted with Et₂O and was quenched with saturated aqueous solution of potassium sodium tartrate (Rochelle's salt, 150 mL). The biphasic mixture was stirred until two layers separated once stopped stirring. The aqueous layer was extracted with Et₂O. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the primary alcohol **46b** (6.66 g, 93% yield) as a colorless oil. R_f = 0.20 (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3429, 2982; ¹H NMR (CDCl₃, 270 MHz): δ 6.88 (dd, *J* = 15.3, 11.1 Hz, 1H), 6.13-6.07 (m, 1H), 5.58 (d, *J* = 15.6 Hz, 1H), 4.05 (s, 2H), 1.71 (d, *J* = 0.8 Hz, 3H), 0.80 (s, 1H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 141.0, 138.4, 123.4, 110.4, 104.8, 96.9, 67.7, 14.3, -0.1 (3C); HRMS (CI) calcd for [C₁₁H₁₈OSi + H]⁺: 195.1205, Found: 195.1216.

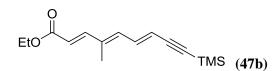

(2E,4E)-7-(benzyldimethylsilyl)-2-methylhepta-2,4-dien-6-ynal (28a)

To a solution of primary alcohol **46a** (342 mg, 1.26 mmol) in 10 mL of CH₂Cl₂ was added MnO₂ (1.10 g, 12.6 mmol) at room temperature. The reaction mixture was stirred at room temperature for 18 h and then filtered through a pad of celite and washed with Et₂O. The filtrate was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the ynal **28a** (310 mg, 92% yield) as a colorless oil. $R_f = 0.60$ (4:1 (v/v) hexane/EtOAc); IR (neat,

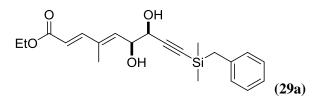

cm⁻¹): 3370, 2990, 1456; ¹H NMR (CDCl₃, 270 MHz): δ 9.47 (s, 1H), 7.27-7.22 (m, 2H), 7.14-7.07 (m, 3H), 7.04 (dd, *J* = 15.3, 11.6 Hz, 1H), 6.83 (d, *J* = 11.6 Hz, 1H), 6.04 (d, *J* = 15.3 Hz, 1H), 2.25 (s, 2H), 1.89 (s, 3H), 0.19 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 194.3, 146.2, 139.7, 138.6, 128.4 (2C), 128.2 (2C), 124.5, 119.3, 100.6, 100.2, 26.0, 9.8, -2.3 (2C); HRMS (CI) calcd for [C₁₇H₂₀OSi + Na]⁺: 291.1175, Found: 291.1179.

(2E, 4E)-2-methyl-7-(trimethylsilyl)hepta-2,4-dien-6-ynal (28b)

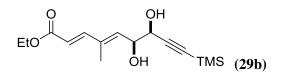
To a solution of primary alcohol **46b** (6.66 g, 34.3 mmol) in 80 mL of CH₂Cl₂ was added MnO₂ (29.9 g, 343.3 mmol) at room temperature. The reaction mixture was stirred at room temperature for 18 h and then filtered through a pad of celite and washed with Et₂O. The filtrate was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the ynal **28b** (6.24 mg, 94% yield) as a colorless oil. $R_f = 0.64$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3370, 2990, 1456; ¹H NMR (CDCl₃, 270 MHz): δ 9.45 (s, 1H), 7.04 (dd, *J* = 15.3, 11.4 Hz, 1H), 6.82 (d, *J* = 11.4 Hz, 1H), 6.04 (d, *J* = 15.3 Hz, 1H), 1.87 (d, *J* = 1.0 Hz, 3H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 194.4, 146.3, 139.5, 136.7, 119.5, 103.5, 103.0, 9.7, -0.3 (3C); HRMS (CI) calcd for [C₁₁H₁₆OSi + Na]⁺: 215.0862, Found: 215.0865.


(2E,4E,6E)-ethyl-9-(benzyldimethylsilyl)-4-methylnona-2,4,6-trien-8-ynoate (47a)

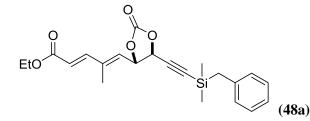
To a solution of MnO_2 oxidative ynal **28a** (1.50 g, 5.6 mmol) in 15 mL of toluene was added (Carboethoxymethylene)-triphenylphosphorane **12** (2.54 g, 7.28 mmol), the


reaction was refluxed for 3 h. After cooling down to room temperature, the solvent was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the trienoate **47a** (1.78 g, 98% yield) as a colorless oil. $R_f = 0.36$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2988, 1719; ¹H NMR (CDCl₃, 270 MHz): δ 7.33 (d, J = 15.6 Hz, 1H) 7.27-7.21 (m, 2H), 7.13-7.07 (m, 3H), 6.97 (dd, J = 15.3, 11.6 Hz, 1H), 6.40 (d, J = 11.6 Hz, 1H), 5.96 (d, J = 15.6 Hz, 1H), 5.79 (d, J = 15.3 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 2.25 (s, 2H), 1.93 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H), 0.17 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 167.0, 147.9, 138.7, 138.2, 136.8, 136.2, 128.3 (2C), 128.1 (2C), 124.3, 118.6, 114.7, 105.6, 99.0, 60.3, 26.1, 14.3, 12.7, -2.2 (2C); HRMS (CI) calcd for [C₂₁H₂₆O₂Si + Na]⁺: 361.1594, Found: 361.1589.

(2E,4E,6E)-ethyl-4-methyl-9-(trimethylsilyl)nona-2,4,6-trien-8-ynoate (47b)

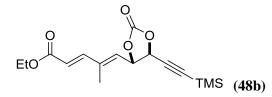

To a solution of MnO₂ oxidative ynal **28b** (5.57 g, 29.0 mmol) in 70 mL of toluene was added (Carboethoxymethylene)-triphenylphosphorane **12** (13.13 g, 37.7 mmol), the reaction was refluxed for 5 h. After cooling down to room temperature, the solvent was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the trienoate **47b** (7.15 g, 94% yield) as a colorless oil. $R_f = 0.60$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2988, 1719; ¹H NMR (CDCl₃, 270 MHz): δ 7.30 (d, J = 15.6 Hz, 1H), 6.96 (dd, J = 15.3, 11.6 Hz, 1H), 6.38 (d, J = 11.6 Hz, 1H), 5.93 (d, J = 15.6 Hz, 1H), 5.78 (d, J = 15.3 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 1.93 (d, J = 0.73 Hz, 3H), 1.29 (t, J = 7.2 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 167.0, 147.9, 137.9, 136.9, 136.1, 118.5, 114.9, 104.4, 100.1, 60.3, 14.3, 12.7, -0.2 (3C); HRMS (CI) calcd for [C₁₅H₂₂O₂Si + Na]+: 285.1281, Found: 285.1287.

(2*E*,4*E*,6*S*,7*S*)-ethyl-9-(benzyldimethylsilyl)-6,7-dihydroxy-4-methylnona-2,4-die n-8-ynoate (29a)


To a 50 mL round bottom flask was added 1:1 *t*-butyl alcohol (40 mL)/H₂O (40 mL), K₃Fe(CN)₆ (9.67 g, 29.5 mmol), K₂CO₃ (4.08 g, 29.5 mmol), CH₃SO₂NH₂ (0.94 g, 9.85 mmol), (DHQ)₂-PHAL (152 mg, 0.20 mmol, 2 mol %) and OsO₄ (25 mg, 0.10 mmol, 1 mol %). The mixture was stirred at room temperature for 15 min and then cooled to 0 °C. To this solution was added trienoate 47a (3.33 g, 9.85 mmol) in 2 mL CH₂Cl₂ dropwise and the reaction was stirred vigorously at 0 °C overnight. Saturated aqueous solution of Na₂SO₃ was added to quench the reaction while stirring vigorously. EtOAc was added to the reaction mixture, and after separation of the layers, the aqueous layer was further extracted with EtOAc. The combined organic phases were washed with 2 M KOH and brine to remove the methanesulfonamide, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The residue was purified by column chromatography (silica gel, 1:1 (v/v) hexane/EtOAc) to afford the diol 29a (3.00 g, 82% yield) as a colorless oil. $R_f = 0.15$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3446, 2983, 1762; [α]²⁵_D-13.8° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.26-7.21 (m, 2H), 7.12-7.07 (m, 3H), 6.89 (dd, J = 15.6, 11.4 Hz, 1H), 6.18 (d, J = 11.4 Hz, 1H), 5.63 (d, J = 15.3 Hz, 1H), 4.34-4.24 (m, 4H), 2.23 (s, 2H), 1.88 (s, 3H), 1.31 (t, J = 7.2 Hz,3H), 0.15 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 172.9, 139.5, 138.9, 138.2, 128.3 (2C), 128.1 (2C), 125.4, 124.3, 111.3, 105.9, 95.9, 76.6, 72.2, 62.2, 26.2, 14.1, 13.9, -2.2 (2C); HRMS (CI) calcd for $[C_{21}H_{28}O_4Si + Na]^+$: 395.1649, Found: 395.1653.

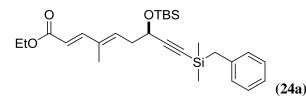
(2*E*,4*E*,6*S*,7*S*)-ethyl-6,7-dihydroxy-4-methyl-9-(trimethylsilyl)nona-2,4-dien-8-yn oate (29b)

To a 500 mL round bottom flask was added 1:1 t-butyl alcohol $(100 \text{ mL})/\text{H}_2\text{O}$ (100 mL), K₃Fe(CN)₆ (26.8 g, 81.9 mmol), K₂CO₃ (11.31 g, 81.9 mmol), KHCO₃ (8.24 g, 81.9 mmol), CH₃SO₂NH₂ (0.85 g, 27.3 mmol), (DHQ)₂-PHAL (0.42 g, 0.55 mmol, 2 mol %) and OsO₄ (69 mg, 0.27 mmol, 1 mol %). The mixture was stirred at room temperature for 15 min and then cooled to 0 °C. To this solution was added trienoate 47b (7.15 g, 27.3 mmol) in 5 mL CH₂Cl₂ dropwise and the reaction was stirred vigorously at 0 °C overnight. Saturated aqueous solution of Na₂SO₃ was added to quench the reaction while stirring vigorously. EtOAc was added to the reaction mixture, and after separation of the layers, the aqueous layer was further extracted with EtOAc. The combined organic phases were washed with 2 M KOH and brine to remove the methanesulfonamide, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. The residue was purified by column chromatography (silica gel, 1:1 (v/v) hexane/EtOAc) to afford the diol **29b** (6.47 g, 80% yield) as a colorless oil. $R_f = 0.19$ (19:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3446, 2983, 1762; $[\alpha]^{25} p + 14^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.88 (dd, J = 15.3, 11.1 Hz, 1H), 6.15 (d, J = 12.1 Hz, 1H), 5.62 (d, J = 15.6 Hz, 1H), 4.30-4.21 (m, 4H), 1.84 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 0.18 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 172.9, 139.3, 138.0, 125.4, 111.5, 104.5, 97.5, 76.7, 72.2, 62.2, 14.1, 13.8, -0.1 (3C); HRMS (CI) calcd for $[C_{15}H_{24}O_4Si + Na]^+$: 319.1336, Found: 319.1332.

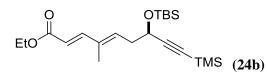

(2*E*,4*E*)-ethyl-5-((4*S*,5*S*)-5-(2-(benzyldimethylsilyl)ethynyl)-2-oxo-1,3-dioxolan-4yl)-4-ethylpenta-2,4-dienoate (48a)

To a solution of diol **29a** (506 mg, 1.36 mmol) in 6 mL of CH_2Cl_2 was added pyridine (0.45 mL, 5.44 mmol) and (Cl_3CO)₂CO (484 mg, 1.63 mmol) in 2 mL of CH_2Cl_2 at 0 °C. After stirring for 2 h at 0 °C, the reaction mixture was quenched by saturated aqueous

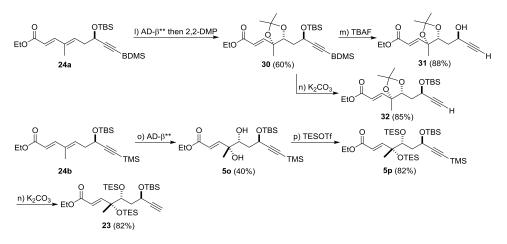
solution of NH₄Cl and extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the carbonate **48a** (440 mg, 95% yield) as a colorless oil. $R_f = 0.57$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2989, 1714; $[\alpha]^{25}_{D} -101^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.23-7.21 (m, 2H), 7.13-7.06 (m, 3H), 6.81 (dd, *J* = 15.3, 11.1 Hz, 1H), 6.22 (d, *J* = 11.1 Hz, 1H), 5.75 (d, *J* = 15.6 Hz, 1H), 5.04 (d, *J* = 5.2 Hz, 1H), 4.71 (d, *J* = 5.5 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 2.23 (s, 2H), 1.86 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H), 0.16 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 167.0, 153.0, 138.7, 136.4, 132.6, 128.8, 128.3 (2C), 128.2 (2C), 124.4, 114.9, 104.9, 98.1, 82.6, 76.0, 63.0, 26.1, 14.0, 11.7, -2.3 (2C); HRMS (CI) calcd for [C₂₂H₂₆O₅Si + Na] +: 421.1442, Found: 421.1439.


(2*E*,4*E*)-ethyl-4-methyl-((4*S*,5*S*)-5-(2-(trimethylsilyl)ethynyl)-2-oxo-1,3-dioxolan-4-yl)penta-2,4-dienoate (48b)

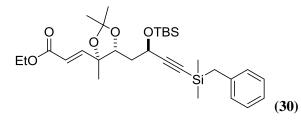
To a solution of diol **29b** (4.81 g, 16.2 mmol) in 60 mL of CH₂Cl₂ was added pyridine (4.68 mL, 56.9 mmol) and (Cl₃CO)₂CO (5.78 g, 19.5 mmol) in 10 mL of CH₂Cl₂ at 0 °C. After stirring for 3 h at 0 °C, the reaction mixture was quenched by saturated aqueous solution of NH₄Cl and extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 19:1 (v/v) hexane/EtOAc) to afford the carbonate **48b** (4.76 g, 91% yield) as a colorless oil. R_f = 0.61 (19:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2989, 1714; $[\alpha]^{25}$ D –80° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.81 (dd, *J* = 15.6, 11.4 Hz, 1H), 6.21 (d, *J* = 11.4 Hz, 1H), 5.74 (d, *J* = 15.6 Hz, 1H), 5.02 (d, *J* = 5.2 Hz, 1H), 4.70 (d, *J* = 5.4 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 1.84 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz):


δ 166.9, 153.1, 136.2, 132.4, 128.9, 115.0, 103.7, 99.7, 82.7, 75.9, 62.9, 14.0, 11.6, -0.2 (3C); HRMS (CI) calcd for [C₁₆H₂₂O₅Si + H] ⁺: 323.1310, Found: 322.1306.

(*R*,2*E*,4*E*)-ethyl-9-(benzyldimethylsilyl)-7-hdroxy-4-methylnona-2,4-dien-8-ynoat e (24a)

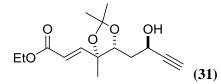

To a solution of carbonate 48a (193 mg, 0.48 mmol) in 4 mL of CH₂Cl₂ was added Pd₂(dba)₃·CHCl₃ (25 mg, 0.024 mmol), PPh₃ (12 mg, 0.048 mmol), Et₃N (245 mg, 2.24 mmol) and HCO₂H (111 mg, 2.42 mmol) at room temperature. After stirring at room temperature for 4 h, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl and extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude alcohol. To a solution of the above crude alcohol in 0.5 mL of DMF was added imidazole (104 mg, 1.52 mmol) and TBSCl (114 mg, 0.76 mmol) at room temperature. In 0.5 h, the reaction mixture was purified by chromatography (silica gel, 19:1 (v/v) hexane/EtOAc) without work up to provide the ester 24a (82 mg, 36% yield for two steps) as a colorless oil with 32% of the recovered starting material. Rf = 0.35 (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3410, 2968, 1690; $[\alpha]^{25}$ D +36° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.23-7.21 (m, 2H), 7.10-7.08 (m, 3H), 6.84 (dd, *J* = 15.6, 11.4 Hz, 1H), 5.94 (d, *J* = 11.4 Hz, 1H), 5.51 (d, J = 15.6 Hz, 1H), 4.29 (dd, J = 8.4, 4.8 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 2.48 (dd, J = 13.2, 4.2 Hz, 1H), 2.43 (dd, J = 13.8, 8.4 Hz, 1H), 2.23 (s, 2H), 1.85 (s, 3H), 1.27 (t, J = 6.6 Hz, 3H), 0.89 (s, 9H) 0.15 (s, 6H), 0.05 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 173.2, 139.1, 138.2, 128.4 (2C), 128.1 (2C), 127.9, 124.3, 109.3, 94.9, 71.4, 60.8, 45.6, 26.3, 25.7, 25.6 (3C), 21.0, 18.2, 17.5, 14.2, -2.1 (2C), -5.1, -5.3; HRMS (CI) calcd for $[C_{27}H_{42}O_3Si_2 + Na]^+$: 493.2564, Found: 493.2559.

(*R*,2*E*,4*E*)-ethyl-7-*tert*-butyldimethylsiloxy-4-methyl-9-(trimethylsilyl)nona-2,4-di en-8-ynoate (24b)



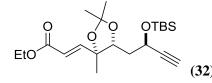
To a solution of carbonate 48b (103 mg, 0.32 mmol) in 5 mL of CH₂Cl₂ was added Pd₂(dba)₃·CHCl₃ (7 mg, 0.007 mmol), PPh₃ (4 mg, 0.13 mmol), Et₃N (98 mg, 0.97 mmol) and HCO₂H (46 mg, 0.97 mmol) at room temperature. After stirring at room temperature for 4 h, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl and extracted with EtOAc. The organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude alcohol. To a solution of the above crude alcohol in 0.5 mL of DMF was added imidazole (66 mg, 0.97 mmol) and TBSCl (72 mg, 0.48 mmol) at room temperature. In 0.5 h, the reaction mixture was purified by chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) without work up to provide the ester 24b (43 mg, 34% yield for two steps) as a colorless oil with 30% of the recovered starting material. $R_f = 0.36$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2968, 1690; $[\alpha]^{25} D - 20^{\circ} (c \ 1.0, \text{CHCl}_3)$; ¹H NMR (CDCl₃, 270 MHz): $\delta 6.84 (dd, J = 15.3, J)$ 11.4 Hz, 1H), 5.92 (d, J = 11.4 Hz, 1H), 5.51 (d, J = 15.3 Hz, 1H), 4.27 (dd, J = 7.7, 4.7) Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 2.49-2.41 (m, 2H), 1.83 (s, 3H), 1.27 (t, J = 6.6 Hz, 3H), 0.89 (s, 9H), 0.19 (s, 9H), 0.04 (s, 3H), 0.00 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 173.2, 138.8 138.0, 128.0, 109.4, 105.0, 96.3, 71.4, 60.8, 45.6, 25.7 (3C), 18.2, 17.5, 14.2, -0.03 (3C), -5.1, -5.3; HRMS (CI) calcd for $[C_{21}H_{38}O_3Si_2 + Na]^+$: 417.2251, Found: 417.2247.

Intermediates related to Scheme 5:


(*E*)-ethyl-3-((4*R*,5*R*)-5-((*R*)-4-(benzyldimethylsilyl)-2-*tert*-butyldimethylsiloxy-but -3-ynyl)-2,2,4-trimethyl-1,3-dioxolan-4-yl)acrylate (30)

To a 50 mL round bottom flask was added 1:1 *t*-butyl alcohol (10 mL)/H₂O (10 mL), K₃Fe(CN)₆ (4.35 g, 13.2 mmol), K₂CO₃ (1.82 g, 13.2 mmol), CH₃SO₂NH₂ (0.42 g, 4.4 mmol), (DHQD)₂-PHAL (137 mg, 0.18 mmol, 4 mol %) and OsO₄ (22 mg, 0.09 mmol, 2 mol %). The mixture was stirred at room temperature for 30 min and then cooled to 0 °C. To this solution was added compound **24a** (2.07 g, 4.4 mmol) in 1 mL CH₂Cl₂ dropwise and the reaction was stirred vigorously at 0 °C overnight. Saturated aqueous solution of Na₂SO₃ was added to quench the reaction while stirring vigorously. EtOAc was added to the reaction mixture, and after separation of the layers, the aqueous layer was further extracted with EtOAc. The combined organic phases were washed with 2 M KOH and brine to remove the methanesulfonamide, dried over anhydrous Na₂SO₄, and concentrated to afford the crude diol. To a solution of the above crude diol in 5 mL of acetone was added 2,2-dimethoxypropane (9.17 g, 88 mmol) and CSA (0.10 g, 10 mol %) at room temperature. After stirring at room temperature for 3 h, the reaction was quenched with saturated aqueous solution of NaHCO₃ and extracted with Et₂O. The combined organic phases were anhydrous Na₂SO₄,

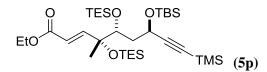
and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the acetonide **30** (1.440 g, 60% yield for two steps) as a colorless oil. $R_f = 0.32$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1752; $[\alpha]^{25}_{D} + 62^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.26-7.19 (m, 2H), 7.11-7.05 (m, 3H), 6.90 (d, *J* = 15.6 Hz, 1H), 6.08 (d, *J* = 15.6 Hz, 1H), 4.54-4.49 (m, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 4.04-3.99 (m, 1H), 2.19 (s, 2H), 1.83 (ddd, *J* = 7.9, 4.5, 4.5 Hz, 2H), 1.46 (s, 3H), 1.34 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.22 (s, 3H), 0.89 (s, 9H) 0.11 (s, 6H), 0.09 (s, 3H), 0.06 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.3, 149.1, 138.1, 128.3 (2C), 128.1 (2C), 124.3, 120.4, 108.5, 108.2, 81.3, 77.2, 60.5, 60.1, 38.2, 28.3, 26.4, 26.0, 25.7 (3C), 21.1, 18.2, 14.2, -2.3 (2C), -4.6, -5.1; HRMS (CI) calcd for [C₃₀H₄₈O₅Si₂ + Na]⁺: 567.2932, Found: 567.2934.


(*E*)-ethyl-3-((4*R*,5*R*)-5-((*R*)-2-hydroxybut-3-ynyl)-2,2,4-trimethyl-1,3-dioxolan-4yl)-acrylate (31)

To a solution of compound **30** (665 mg, 1.55 mmol) in 5 mL of THF was added TBAF (607 mg, 2.32 mL, 2.32 mmol) at 0 °C. After stirring at 0 °C for 4 h, the reaction was quenched with saturated aqueous solution of NH₄Cl and extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the allylic alcohol **31** (385 mg, 88% yield) as a colorless oil. $R_f = 0.33$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3489, 2989, 1752; $[\alpha]^{25} D^{-3^{\circ}}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.87 (d, *J* = 15.6 Hz, 1H), 6.11 (d, *J* = 15.6 Hz, 1H), 4.65-4.58 (m, 1H), 4.26 (dd, *J* = 10.9, 2.5 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 2.89 (d, *J* = 8.2 Hz, 1H), 2.49 (d, *J* = 2.0 Hz, 1H), 2.00 (ddd, *J* = 14.1, 10.6, 3.5 Hz, 1H), 1.80 (ddd, *J* = 14.3, 6.9, 2.5 Hz, 1H), 1.47 (s, 3H), 1.39 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.23 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.4, 148.7, 120.6,

108.7, 83.8, 81.5, 78.0, 73.3, 60.6, 59.8, 35.8, 28.2, 26.3, 21.0, 14.1; HRMS (CI) calcd for [C₁₅H₂₂O₅ + Na]⁺: 305.1359, Found: 305.1385.

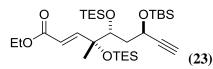
(*E*)-ethyl-3-((4*R*,5*R*)-5-((*R*)-2-tert-butyldimethylsiloxybut-3-ynyl)-2,2,4-trimethyl -1,3-dioxolan-4-yl)-acrylate (32)


To a solution of compound **30** (330 mg, 0.61 mmol) in 5 mL of EtOH was added K₂CO₃ (251 mg, 1.82 mmol) at room temperature. The reaction was stirred at room temperature for 24 h, then diluted with EtOAc and quenched by 1 M NaHSO₄. The reaction mixture was extracted with Et₂O, and the combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the silyl ether **32** (204 mg, 85% yield) as a colorless oil. $R_f = 0.66$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2989, 1752; $[\alpha]^{25}_{D} + 33^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.84 (d, *J* = 15.6 Hz, 1H), 6.05 (d, *J* = 15.6 Hz, 1H), 4.52-4.46 (m, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 4.01-3.96 (m, 1H), 2.39 (d, *J* = 8.2 Hz, 1H), 1.85-1.80 (m, 2H), 1.43 (s, 3H), 1.31 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.17 (s, 3H), 0.86 (s, 9H), 0.12 (s, 3H), 0.08 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.3, 149.0, 120.3, 108.1, 85.2, 81.2, 77.1, 72.2, 60.4, 59.4, 38.3, 28.3, 26.3, 25.6 (3C), 21.0, 18.1, 14.1, -4.7, -5.3; HRMS (CI) calcd for [C₂₁H₃₆O₅Si + Na]⁺: 419.2224, Found: 419.2197.

(*E*,4*R*,5*R*,7*R*)-ethyl-4,5-dihydroxy-7-*tert*-butyldimethylsiloxy-4-methyl-9-(trimeth ylsilyl)non-2-en-8-ynoate (50)

To a 100 mL round bottom flask was added 1:1 *t*-butyl alcohol (20 mL)/H₂O (20 mL), K₃Fe(CN)₆ (3.03 g, 9.22 mmol), K₂CO₃ (1.27 g, 9.22 mmol), KHCO₃ (0.93 g, 9.22

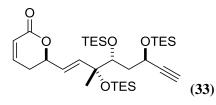
mmol), CH₃SO₂NH₂ (0.29 g, 3.07 mmol), (DHQD)₂-PHAL (99 mg, 0.13 mmol, 4 mol %) and OsO₄ (16 mg, 0.062 mmol, 2 mol %). The mixture was stirred at room temperature for 30 min and then cooled to 0 °C. To this solution was added dienoate 24b (1.18 g, 3.07 mmol) in 2 mL CH₂Cl₂ dropwise and the reaction was stirred vigorously at 0 °C for 8 h. Saturated aqueous solution of Na₂SO₃ was added to quench the reaction while stirring vigorously. EtOAc was added to the reaction mixture, and after separation of the layers, the aqueous layer was further extracted with EtOAc. The combined organic phases were washed with 2 M KOH and brine to remove the methanesulfonamide, dried over anhydrous Na₂SO₄, and concentrated to afford the crude diol. The crude product was purified by column chromatography (silica gel, 1:1 (v/v) hexane/EtOAc) to afford the diol **50** (0.53 g, 40% yield) as a colorless oil. $R_f =$ 0.46 (1:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3446, 2983, 1762; $[\alpha]^{25} + 52^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.01 (d, *J* = 15.8 Hz, 1H), 6.13 (d, *J* = 15.6 Hz, 1H), 4.73 (dd, J = 4.7, 4.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 4.06-4.02 (m, 1H), 3.64 (bs, J = 4.7, 4.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 4.06-4.02 (m, 1H), 3.64 (bs, J = 4.7, 4.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 4.06-4.02 (m, 1H), 3.64 (bs, J = 4.7, 4.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 4.06-4.02 (m, 1H), 3.64 (bs, J = 4.7, 4.5 Hz, 1H), 4.19 (m, J = 7.2 Hz, 2H), 4.06-4.02 (m, 1H), 3.64 (m,1H), 2.58 (s, 1H), 1.84-1.80 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.26 (s, 3H), 0.88 (s, 9H), 0.16 (s, 12H), 0.15 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.6, 152.3, 120.3, 105.5, 90.7, 74.7, 74.0, 62.5, 60.4, 37.6, 25.7 (3C), 22.6, 18.0, 14.2, -0.3 (3C), -4.6, -5.3; HRMS (CI) calcd for $[C_{21}H_{40}O_5Si_2 + Na]^+$: 451.2306, Found: 451.2307.


(*E*,4*R*,5*R*,7*R*)-ethyl-4,5-bistriethylsilyl-7*-tert*-butyldimethylsilyl-4-methyl-9-(trime thylsilyl)non-2-en-8-ynoate (5p)

To a solution of diol **50** (43 mg, 0.10 mmol) in 1 mL of CH_2Cl_2 was added 2,6-lutidine (0.12 mL, 1.0 mmol) and TESOTf (159 mg, 0.6 mmol) at -78 °C. The reaction mixture was warmed up to -10 °C and stirred for 2 h. Then the reaction was quenched with saturated aqueous solution of NH₄Cl and extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v)

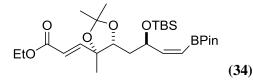
hexane/EtOAc) to afford compound **5p** (54 mg, 82% yield) as a colorless oil. $R_f = 0.52$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1752; $[\alpha]^{25}_{D} + 14^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.00 (d, *J* = 15.8 Hz, 1H), 5.97 (d, *J* = 15.6 Hz, 1H), 4.47 (dd, *J* = 7.7, 7.2 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.73 (dd, *J* = 5.9, 5.9 Hz, 1H), 1.98-1.88 (m, 1H), 1.59-1.49 (m, 1H), 1.49 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.88 (s, 9H), 0.65 (q, *J* = 7.9 Hz, 6H), 0.52 (q, *J* = 7.9 Hz, 6H), 0.15 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.7, 152.1, 120.0, 108.2, 89.1, 78.7, 76.0, 60.8, 60.2, 43.6, 25.9 (3C), 25.3, 18.2, 14.2, 7.2 (3C), 7.0 (3C), 6.9 (3C), 5.4 (3C), -0.3 (3C), -4.1, -4.4; HRMS (CI) calcd for [C₃₃H₆₈O₅Si₄ + Na]⁺: 679.4036, Found: 679.4037.

(*E*,4*R*,5*R*,7*R*)-ethyl-4,5-bistriethylsilyl-7-tert-butyldimethylsilyl-4-methyl-9-non-2 -en-8-ynoate (23)

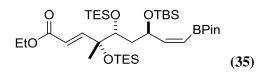


To a solution of compound **5p** (315 mg, 0.48 mmol) in 5 mL of EtOH was added K₂CO₃ (199 mg, 1.48 mmol) at room temperature. The reaction was stirred at room temperature for 24 h, then diluted with EtOAc and quenched by 1 M NaHSO₄. The reaction mixture was extracted with Et₂O, and the combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the silyl ether **23** (258 mg, 92% yield) as a colorless oil. $R_f = 0.44$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2989, 1752; $[\alpha]^{25}_{D} + 17^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.01 (d, *J* = 15.8 Hz, 1H), 5.96 (d, *J* = 15.8 Hz, 1H), 4.48 (ddd, *J* = 8.2, 6.2, 2.0 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.74 (dd, *J* = 6.4, 5.7 Hz, 1H), 2.39 (d, *J* = 2.2 Hz, 1H), 1.99 (ddd, *J* = 13.9, 8.2, 5.4 Hz, 1H), 1.60-1.51 (m, 1H), 1.39 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.9 Hz, 18H), 0.89 (s, 9H), 0.64 (q, *J* = 7.9 Hz, 12H), 0.14 (s, 3H), 0.11 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.6, 152.0, 120.1, 86.1, 78.5, 76.0, 72.8, 60.3, 60.1, 43.6, 25.8 (3C), 25.3, 18.2, 14.3, 7.2 (3C), 7.0 (3C), 6.9

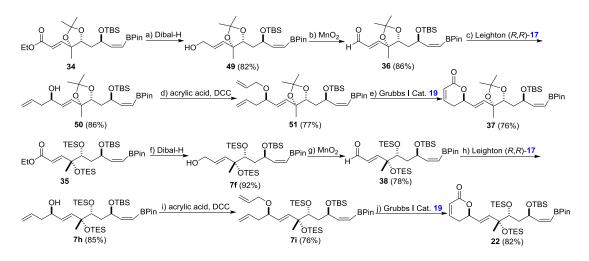
(3C), 5.4 (3C), -4.10, -4.48; HRMS (CI) calcd for [C₃₀H₆₀O₅Si₃ + Na]⁺: 607.3641, Found: 607.3643.


Compounds in Scheme 6:

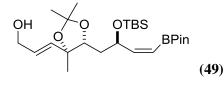
(*R*)-5,6-dihydro-6-((*E*, 3*R*, 4*R*, 6*R*)-3,4,6-tritriethylsilyl-3-methyloct-1-en-7-ynyl) pyran-2-one (33)


To a solution of triol 4 (79 mg, 0.30 mmol) in 3.0 mL of CH₂Cl₂ was added 2,6-lutidine (317 mg, 2.96 mmol) at -78 °C. After stirring for 10 min at -78 °C, TESOTf (309 mg, 1.17 mmol) was added to the reaction mixture and kept stirring for 30 min. The reaction mixture was diluted with CH₂Cl₂, quenched by saturated aqueous solution of NaHCO₃, and extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 1:4 (v/v) hexane/EtOAc) to afford the TES protected compound 33 (143 mg, 78% yield) as a colorless oil. $R_f = 0.35$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2956, 1736; $[\alpha]^{25} p + 51^{\circ}$ (c 1.0, CHCl₃); ¹H NMR $(CDCl_3, 600 \text{ MHz})$: $\delta 6.86 \text{ (ddd, } J = 8.4, 5.4, 3.0 \text{ Hz}, 1\text{H}), 6.04 \text{ (ddd, } J = 10.2, 1.8, 1.8)$ Hz, 1H), 5.91 (dd, J = 16.2, 1.2 Hz, 1H), 5.79 (dd, J = 15.6, 6.6 Hz, 1H), 4.97 (ddd, J = 9.6, 6.6, 1.2 Hz, 1H), 4.50 (ddd, *J* = 7.8, 6.0, 1.8 Hz, 1H), 3.68 (dd, *J* = 6.6, 5.4 Hz, 1H), 2.47-2.42 (m, 2H), 2.39 (d, J = 1.8 Hz, 1H), 2.05-1.97 (m, 1H), 1.46-1.51 (m, 1H), 0.97 $(t, J = 7.8 \text{ Hz}, 27\text{H}), 0.71-0.59 \text{ (m, 18H)}; {}^{13}\text{C NMR} (\text{CDCl}_3, 150 \text{ MHz}): \delta 164.1, 144.5,$ 138.1, 125.7, 86.0, 78.0, 77.9, 75.9, 72.7, 59.8, 43.3, 30.0, 26.0, 7.2 (3C), 7.0 (3C), 6.9 (3C), 6.8 (3C), 5.4 (3C), 5.2 (3C). HRMS (CI) calcd for $[C_{32}H_{60}O_5Si_3 + Na]^+$: 631.3592, Found: 631.3565.

(2*E*,4*S*,5*R*,7*R*,8*Z*)-ethyl-7-*tert*-butyldimethylsiloxy-4-methyl-2,2,4-trimethyl-1,3-d ioxolan-4-yl)-9-(3,3,4,4-tetramethylborolan-1-yl)nona-2,8-dienoate (34)

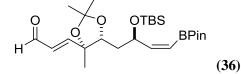

To a solution of [Rh(COD)Cl]₂ (8 mg, 0.017 mmol, 1.5 mol %) in 1 mL of cyclohexane was added Pi-Pr₃ (11 mg, 0.068 mmol, 6.0 mol %), Et₃N (38 mg, 0.37 mmol) and catecholborane (39 mg, 0.32 mmol) at room temperature. After stirring at room temperature for 30 minutes, alkyne 32 (132 mg, 0.034 mmol) in 1 mL of cyclohexane was added, and the reaction was stirred for 6 h. Then pinacol (60 mg, 0.51 mmol) in 1 mL of cyclohexane was added dropwise and the reaction mixture was stirred for another 12 h at room temperature. The reaction was quenched by saturated aqueous solution of NH₄Cl and extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford compound **34** (119 mg, 70% yield) as a colorless oil. $R_f = 0.24$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1758; $[\alpha]^{25} D = -0.03^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.86 (d, J = 15.6 Hz, 1H), 6.30 (dd, J = 13.6, 8.4 Hz, 1H), 6.05 (d, J = 15.6 Hz, 1H), 5.32 (dd, J = 13.6, 0.75 Hz, 1H), 5.02 (ddd, J = 8.6, 8.6, 3.9 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 4.00 (dd, J = 8.9, 3.2 Hz, 1H), 1.52 (ddd, J = 8.4, 4.2, 4.2 Hz, 2H), 1.43 (s, 3H), 1.33 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.25 (s, 12H), 1.15 (s, 3H), 0.83 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.4, 157.2, 149.7, 120.0, 107.8, 83.1, 81.4, 77.7, 69.3, 60.4, 37.7, 28.4, 26.4, 25.8 (3C), 24.8 (2C), 24.7 (2C), 21.1, 20.0, 18.1, 14.2, -4.4, -5.0; HRMS (CI) calcd for [C₂₇H₄₉BO₇Si + Na]⁺: 547.3233, Found: 547.3234.

(2*E*,4*S*,5*R*,7*R*,8*Z*)-ethyl-4,5-bistriethylsilyl-7-*tert*-butyldimethylsilyl-4-methyl-9-(4 ,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)nona-2,8-dienoateate (35)

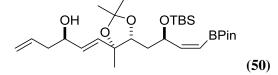


To a solution of [Rh(COD)Cl]₂ (20 mg, 0.04 mmol, 1.5 mol %) in 3 mL of cyclohexane was added Pi-Pr₃ (26 mg, 0.16 mmol, 6.0 mol %), Et₃N (84 mg, 0.83 mmol) and catecholborane (86 mg, 0.71 mmol) at room temperature. After stirring at room temperature for 30 minutes, alkyne 23 (438 mg, 0.72 mmol) in 1 mL of cyclohexane was added, and the reaction was stirred for 6 h. Then pinacol (133 mg, 1.13 mmol) in 1 mL of cyclohexane was added dropwise and the reaction mixture was stirred for another 12 h at room temperature. The reaction was quenched by saturated aqueous solution of NH₄Cl and extracted with Et₂O. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford compound **35** (407 mg, 79% yield) as a colorless oil. $R_f = 0.35$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2986, 1758; $[\alpha]^{25} D + 24^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.03 (d, J = 15.8 Hz, 1H), 6.19 (dd, J = 13.9, 8.9 Hz, 1H), 5.91 (d, J = 15.6 Hz, 1H), 5.30 (d, J = 13.6 Hz, 1H), 4.78 (td, J = 9.4, 3.7 Hz, 1H), 4.21-4.14 (m, 2H), 3.76 (dd, *J* = 8.1, 1.7 Hz, 1H), 2.14-2.05 (m, 1H), 1.87-1.79 (m, 1H), 1.36 (s, 3H), 1.26 (s, 12 H), 1.28 (t, J = 7.2 Hz, 3H), 0.96 (dt, J = 8.2, 7.7 Hz, 18H), 0.86 (s, 9H), 0.73-0.56 (m, 12H), 0.06 (s, 3H), 0.00 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 166.9, 157.7, 153.0, 119.7, 83.2, 78.2, 75.4, 69.0, 60.2, 42.0, 26.9 (3C), 25.9 (2C), 24.9 (2C), 24.6, 24.2, 21.2, 17.9, 14.2, 7.2 (3C), 7.1 (3C), 6.74 (3C), 5.60 (3C), -3.0, -4.0; HRMS (CI) calcd for $[C_{36}H_{73}BO_7Si_3 + Na]^+$: 735.4649, Found: 735.4648.

Intermediates related to Scheme 7:

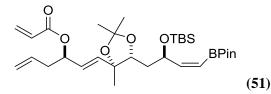

(2*E*,4*S*,5*R*,7*R*,8*Z*)-4-methyl-9-(3,3,4,4-tetramethylborolan-1-yl)nona-2,8-diene-1,3 -dioxolan-7-*tert*-butyldimethylsiloxyol (49)

To a solution of ester 34 (65 mg, 0.12 mmol) in CH₂Cl₂ (2 mL) was dropwise added diisobutylaluminum hydride (i-Bu)2AlH (1.0 M in CH2Cl2, 0.31 mL, 0.31 mmol) at -78 °C under an argon atmosphere. After stirring for 30 min at -78 °C, the reaction mixture was allowed warming up to 0 °C and kept stirring for 30 min. Then the reaction mixture was diluted with Et₂O and was quenched with saturated aqueous solution of potassium sodium tartrate (Rochelle's salt, 5 mL). The biphasic mixture was stirred until two layers separated once stopped stirring. The aqueous layer was extracted with Et_2O . The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the primary alcohol 49 (49 mg, 82% yield) as a colorless oil. $R_f = 0.32$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3427, 2982; $[\alpha]^{25}$ $_{\rm D}$ -7° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.30 (dd, *J* = 13.2, 7.8 Hz, 1H), 5.9 (ddd, *J* = 15.6, 5.4, 5.4 Hz, 1H), 5.71 (ddd, *J* = 16.2, 1.8, 1.2 Hz, 1H), 5.32 (dd, *J* = 13.8, 0.6 Hz, 1H), 5.21-5.02 (m, 2H), 4.14 (dd, J = 5.4, 4.8 Hz, 1H), 3.98 (dd, J = 10.2, 2.4 Hz, 1H), 1.56-1.44 (m, 2H), 1.42 (s, 3H), 1.34 (s, 3H), 1.26 (s, 12H), 1.41 (s, 3H), 0.86 (s, 9H), 0.08 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 157.3, 134.4, 129.2, 107.2, 83.2, 81.4, 78.5, 69.5, 63.3, 37.7, 28.5, 26.8, 25.9 (3C), 24.9 (2C), 24.8(2C), 21.0,

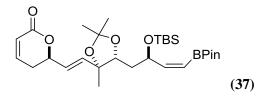

18.2, -4.3, -4.9; HRMS (CI) calcd for [C₂₅H₄₇BO₆Si + Na]⁺: 505.3127, Found: 505.2984.

(2*E*,4*S*,5*R*,7*R*,8*Z*)-1,3-dioxolan-7*-tert*-butyldimethylsiloxy-4-methyl-9-(3,3,4,4-tetr amethyl-borolan-1-yl)nona-2,8-dienal (36)

To a solution of primary alcohol **49** (28 mg, 0.058 mmol) in 1 mL of CH₂Cl₂ was added MnO₂ (51 mg, 0.58 mmol) at room temperature. The reaction mixture was stirred at room temperature for 4 h and then filtered through a pad of celite and washed with Et₂O. The filtrate was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the enal **36** (24 mg, 86% yield) as a colorless oil. R_f = 0.60 (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3427, 2982, 1680; $[\alpha]^{25}_{D}$ – 15° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 9.57 (d, *J* = 7.7 Hz, 1H), 6.74 (d, *J* = 15.6 Hz, 1H), 6.36 (dd, *J* = 15.8, 7.4 Hz, 1H), 6.30 (dd, *J* = 13.8, 5.9 Hz, 1H), 5.36 (d, *J* = 13.8 Hz, 1H), 5.04 (td, *J* = 9.2, 3.0 Hz, 1H), 4.06 (dd, *J* = 10.2, 2.0 Hz, 1H), 1.61-1.54 (m, 2H), 1.46 (s, 3H), 1.36 (s, 12H), 1.26 (s, 12H), 1.22 (s, 3H), 0.85 (s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 194.3, 158.6, 157.2, 130.7, 108.2, 83.2, 81.7, 69.3, 37.9, 28.6, 26.4, 25.8 (3C), 24.9 (2C), 24.8 (2C), 21.1, 20.7, -4.3, -4.9; HRMS (CI) calcd for [C₂₅H₄₅BO₆Si + Na]⁺: 503.2970, Found: 503.2972.

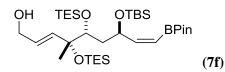

(1Z,3R,5R,6S,7E,9R)-6-methyl-1-(3,3,4,4-tetramethylborolan-1-yl)dodeca-1,7,11-t riene-3-*tert*-butyldimethylsiloxy-1,3-dioxolan-9-ol (50)

To a solution of Leighton allylsilane reagent (R,R)-**17** (72 mg, 0.13 mmol) in 0.3 mL of CH₂Cl₂ was dropwise added enal **36** (21 mg, 0.044 mmol) in 0.4 mL of CH₂Cl₂ at -10

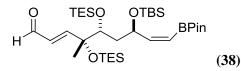

 $^{\circ}$ C. The reaction was stirred $-10 \,^{\circ}$ C at for 36 h, then diluted with EtOAc and guenched by adding 1 N NaHSO₄. The reaction mixture was vigorously stirred at room temperature for 1 h, then filtered through a pad of celite, and the filtrate was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the allylic alcohol **50** (38 mg, 86% yield) as a light yellow oil. $R_f = 0.30$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3450, 2981, 1755; $[\alpha]^{25}_{D}$ +9° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.19 (dd, *J* = 13.2, 8.4 Hz, 1H), 5.83-5.76 (m, 2H), 5.70 (dd, J = 15.6 Hz, 1H), 5.33 (d, J = 13.8 Hz, 1H), 5.14 (d, J = 8.4 Hz, 1H), 5.11 (s, 1H), 5.03 (td, J = 10.2, 2.4 Hz, 1H), 4.18 (d, J = 5.4 Hz, 1H),3.98 (d, *J* = 9.6 Hz, 1H), 2.34 (ddd, *J* = 13.8, 6.6, 6.0 Hz, 1H), 2.27 (ddd, *J* = 14.4, 7.8, 7.2 Hz, 1H), 1.53-1.46 (m, 1H), 1.43 (s, 3H), 1.35 (s, 3H), 1.27 (s, 12H), 1.13 (s, 3H), 0.87 (s, 9H), 0.07 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 157.3, 134.1, 133.9, 131.9, 118.2, 107.2, 83.1, 81.4, 78.5, 71.2, 69.5, 41.9, 37.8, 28.5, 26.7, 25.9 (3C), 24.9 (2C), 24.7 (2C), 21.2, 18.2, -4.3, -4.9; HRMS (CI) calcd for [C₂₈H₅₁BO₆Si + Na]⁺: 545.3440, Found: 545.3443.

(4*R*,5*E*,7*S*,8*R*,10*R*,11*Z*)-1,3-dioxolan-10-*tert*-butyldimethylsiloxy-7-methyl-12-(3,3 ,4,4-tetramethyl-borolan-1-yl)dodeca-1,5,11-trien-4-yl acrylate (51)

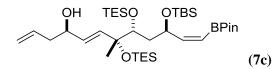
To a solution of allylic alcohol **50** (30 mg, 0.043 mmol) in 1.5 mL of CH_2Cl_2 was added acrylic acid (15 mg, 0.21 mmol), DCC (43 mg, 0.21 mmol) and catalytic amount of DMAP (2 mg, 0.016 mmol). The reaction was stirred at room temperature for 3 h, then diluted with Et₂O and filtered through a pad of celite. The filtrate was extracted with Et₂O, and the combined organic phases were washed with saturated aqueous solution of NaHSO₄, saturated aqueous solution of NaHCO₃, brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the ester **51** (25 mg, 77% yield) as a colorless oil. $R_f = 0.50$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2987, 1736; $[\alpha]^{25} D$ +12° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.38 (dd, J = 17.4, 1.2 Hz, 1H), 6.32 (dd, J = 13.8, 8.4 Hz, 1H), 6.10 (dd, J = 16.8, 10.2 Hz, 1H), 5.80 (dd, J = 10.2, 1.2 Hz, 1H), 5.76-5.70 (m, 3H), 5.40 (dd, J = 6.0, 6.0 Hz, 1H), 5.33 (d, J = 13.8 Hz, 1H), 5.10-5.03 (m, 3H), 3.97 (dd, J = 10.8, 2.4 Hz, 1H), 2.41 (dd, J = 6.6, 6.6 Hz, 2H), 1.49 (ddd, J = 21.6, 10.2, 3.0 Hz, 2H), 1.43 (s, 3H), 1.34 (s, 3H), 1.27 (s, 12H), 1.12 (s, 3H), 0.87 (s, 9H), 0.06 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 187.4, 136.3, 133.0, 130.5, 128.8, 127.0, 118.1, 107.3, 83.2, 81.4, 78.4, 73.2, 69.4, 39.1, 37.9, 29.7, 28.5, 26.5, 25.9 (3C), 24.9 (2C), 24.8 (2C), 21.4, 18.1, -4.3, -4.9; HRMS (CI) calcd for [C₃₁H₅₃BO₇Si + Na]⁺: 599.3546, Found: 599.3573.


(*R*)-5,6-dihydro-6-((1*E*,3*S*,4*R*,6*R*,7*Z*)-1,3-dioxolan-6-*tert*-butyldimethylsiloxy-3-m ethyl-8-(3,3,4,4-tetramethylborolan-1-yl)octa-1,7-dienyl)pyran-2-one (37)

To a solution of ester **51** (14 mg, 0.024 mmol) in 2.5 mL of CH₂Cl₂ was added Grubbs catalyst **29** (4 mg, 0.005 mmol, 20 mol %). The reaction was refluxed for 3 h. Solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the lactone **37** (10 mg, 76% yield) as a colorless oil. R_f = 0.25 (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2930, 1731; [α]²⁵ _D +32° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.86 (ddd, *J* = 9.0, 5.4, 3.0 Hz, 1 H), 6.32 (dd, *J* = 13.8, 8.4 Hz, 1H), 6.05 (ddd, *J* = 9.6, 1.2, 1.2 Hz, 1H), 5.88 (dd, *J* = 15.6, 4.8 Hz, 1H), 5.84 (d, *J* = 16.2 Hz, 1H), 5.34 (d, *J* = 13.8 Hz, 1H), 5.03 (ddd, *J* = 9.6, 3.6, 3.0 Hz, 1H), 4.94 (ddd, *J* = 9.6, 4.8, 4.8 Hz, 1H), 3.98 (dd, *J* = 10.2, 2.4 Hz, 1H), 2.45-2.41 (m, 2H), 1.52-1.46 (m, 2H), 1.44 (s, 3H), 1.35 (s, 3H), 1.28 (s, 12H), 1.15 (s, 3H), 0.87 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 163.8, 157.3, 144.4, 136.5, 126.4, 121.7, 107.3, 83.2, 81.3, 78.4, 77.3, 69.4, 39.1, 37.7,

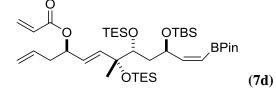

29.8, 28.5, 26.6, 25.9 (3C), 24.9 (2C), 24.8 (2C), 21.1, 18.1, -4.3, -5.0; HRMS (CI) calcd for [C₂₉H₄₉BO₇Si + Na]⁺: 571.3233, Found: 571.3205.

(2*E*,4*R*,5*R*,7*R*,8*Z*)-4,5-bistriethylsilyl-7*-tert*-butyldimethylsilyl-4-methyl-9-(4,4,5,5 -tetramethyl-1,3,2-dioxaborolan-2-yl)nona-2,8-dien-1-ol (7f)


To a solution of ester 35 (140 mg, 0.20 mmol) in CH₂Cl₂ (2 mL) was dropwise added diisobutylaluminum hydride (i-Bu)₂AlH (1.0 M in CH₂Cl₂, 0.45 mL, 0.45 mmol) at -78 °C under an argon atmosphere. After stirring for 30 min at -78 °C, the reaction mixture was allowed warming up to 0 °C and kept stirring for 30 min. Then the reaction mixture was diluted with Et₂O and was quenched with saturated aqueous solution of potassium sodium tartrate (Rochelle's salt, 10 mL). The biphasic mixture was stirred until two layers separated once stopped stirring. The aqueous layer was extracted with Et₂O. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the primary alcohol 7f (123 mg, 92% yield) as a colorless oil. $R_f = 0.33$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3427, 2982; $[\alpha]^{25}$ p +4° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.19 (dd, J = 13.9, 8.9 Hz, 1H), 5.77-5.74 (m, 2H), 5.31 (d, J = 13.9 Hz, 1H), 4.76 (td, J = 9.4, 4.2 Hz, 1H), 4.15 (bs, 2H), 3.76 (dd, J = 7.4, 2.0 Hz, 1H), 1.82 (ddd, J = 14.1, 9.4, 2.2 Hz, 1H), 1.30 (s, 3H), 1.27 (s, 6 H), 1.26 (s, 6 H), 0.96 (dt, *J* = 8.2, 7.7 Hz, 18H), 0.86 (s, 9H), 0.72-0.53 (m, 12H), 0.07 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 157.8, 137.1, 128.1, 83.3 (3C), 77.9, 75.8, 69.4, 63.8, 42.4, 26.1 (3C), 25.0 (2C), 24.7 (2C), 23.4, 18.3, 7.3 (3C), 7.2 (3C), 6.9 (3C), 5.7 (3C), -2.9, -3.9; HRMS (CI) calcd for [C₃₄H₇₁BO₆Si₃ + Na]⁺: 693.4544, Found: 693.4549.

(2*E*,4*R*,5*R*,7*R*,8*Z*)-4,5-bistriethylsilyl-7*-tert*-butyldimethylsilyl-4-methyl-9-(4,4,5,5 -tetramethyl-1,3,2-dioxaborolan-2-yl)nona-2,8-dienal (38)

To a solution of primary alcohol **7f** (30 mg, 0.045 mmol) in 1 mL of CH₂Cl₂ was added MnO₂ (39 mg, 0.45 mmol) at room temperature. The reaction mixture was stirred at room temperature for 4 h and then filtered through a pad of celite and washed with Et₂O. The filtrate was concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the enal **38** (25 mg, 78% yield) as a colorless oil. R_f = 0.45 (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3427, 2982, 1680; $[\alpha]^{25}_{D}$ +43° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 9.56 (d, *J* = 7.9 Hz, 1H), 6.92 (d, *J* = 15.6 Hz, 1H), 6.25 (dd, *J* = 15.6, 7.9 Hz, 1H), 6.18 (dd, *J* = 13.9, 9.2 Hz, 1H), 5.31 (d, *J* = 13.9 Hz, 1H), 4.76 (td, *J* = 9.6, 3.7 Hz, 1H), 3.83 (dd, *J* = 8.4, 1.5 Hz, 1H), 1.88 (ddd, *J* = 14.3, 10.2, 2.4 Hz, 1H), 1.42 (s, 3H), 1.26 (s, 12H), 0.98 (t, *J* = 8.2 Hz, 9H), 0.95 (t, *J* = 7.4 Hz, 9H), 0.87 (s, 9H), 0.76-0.56 (m, 12H), 0.07 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 194.0, 162.7, 157.5, 130.7, 83.2, 78.3, 75.5, 68.8, 41.8, 26.1 (3C), 24.9, 24.6, 18.2, 7.2 (3C), 7.1 (3C), 6.8 (3C), 5.6 (3C), -2.9, -3.9; HRMS (CI) calcd for [C₃₄H₆₉BO₆Si₃ + Na]⁺: 691.4387, Found: 691.4393.

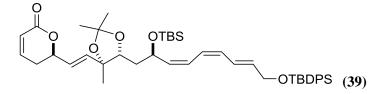

(1*Z*,3*R*,5*R*,6*R*,7*E*,9*R*)-4,5-bistriethylsilyl-7*-tert*-butyldimethylsilyl-6-methyl-1-(4,4 ,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dodeca-1,7,11-trien-1-ol (7h)

To a solution of To a solution of Leighton allylsilane reagent (R,R)-**17** (102 mg, 0.19 mmol) in 0.3 mL of CH₂Cl₂ was dropwise added enal **38** (42 mg, 0.063 mmol) in 0.4 mL of CH₂Cl₂ at -10 °C. The reaction was stirred -10 °C at for 36 h, then diluted with EtOAc and quenched by adding 1 N NaHSO₄. The reaction mixture was vigorously stirred at room temperature for 1 h, then filtered through a pad of celite, and the filtrate was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by

column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the allylic alcohol **7h** (38 mg, 85% yield) as a light yellow oil. $R_f = 0.30$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3450, 2981, 1755; $[\alpha]^{25}_{D} +9^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 6.19 (dd, *J* = 13.8, 9.2 Hz, 1H), 5.87-5.73 (m, 2H), 5.60 (dd, *J* = 15.8, 6.2 Hz, 1H), 5.30 (d, *J* = 13.9 Hz, 1H), 5.16-5.09 (m, 2H), 4.76 (td, *J* = 9.4, 3.7 Hz, 1H), 4.18 (dd, *J* = 6.2, 5.9 Hz, 1H), 3.71 (dd, *J* = 7.7, 1.5 Hz, 1H), 2.37-2.25 (M, 2H), 1.83 (ddd, *J* = 14.1, 9.6, 1.7 Hz, 1H), 1.10-1.21 (m, 1H), 1.30 (s, 3H), 1.26 (s, 6H), 1.25 (s, 6H), 0.97 (t, *J* = 8.2 Hz, 9H), 0.95 (t, *J* = 7.4 Hz, 9H), 0.87 (s, 9H), 0.69 (q, *J* = 8.2 Hz, 6H), 0.58 (q, *J* = 7.9 Hz, 6H), 0.08 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 157.8, 135.9, 134.3, 131.1, 118.0, 83.1, 77.8, 75.7, 71.6, 69.3, 42.3, 41.7 (3C), 26.0 (3C), 24.9 (2C), 24.6 (2C), 23.5, 18.2, 7.3 (3C), 7.2 (3C), 6.8 (3C), 5.6 (3C), -2.9, -4.1; HRMS (CI) calcd for [C₃₇H₇₅BO₆Si₃ + Na]⁺: 733.4857, Found: 733.4855.

(4*R*,5*E*,7*R*,8*R*,10*R*,11*Z*)-7,8-bistriethylsilyl-10-*tert*-butyldimethylsilyl-7-methyl-12 -(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dodeca-1,5,11-trien-4-ylacrylate (7i)

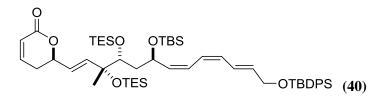
To a solution of allylic alcohol **7h** (30 mg, 0.043 mmol) in 1.5 mL of CH₂Cl₂ was added acrylic acid (15 mg, 0.21 mmol), DCC (43 mg, 0.21 mmol) and catalytic amount of DMAP (2 mg, 0.016 mmol). The reaction was stirred at room temperature for 3 h, then diluted with Et₂O and filtered through a pad of celite. The filtrate was extracted with Et₂O, and the combined organic phases were washed with saturated aqueous solution of NaHSO₄, saturated aqueous solution of NaHCO₃, brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the ester **7i** (25 mg, 76% yield) as a colorless oil. R_f = 0.50 (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2987, 1736; $[\alpha]^{25}$ D +10° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.37 (dd, *J* = 17.4, 1.2 Hz, 1H), 6.18 (dd, J = 13.8, 9.0 Hz, 1H), 6.09 (dd, J = 17.4, 10.2 Hz, 1H), 5.80 (dd, J = 15.6, 10.8 Hz, 2H), 5.76-5.70 (m, 1H), 5.59 (dd, J = 15.6, 6.6 Hz, 1H), 5.41 (dd, J = 6.6, 6.0 Hz, 1H), 5.29 (d, J = 13.8 Hz, 1H), 5.08-5.03 (m, 2H), 3.96 (dt, J = 9.6, 3.6 Hz, 1H), 3.70 (dd, J = 7.8, 1.2 Hz, 1H), 3.21-3.17 (m, 1H), 2.42 (dd, J = 6.6, 6.6 Hz, 1H), 1.92-1.90 (m, 1H), 1.75-1.73 (m, 1H), 1.29 (s, 3H), 1.26 (s, 6H), 1.25 (s, 6H), 0.96 (t, J = 7.8 Hz, 9H), 0.92 (t, J = 8.4 Hz, 9H), 0.87 (s, 9H), 0.67 (qd, J = 7.8, 2.4 Hz, 24 6H), 0.56 (q, J = 7.8 Hz, 6H), 0.07 (s, 3H), 0.01 (s, 3H);¹³C NMR (CDCl₃, 150 MHz): $\delta 165.2$, 157.9, 137.8, 133.2, 130.2, 128.8, 126.6, 117.9, 83.1, 77.8, 75.7, 73.4, 69.1, 55.7, 42.2, 39.1, 34.9 (3C), 26.1, 25.5 (3C), 24.9 (2C), 24.7 (2C), 24.6, 18.2, 7.2 (3C), 7.1 (3C), 6.8 (3C), 5.7 (3C), -2.9, -4.1; HRMS (CI) calcd for $[C_{40}H_{77}BO_7Si_3 + Na]^+$: 787.4962, Found: 787.4961.


(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*)-3,4-bistriethylsilyl-6-*tert*-butyldimethylsilyl-3-methyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,7-dienyl)pyran-2one (22)

To a solution of ester **7d** (25 mg, 0.032 mmol) in 3.5 mL of CH₂Cl₂ was added Grubbs catalyst **29** (6 mg, 0.007 mmol, 20 mol %). The reaction was refluxed for 3 h. Solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, 4:1 (v/v) hexane/EtOAc) to afford the lactone **22** (20 mg, 82% yield) as a colorless oil. $R_f = 0.35$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2930, 1731; $[\alpha]^{25}_{D} + 32^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.86 (ddd, J = 8.4, 3.6, 1.2 Hz, 1 H), 6.20 (dd, J = 13.8, 9.6 Hz, 1H), 6.04 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 15.6, 1.2 Hz, 1H), 5.72 (dd, J = 15.6, 6.0 Hz, 1H), 5.30 (dd, J = 13.8, 1.2 Hz, 1H), 4.92 (ddd, J = 6.6, 6.0, 1.2 Hz, 1H), 4.79 (dd, J = 9.6, 3.6 Hz, 1H), 3.72 (dd, J = 9.6, 1.8 Hz, 1H), 1.33 (s, 3H), 1.27 (s, 6H), 1.26 (s, 6H), 1.05 (m, 1H), 0.97 (dd, J = 8.4, 7.8 Hz, 9H), 0.92 (dd, J = 8.4, 3.6

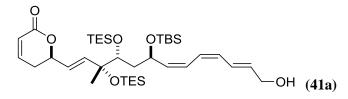
7.8 Hz, 9H), 0.87 (s, 9H), 0.67 (qd, J = 8.4, 4.2 Hz, 6H), 0.59 (q, J = 7.8 Hz, 6H), 0.08 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 164.0, 157.8, 144.4, 138.9, 125.5, 121.7, 83.2, 77.9, 77.7, 75.6, 69.1, 42.1, 29.8 (3C), 26.1 (3C), 24.9 (2C), 24.6 (2C), 24.4, 18.2, 7.3 (3C), 7.2 (3C), 6.9 (3C), 5.7 (3C), -2.9, -4.0; HRMS (CI) calcd for [C₃₈H₇₃BO₇Si₃ + Na]⁺: 759.4649, Found: 759.4648.

Compounds in Scheme 8:


(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-1,3-dioxolan-6-*tert*-butyldimethylsil oxy-13-*tert*-butyldiphenylsiloxy-3-methyltrideca-1,7,9,11-tetraenyl)pyran-2-one (39)

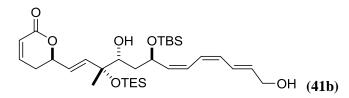
To a suspension of Ag₂O aqueous (8 mg, 0.030 mmol) in 1 mL of THF was added Z-vinylboronate 37 (8 mg, 0.015 mmol) in 0.5 mL of THF at room temperature. In 2 min, a solution of iodide **20b** (20 mg, 0.045 mmol) and Pd(PPh₃)₄ (4 mg, 0.003 mmol) in 0.5 mL of THF was added. The mixture was stirred at 65 °C for 1.5 h, then cooled down to room temperature, diluted with Et₂O, and filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, 1:4 (v/v) hexane/EtOAc) to afford the triene **39** (8 mg, 77% yield) as a colorless oil. $R_f = 0.30$ (1:4 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3407, 2981, 1742; [α]²⁵_D +19° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.69-7.68 (m, 4H), 7.44-7.36 (m, 6H), 6.87 (ddd, J = 9.0, 8.4, 3.0 Hz, 1H), 6.77 (dd, J = 13.8, 12.0 Hz, 1H), 6.35 (dd, J = 12.0, 11.4 Hz, 1H), 6.24 (dd, J = 10.8, 12.0 Hz, 1H), 6.09 (d, J = 10.8 Hz, 1H), 6.091H), 6.06-6.04 (m, 1H), 5.88 (dd, J = 15.6, 5.4 Hz, 1H), 5.86-5.82 (m, 2H), 5.45 (dd, J = 10.2, 9.6 Hz, 1H), 4.95 (ddd, J = 10.2, 4.8, 4.8 Hz, 1H), 4.78 (td, J = 9.0, 4.8 Hz, 1H), 4.30 (d, J = 3.6 Hz, 1H), 4.03 (dd, J = 9.0, 3.0 Hz, 1H), 2.46-2.36 (m, 4H), 1.54-1.51 (m, 1H), 1.47 (s, 3H), 1.36 (s, 3H), 1.15 (s, 3H), 1.08 (s, 9H), 0.88 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 163.0, 144.4, 136.3, 135.9, 135.5 (2C), 134.3,

133.6, 130.1, 129.7 (2C), 128.3, 127.7 (2C), 126.6, 124.5, 123.4, 122.4, 121.7, 107.7, 81.2, 78.4, 77.3, 65.7, 64.2, 60.4, 37.7, 31.6, 29.8, 28.5, 26.8 (3C), 26.7, 25.9, 22.6, 21.0, 20.9, 19.3, 18.1, 14.2, 14.1, -4.2, -5.0; HRMS (CI) calcd for $[C_{44}H_{62}O_6Si_2 + Na]^+$: 765.3977, Found: 765.3981.


(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3,4-bistriethylsilyl-6-*tert*-butyldimet hylsilyl-13-*tert*-butyldiphenylsilyl-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (40)

To a solution of Pd₂(dba)₃·CHCl₃ (2 mg, 0.0019 mmol) in 0.5 mL of THF was added PPh₃ (4mg, 0.015 mmol) at room temperature. The color changed from dark red to light yellow, then the solution was added to a flask containing iodide **20b** (13 mg, 0.029 mmol). After stirring for 2 min, the solution was added into the mixture of Z-vinylboronate 22 (7 mg, 0.0092 mmol) and Ag₂O (7 mg, 0.029 mmol) in 0.5 mL THF at room temperature. The reaction mixture was heated at 65 °C for 1.5 h, then cooled down to room temperature, diluted with Et₂O, and filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) to afford the triene 40 (8 mg, 80% yield) as a colorless oil. $R_f = 0.15$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 2981, 1703; $[\alpha]^{25}_{D}$ +22° (c 0.6, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.69-7.60 (m, 4H), 7.44-7.36 (m, 6H), 6.85 (ddd, J = 9.6, 4.8, 3.6 Hz, 1H), 6.75 (dd, J = 15.6, 11.4 Hz, 1H), 6.30 (dd, J = 11.4, 11.4 Hz, 1H), 6.20 (dd, J = 11.4, 11.4 Hz, 1H), 6.06 (d, J = 11.4 Hz, 1H), 6.04 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.87 (dd, J = 15.6, 1.2 Hz, 1H), 5.83 (ddd, J = 15.0, 5.4, 5.4 Hz, 1H), 5.75 (dd, J = 15.6, 6.6 Hz, 1H), 5.42 (dd, J = 15.6, 6.6 11.4, 9.0 Hz, 1H), 4.93 (ddd, J = 15.6, 6.6, 1.2 Hz, 1H), 4.69 (td, J = 9.0, 9.0, 3.0 Hz, 1H), 4.29 (d, J = 3.6 Hz, 1H), 3.70 (dd, J = 8.4, 1.8 Hz, 1H), 2.43-2.41 (m, 3H), 1.90 (ddd, J = 14.4, 9.6, 1.8 Hz, 2H), 1.33 (s, 3H), 1.08 (s, 9H), 1.00 (t, J = 8.4 Hz, 9H),

0.96 (t, J = 8.4 Hz, 9H), 0.88 (s, 9H), 0.68 (qd, J = 7.8, 2.4 Hz, 6H), 0.68 (qd, J = 7.8, 1.2 Hz, 6H), 0.05 (s, 3H), 0.04 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 164.1, 144.5, 138.5, 136.6, 135.5 (4C), 134.8, 134.1, 133.6, 129.7, 129.6, 128.4, 127.7 (4C), 125.9, 124.6, 123.6, 122.4, 121.7, 78.0, 77.6, 76.2, 66.0, 64.2, 42.5, 29.8, 26.8 (3C), 26.0 (3C), 24.7, 19.3, 18.1, 7.2 (3C), 7.2 (3C), 6.9 (3C), 5. 8 (3C), -3.1, -4.1; HRMS (CI) calcd for [C₅₃H₈₆O₆Si₄ + Na]⁺: 953.5392, Found: 953.5395.


(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3,4-bistriethylsilyl-6-*tert*-butyldimet hylsilyl-13-hydroxy-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (41a)

To a 5 mL solution of CH₃CN/H₂O/Pyridine: 9/1/2, silyl ether 40 (10 mg, 0.011 mmol) was added, then dropwise addition of HF pyridine complex (15 µL) at room temperature. After stirring for 48 h, the reaction was diluted with Et₂O and quenched by saturated aqueous solution of NaHCO₃. The aqueous solution was extracted with Et₂O, and the combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 7:3 (v/v) hexane/EtOAc) to afford the alcohol **41a** (3 mg, 40% yield) and the diol 41b (3 mg, 45% yield). Both of these two compounds appeared as colorless oil. R_f = 0.52 (1:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3425, 2987, 1720; $[\alpha]^{25} + 45^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.86 (ddd, *J* = 9.0, 4.8, 3.6 Hz, 1H), 6.73 (ddd, J = 15.0, 11.4, 1.2 Hz, 1H), 6.37 (dd, J = 11.4, 11.4 Hz, 1H), 6.24 (dd, J = 11.4, 11.4 Hz, 1H), 6.06 (d, J = 11.4 Hz, 1H), 6.04 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 15.6, 6.0, 5.4 Hz, 1H), 5.86 (dd, J = 15.6, 1.2 Hz, 1H), 5.74 (dd, J = 15.6, 6.6 Hz, 1H), 5.45 (dd, *J* = 10.2, 9.6 Hz, 1H), 4.93 (ddd, *J* = 15.6, 6.0, 1.2 Hz, 1H), 4.68 (td, *J* = 9.6, 9.6, 2.4 Hz, 1H), 4.25 (d, J = 4.8 Hz, 1H), 3.70 (dd, J = 8.4, 1.8 Hz, 1H), 2.43-2.41 (m, 2H), 1.89 (ddd, J = 14.4, 10.2, 1.8 Hz, 2H), 1.33 (s, 3H), 1.08 (ddd, J = 11.4, 8.4, 3.0 Hz, 2H),0.98 (t, *J* = 8.4 Hz, 9H), 0.95 (t, *J* = 8.4 Hz, 9H), 0.87 (s, 9H), 0.67 (qd, *J* = 7.8, 2.4 Hz,

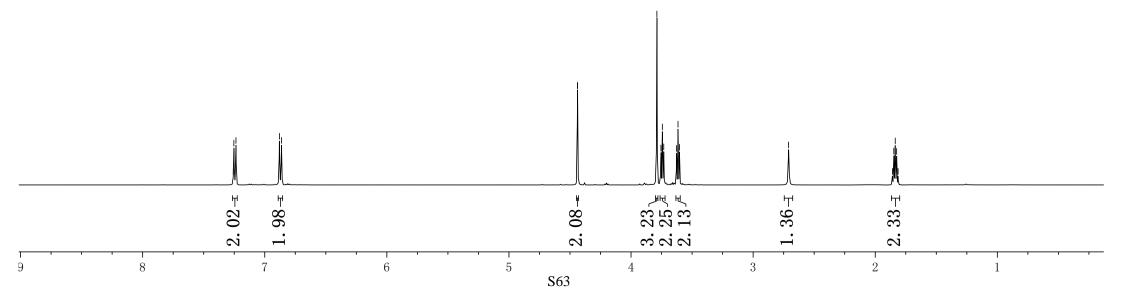
6H), 0.61 (qd, *J* = 7.8, 1.2 Hz, 6H), 0.04 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 164.0, 144.5, 138.4, 137.1, 133.8, 129.4, 126.0, 125.9, 124.5, 122.2, 121.7, 77.9, 77.6, 76.2, 66.0, 63.4, 42.5, 29.7 (3C), 26.0 (3C), 24.7, 18.1, 13.3, 7.2 (3C), 7.2 (3C), 6.9 (3C), 5.8 (3C), -3.05, -4.10; HRMS (CI) calcd for [C₃₇H₆₈O₆Si₃ + Na]⁺: 715.4192, Found: 715.4215.

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3-triethylsilyl-6-*tert*-butyldimethylsi lyl-4,13-hydroxy-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (41b)

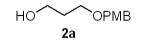
To a 0.6 mL solution of CH₃CN/H₂O/Pyridine: 9/1/2, silyl ether **41a** (6 mg, 0.008 mmol) was added, then dropwise addition of HF pyridine complex (12 µL) at room temperature. After stirring for 24 h, the reaction was diluted with Et₂O and quenched by saturated aqueous solution of NaHCO₃. The aqueous solution was extracted with Et₂O, and the combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 7:3 (v/v) hexane/EtOAc) to afford the diol 41b (4 mg, 82% yield) as a colorless oil. $R_f = 0.24$ (1:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3420, 2980, 1715; $[\alpha]^{25}$ D –11° (c 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 6.88 (ddd, J = 9.0, 5.4, 3.6 Hz, 1H), 6.73 (ddd, J = 15.0, 11.4, 1.2 Hz, 1H), 6.38 (dd, J = 11.4, 11.4 Hz, 1H), 6.20 (dd, *J* = 11.4, 11.4 Hz, 1H), 6.06 (d, *J* = 10.8 Hz, 1H), 6.04 (ddd, *J* = 9.6, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 15.0, 6.0, 5.4 Hz, 1H), 5.88 (dd, J = 16.2, 1.2 Hz, 1H), 5.79 (dd, J =15.6, 6.0 Hz, 1H), 5.55 (dd, J = 10.2, 9.6 Hz, 1H), 4.96 (ddd, J = 10.2, 6.0, 1.2 Hz, 1H), 4.91 (td, J = 7.8, 7.8, 2.4 Hz, 1H), 4.24 (dd, J = 4.8, 4.8 Hz, 1H), 3.67 (dd, J = 11.4, 2.4Hz, 1H), 2.95 (d, J = 2.4 Hz, 1H), 2.46-2.42 (m, 2H), 1.64 (dd, J = 13.8, 7.8 Hz, 2H), 1.31 (s, 3H), 0.92 (t, J = 8.4 Hz, 9H), 0.87 (s, 9H), 0.77 (q, J = 7.8 Hz, 6H), 0.06 (s, 3H),0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 164.1, 144.6, 138.1, 136.3, 134.1, 129.8, 127.1, 126.2, 124.3, 122.3, 122.0, 77.8, 77.1, 75.1, 67.1, 63.6, 39.2, 29.8, 26.0 (3C), 22.3, 18.3, 7.3 (3C), 6.9 (3C), -4.1, -4.9; HRMS (CI) calcd for [C₃₁H₅₄O₆Si₂ + Na]⁺: 601.3392, Found: 601.3350.

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3-bistriethylsilyl-4-hydroxy-6-*tert*-b utyldimethylsilyl-13-*tert*-butyldiphenylsilyl-3-methyltrideca-1,7,9-11-tetraenyl)py ran-2-one (21)

To a solution of diol 41b (5 mg, 0.0083 mmol) in 0.2 mL of CH₂Cl₂ was added imidazole (2 mg, 0.027 mmol) and TBDPSCl (3 mg, 0.012 mmol) at 0 °C. After stirring for 15 min at 0 °C, the reaction mixture was purified by chromatography (silica gel, 9:1 (v/v) hexane/EtOAc) without workup provided compound 21 (5 mg, 78% yield) as a yellow oil. $R_f = 0.46$ (4:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹): 3412, 2981, 1728; [α]²⁵ _D –18° (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.69-7.67 (m, 4H), 7.44-7.33 (m, 6H), 6.88 (ddd, J = 8.4, 5.4, 3.6 Hz, 1H), 6.75 (dd, J = 15.6, 11.4Hz, 1H), 6.33 (dd, J = 11.4, 11.4 Hz, 1H), 6.15 (dd, J = 11.4, 11.4 Hz, 1H), 6.07-6.03 (m, 2H), 5.89 (dd, J = 15.6, 1.2 Hz, 1H), 5.83 (ddd, J = 15.6, 5.4, 5.4 Hz, 1H), 5.80 (dd, J = 15.6, 6.0 Hz, 1H), 5.53 (dd, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.29 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.29 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.29 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.99 (d, J = 10.2, 9.6 Hz, 1H), 4.99 (d, J = 10.2, 9.6 Hz, 10.2 Hz), 4.99 (d, J = 10.2, 9.6 Hz, 10.2 Hz), 4.99 (d, J = 10.2, 9.6 Hz, 10.2 Hz), 4.99 (d, J = 10.2, 9.6 Hz, 10.2 Hz), 4.99 (d, J = 10.2, 9.6 Hz*J* = 4.2 Hz, 2H), 3.68 (d, *J* = 10.8 Hz, 1H), 2.99 (d, *J* = 2.4 Hz, 1H), 2.46-2.43 (m, 2H), 1.64 (dd, J = 13.8, 7.8 Hz, 1H), 1.33-1.37 (m, 1H), 1.32 (s, 3H), 1.08 (s, 9H), 0.93 (t, J = 7.8 Hz, 9H), 0.88 (s, 9H), 0.57 (q, J = 7.8 Hz, 6H), 0.07 (s, 3H), 0.04 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 163.9, 144.3, 137.9, 135.5 (4C), 134.3, 133.6, 133.6, 130.1, 129.7 (2C), 127.7 (4C), 126.8, 124.5, 123.2, 122.3, 121.8, 77.6, 75.0, 67.0, 64.2, 39.0, 29.6 (3C), 26.8 (3C), 25.8 (3C), 22.2, 19.3, 18.1, 7.1 (3C), 6.7 (3C), -4.33, -5.07; HRMS (CI) calcd for $[C_{47}H_{72}O_6Si_3 + Na]^+$: 839.4492, Found: 839.4528.

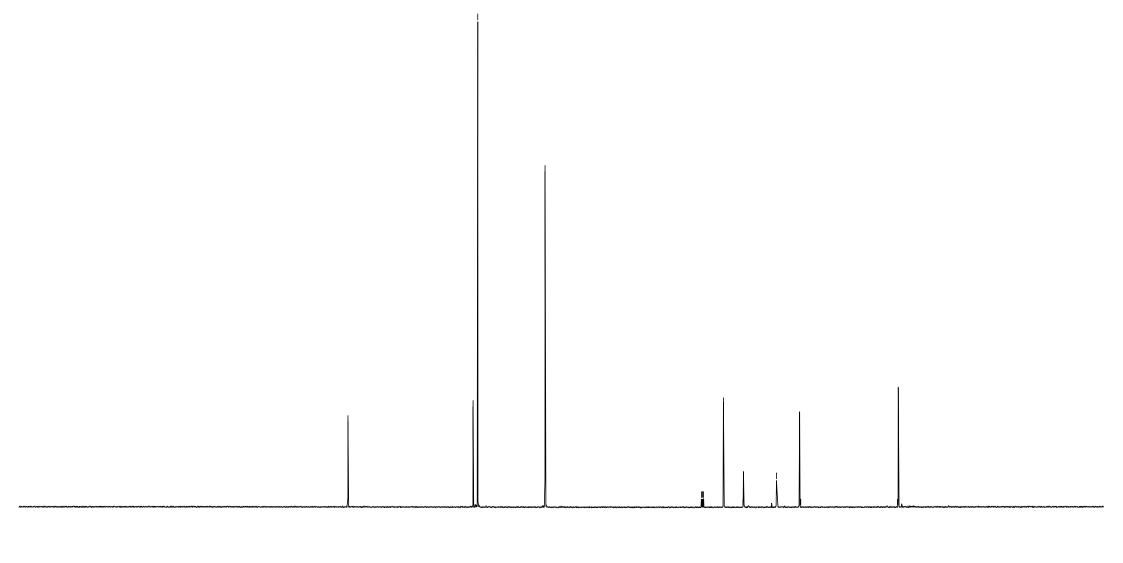

Fosriecin (1)

To a solution of alcohol 21 (5 mg, 0.006 mmol) in 0.4 mL of pyridine was added PCl₃ (4.1 mg, 0.03 mmol) at 0 °C and stirred for 15 min. 4-Methoxybenyl alcohol (20.7 mg, 0.15 mmol) was added into the reaction mixture, and the reaction was gradually warmed to room temperature. After stirring at room temperature for 1 h, the reaction was diluted with 1.2 mL of CH₂Cl₂, then *tert*-Butyl hydroperoxide (5.5 M in decane, 55 µL, 0.35 mmol) was added and stirred at room temperature for 1.5 h. The reaction was quenched by saturated aqueous solution of NaHCO₃ and extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was treated with 48% HF-acetonitrile (1: 19, 0.3 mL) at room temperature for 15 min. After ice cooling, pyridine (95 µL) was added to the reaction mixture, and the mixture was stirred at room temperature for another 23 h. The reaction mixture was basified with saturated aqueous solution of NaHCO₃, extraced with Et₂O, and the combined organic solution was concentrated under reduced pressure. The residue was purified by 18-reversed phase column chromatography (silica gel, 9:1 (v/v) H_2O /acetonitrile) to afford the fostriecin 1 (0.5 mg, 31% yield) as a white solid. $[\alpha]^{25} - 325^{\circ}$ (c 0.1, D₂O); ¹H NMR (D₂O, 600 MHz): δ 7.03 (ddd, J = 10, 6, 3 Hz, 1H), 6.70 (dd, J = 15, 12 Hz, 1H), 6.49 (t, J = 11 Hz, 1H), 6.29 (t, J = 12 Hz, 1H), 6.09 (t, J = 11 Hz, 1H), 5.96 (dd, J = 10, 2 Hz, 1H), 5.92-5.84 (m, 3H), 5.50 (t, J = 10 Hz, 1H), 5.06 (m, 1H), 4.88 (t, J = 9 Hz, 1H), 4.12 (d, J = 6Hz, 2H), 4.10-4.06 (m, 1H), 2.56 (td, J = 19, 6 Hz, 1H), 2.44-2.50 (m, 1H), 1.58 (t, J = 12 Hz, 1H), 1.46 (m, 1H), 1.24 (s, 3H); 13 C NMR: Data was not available due to lack of sample; HRMS (CI) calcd for $[C_{19}H_{26}NaO_9P + Na]^+$: 475.1104, Found: 475.1114.



¹H NMR spectrum of **2a** (CDCl₃, 500 Hz)

2a

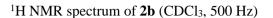


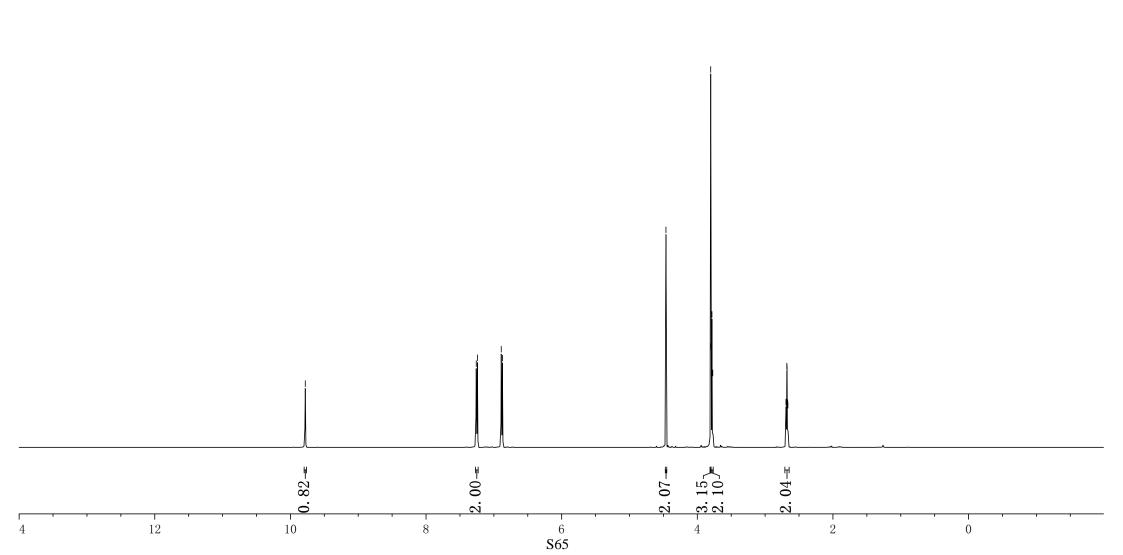
~	0 m	—		
2	က်က	6	COC4018	0
3	3 1	Ň		Ō
∞	06	4	1000000	2
•	• •	•	4-68-6	2
∞	$\circ \infty$	ŝ		•
2	53	-	6602604	2
—		-	200777	33
1				1
	11			1

¹³C NMR spectrum of **2a** (CDCl₃, 500 Hz)

- -

220	200	180	160	140	120	100	80	60	40	20	0
					S6	54					

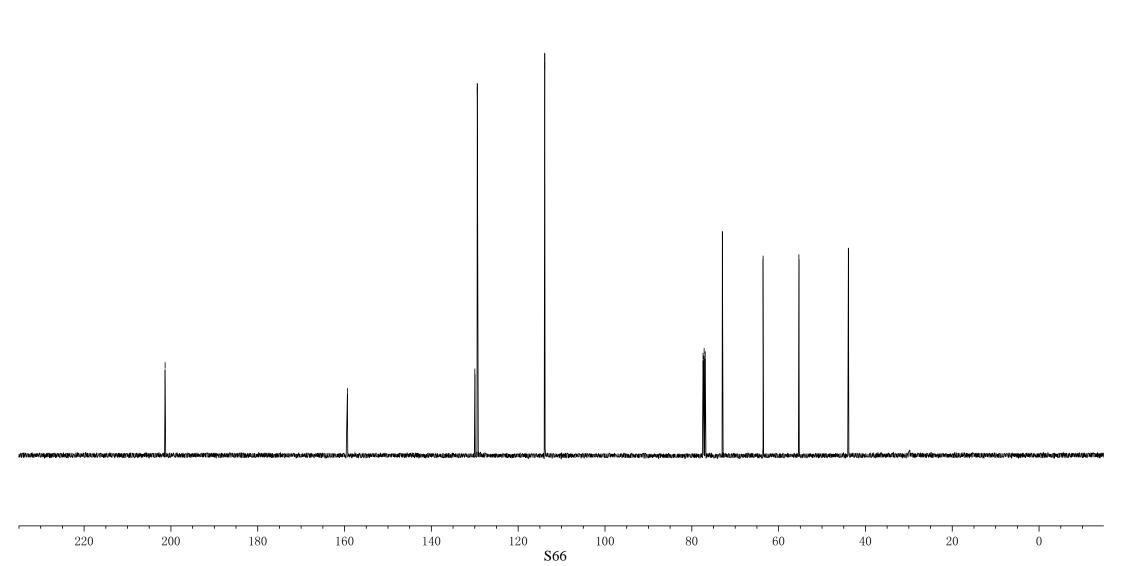

0


2b

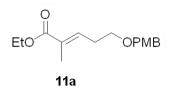
Н

ОРМВ

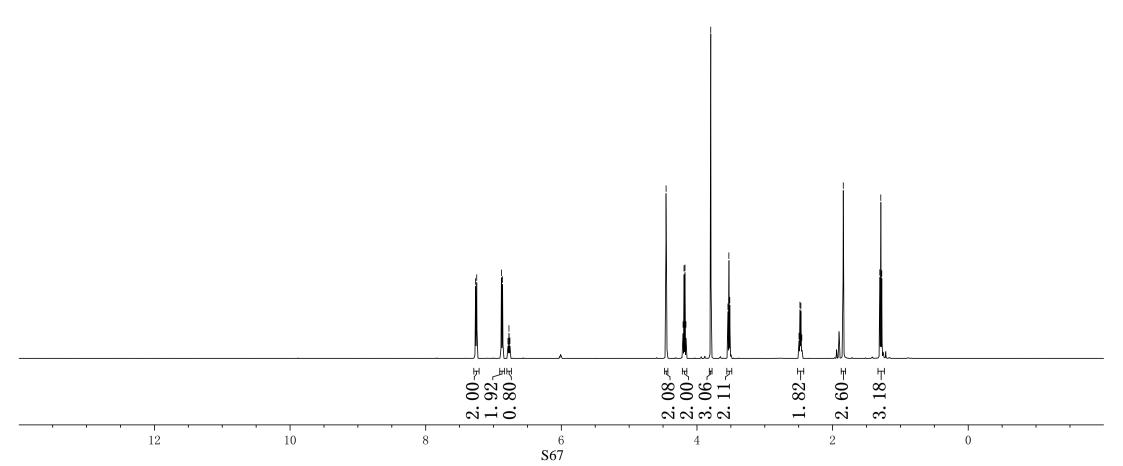
CARBON_01	3356	3480	9847 4204	8860	147 596 582 582 582 583 583 583 303
	-	6	9.	·	$\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot &$
	20	15	$12 \\ 12$	11	$\begin{array}{c} 777\\ 632\\ 555\\ 43\end{array}$
			\mathbf{Y}		

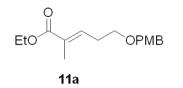

 \mathbf{O}

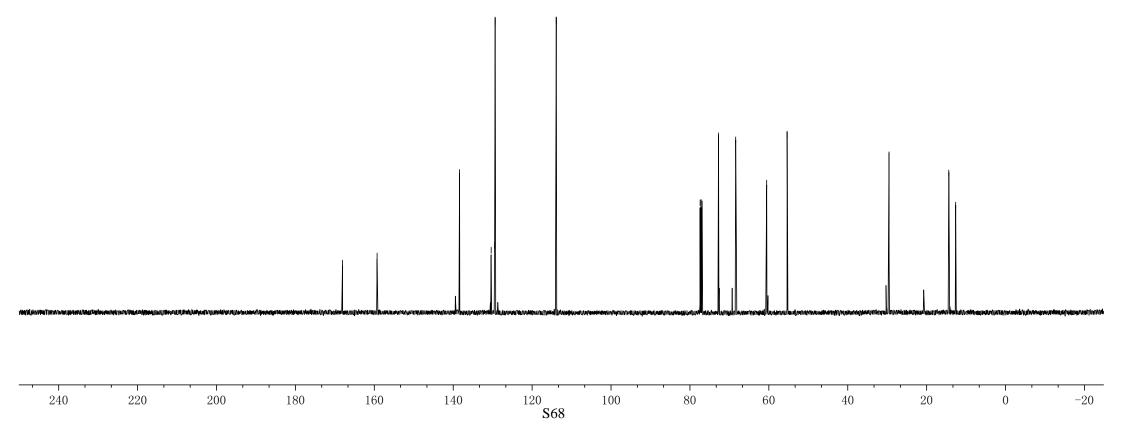

2b

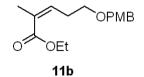

H

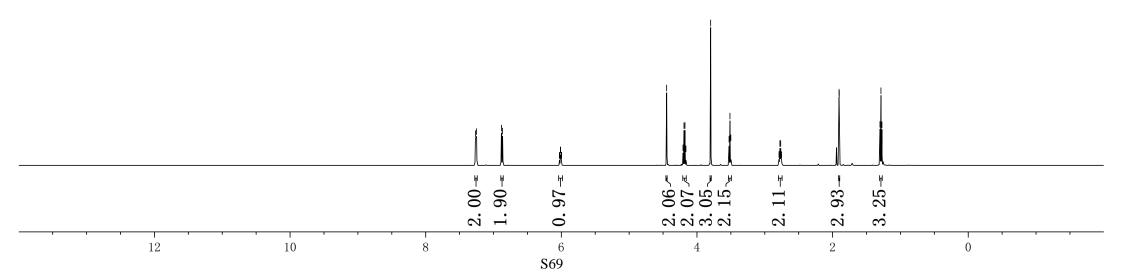
ОРМВ

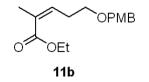

¹³C NMR spectrum of **2b** (CDCl₃, 500 Hz)

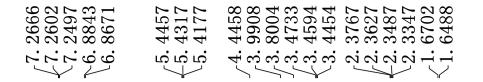


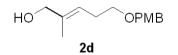

¹H NMR spectrum of **11a** (CDCl₃, 500 Hz)


-168. 0654	-159.2914	$\begin{pmatrix} 138. \ 3912 \\ 130. \ 3789 \\ 129. \ 5045 \\ 129. \ 3565 \end{pmatrix}$	-113.8782	$\begin{array}{c} 77. \ 4142 \\ 77. \ 1596 \\ 77. \ 1596 \\ 76. \ 9053 \\ 60. \ 5485 \\ 60. \ 5485 \\ 55. \ 3534 \end{array}$	-29.5280	-14.3896 -12.6466
I	I	אר ו	I		I) (

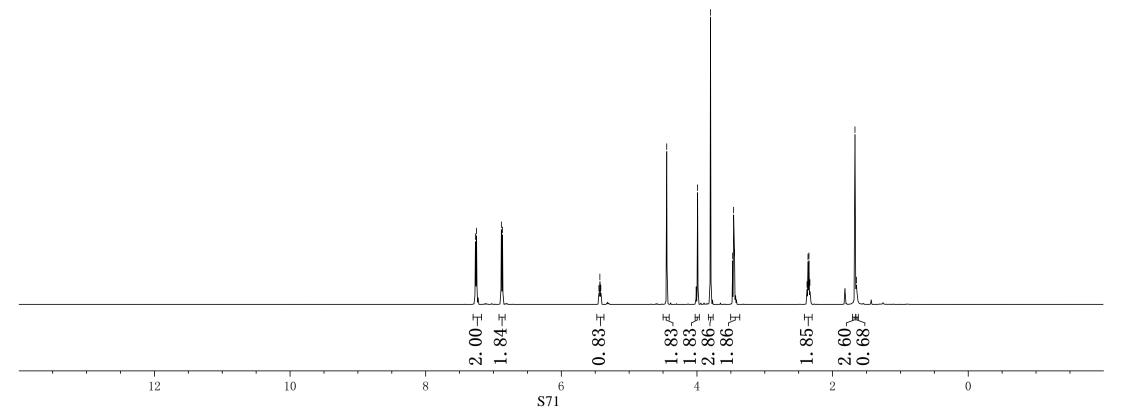

¹³C NMR spectrum of **11a** (CDCl₃, 500 Hz)




¹H NMR spectrum of **11b** (CDCl₃, 500 Hz)

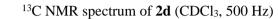


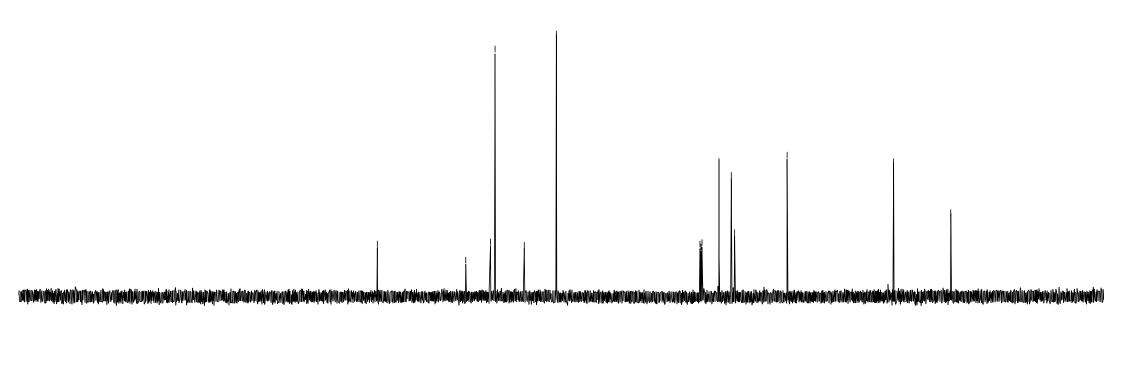
889	603	4569 1950 1948 1948	618		114 114 102 196
7.9	9.2	$9.4 \\ 9.3 \\ 9.3 \\ 8.7 $	3. 8	$\begin{array}{c} . 41 \\ . 57 \\ . 290 \\ . 37 \\ . 37 \end{array}$. 29 . 77 . 38
-16	-15	$\overbrace{}^{13}$		77 77 77 69 72 55	$\searrow 20 \\ \searrow 14$



¹³C NMR spectrum of **11b** (CDCl₃, 500 Hz)

¹H NMR spectrum of **2d** (CDCl₃, 500 Hz)




HO

ОРМВ

2d

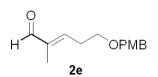
59. 1 36. 7 30. 7	1129.35 129.35 113.82 113.82	77. 4167 77. 1596 76. 9043 72. 5985 69. 4772 68. 6374	5.327	-28.3450	-13. 853′
	\sim			I	

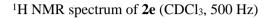
50

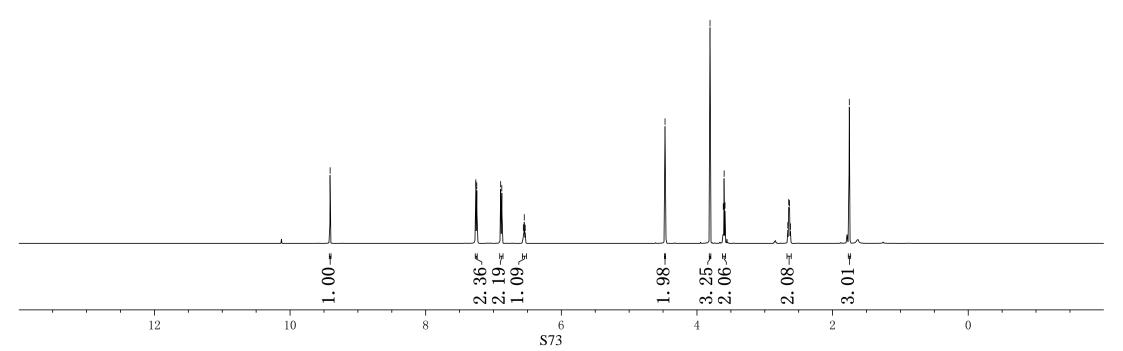
200

150

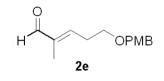
S72

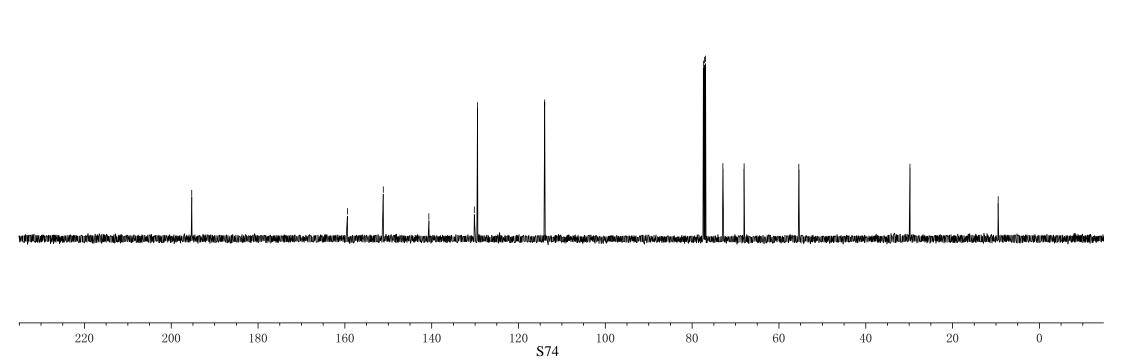

100

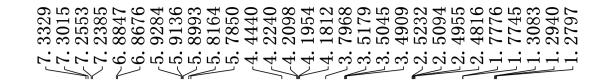

50

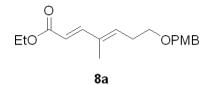

0

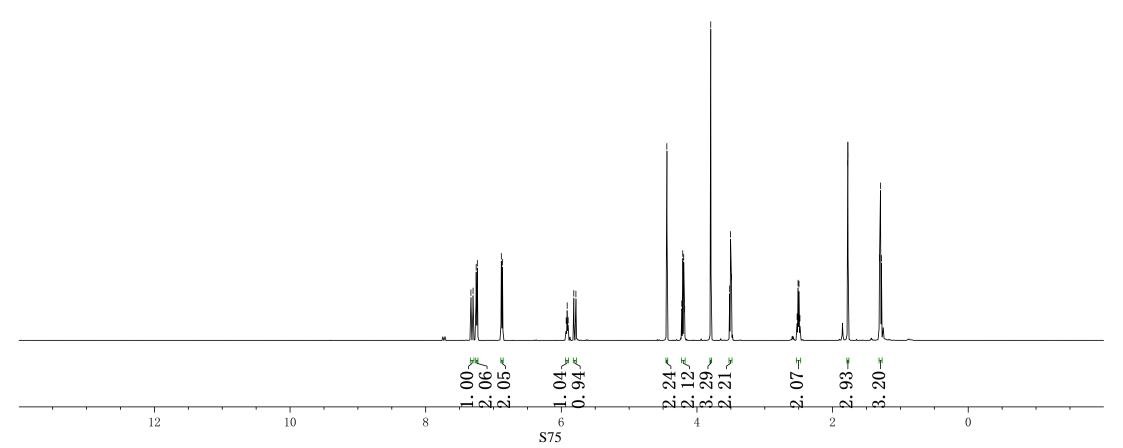
PROTON_01

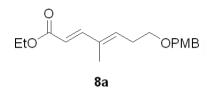


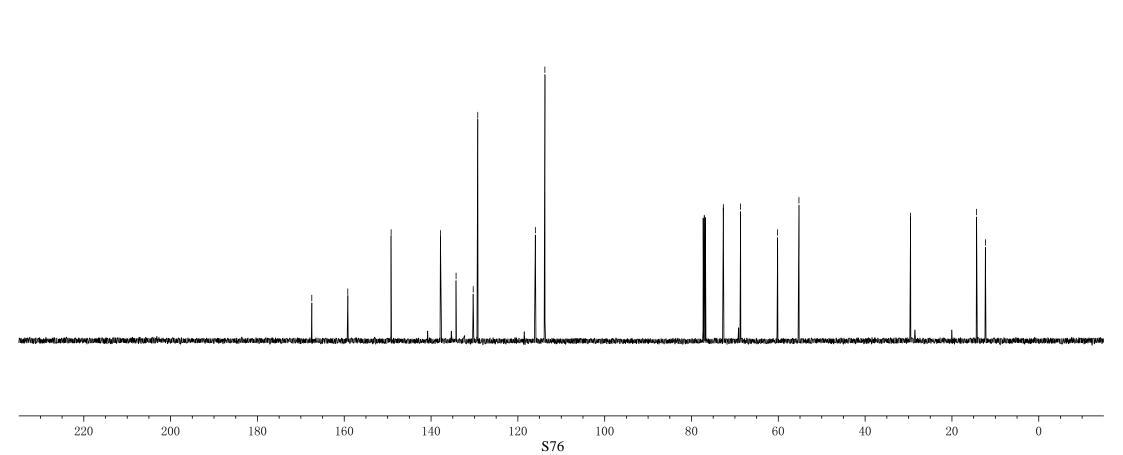


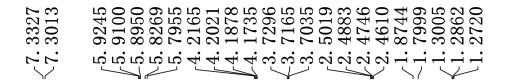



2784	N IS	1519 6562	$\begin{array}{c} 1810 \\ 4455 \end{array}$	9722	$\begin{array}{c} 1139\\ 609\\ 054\\ 0130\\ 235\end{array}$	207	209	60
			<u> </u>		4100	4	∞	<u>o</u>
LO .	о v	1 0	00	ŝ		•	•	$\overline{\Delta}$
6	<u>с</u> 1	5 4	53		85011	2	6	•
—	·			-	6	2	7	6
			\mathbf{Y}					

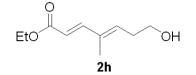

¹³C NMR spectrum of **2e** (CDCl₃, 500 Hz)

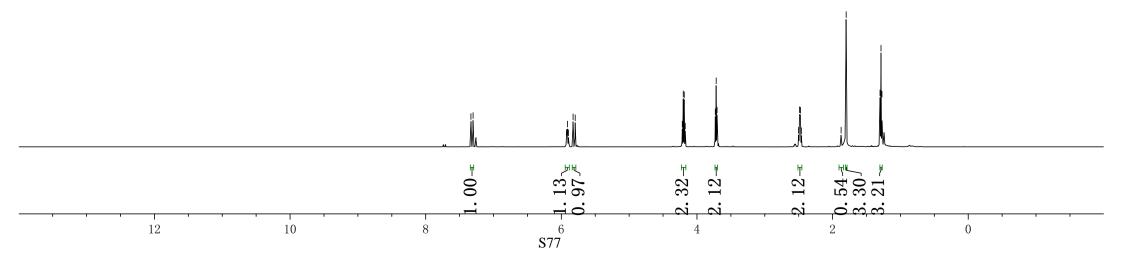


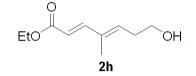

¹H NMR spectrum of **8a** (CDCl₃, 500 Hz)



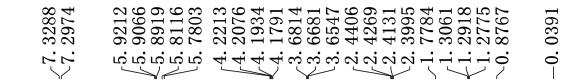
4783	1836	2019	8406 2348 2908 2451	9715 7795	715 963 476	374	217 926
7.	9.	9.	9.40	 		. 2	. 2 . 3
16	15	14		11	555 555 555	29	$14 \\ 12$
	Ì		SSSZ	57			S Z

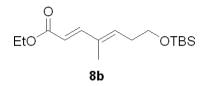


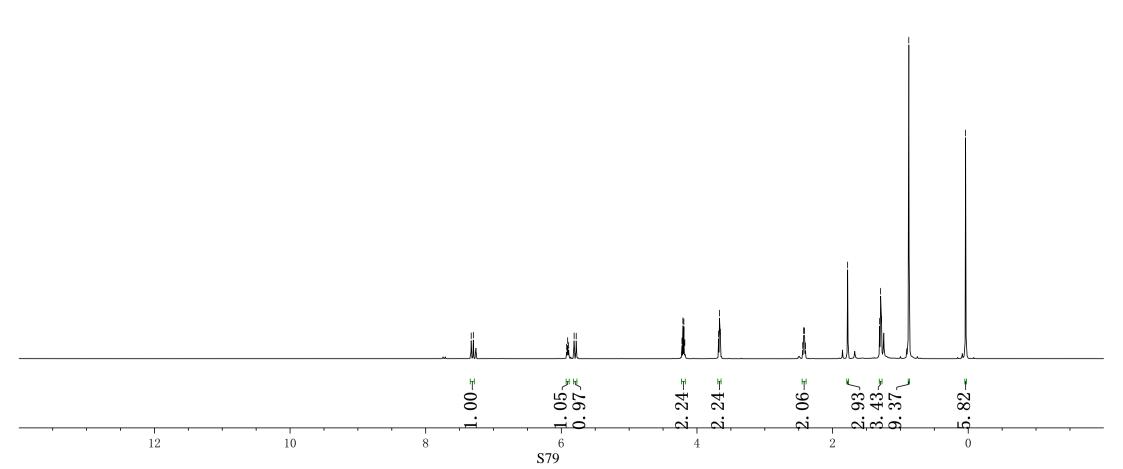

¹³C NMR spectrum of **8a** (CDCl₃, 500 Hz)



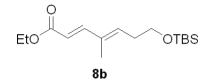
¹H NMR spectrum of **2h** (CDCl₃, 500 Hz)

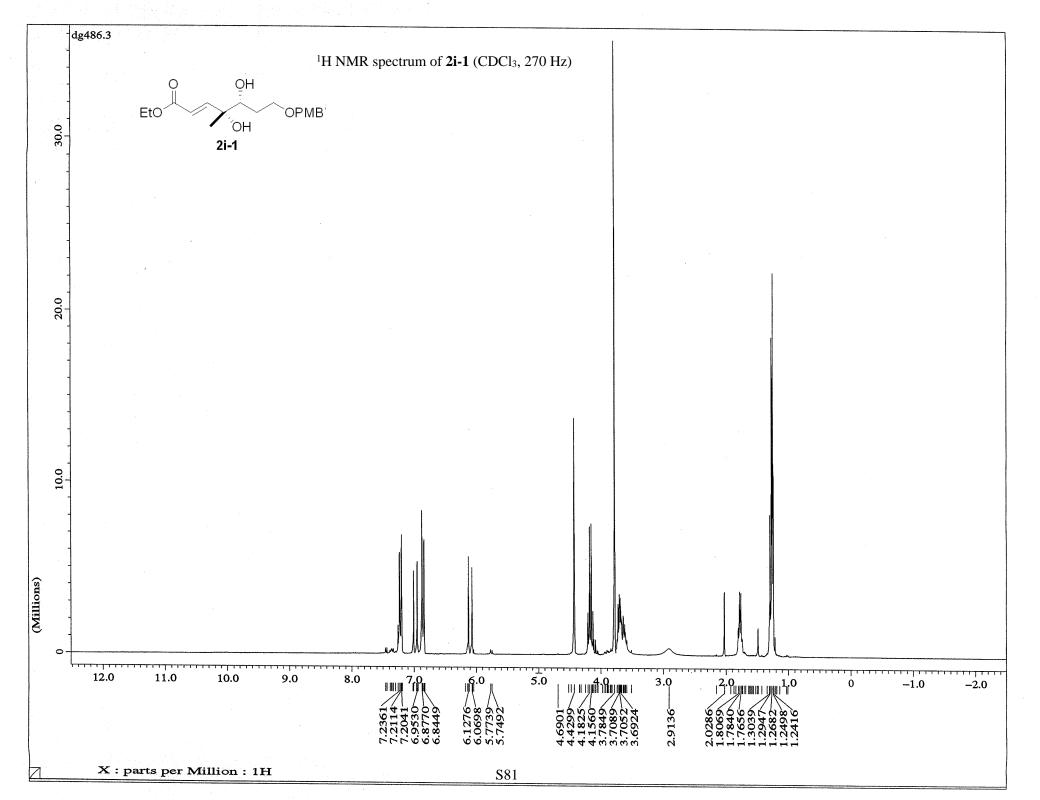


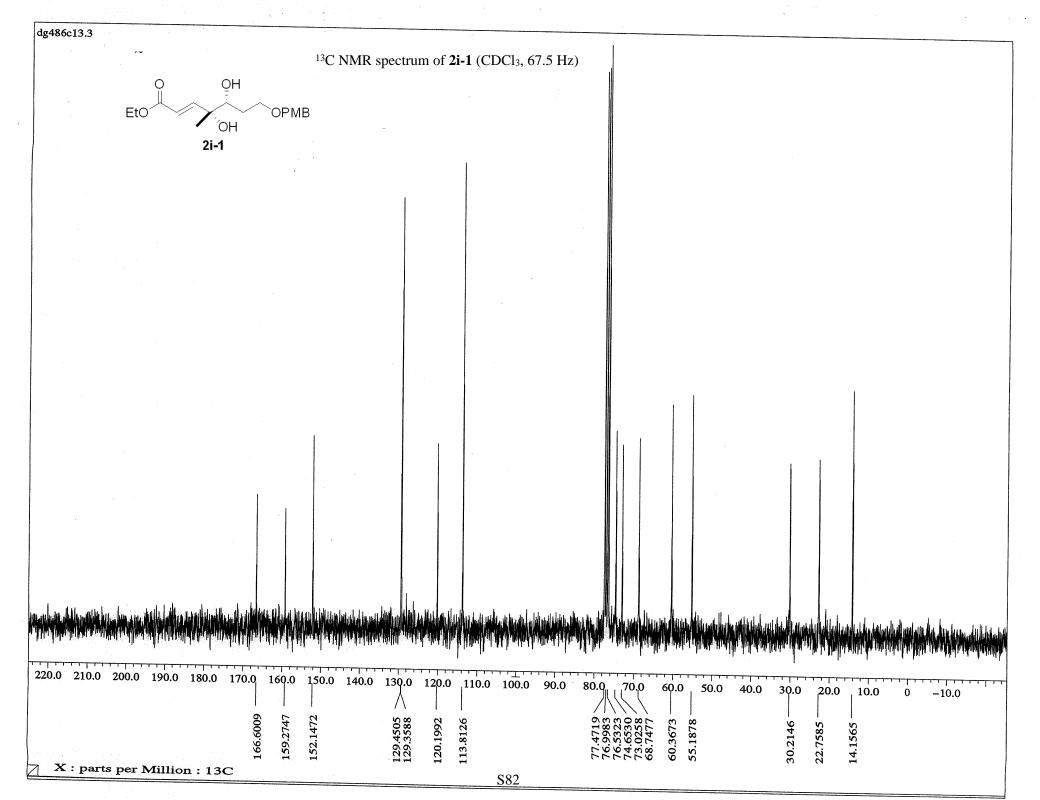

66	33	239	42	D D		0 01
<u> </u>	90	$-\infty$	2	Ω Ω	6 4	4.5
9		13	4	33 88	39	$\begin{array}{c} 43\\ 48\end{array}$
.7.	6	5.7	6.	•_•	•	• •
16	14	$13 \\ 13$	11	600	32	1412
ĺ	l l	57		$\overline{\mathbf{x}}$		57

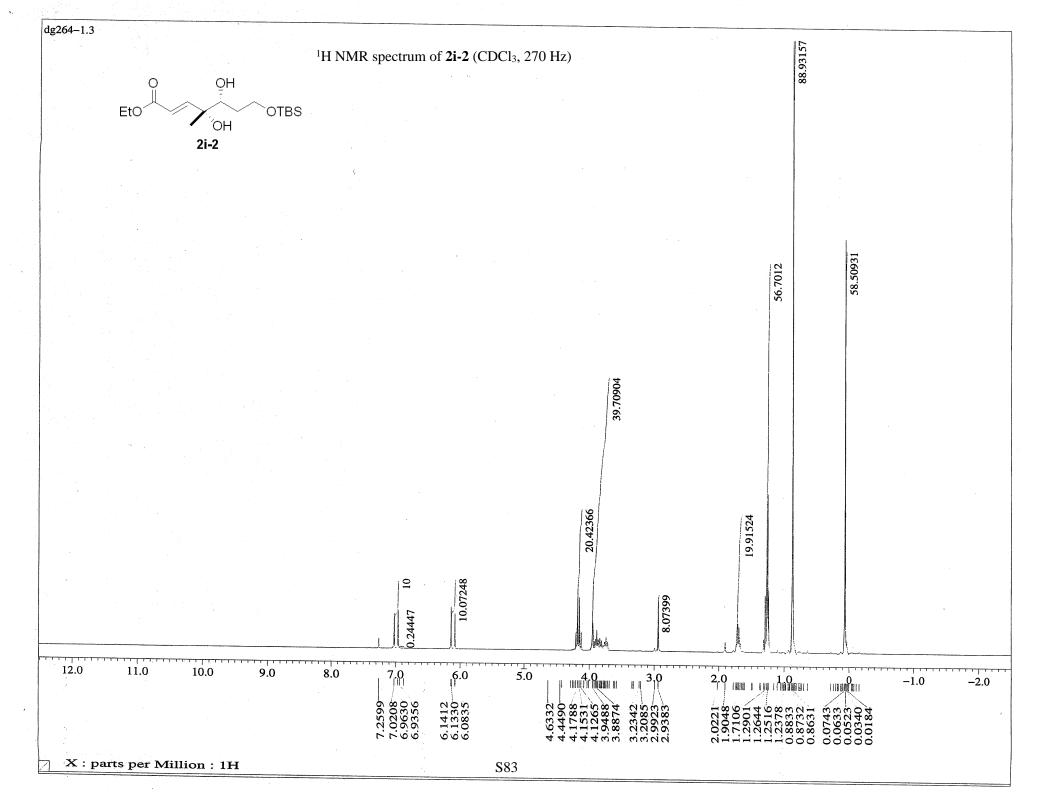

¹³C NMR spectrum of **2h** (CDCl₃, 500 Hz)

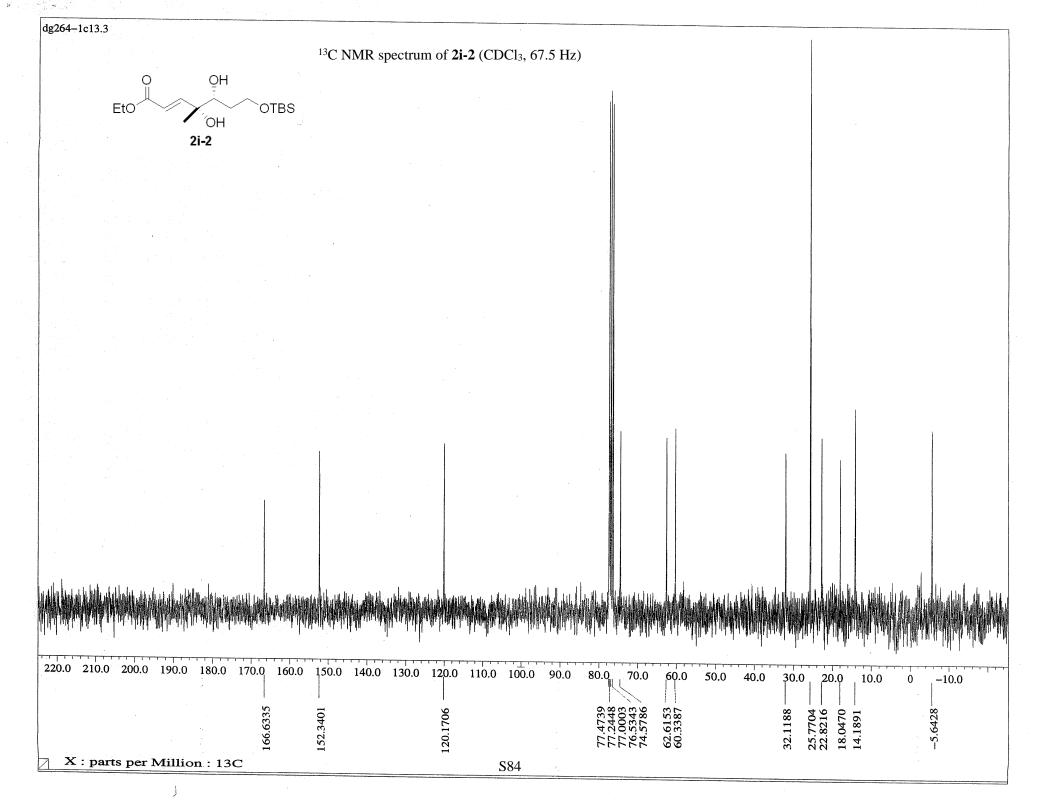
₽##¥\$\$\$##\$#\$\$#\$\$#\$#\$#\$#\$#\$#\$#\$#\$#\$#\$#\$#\$			
	1		

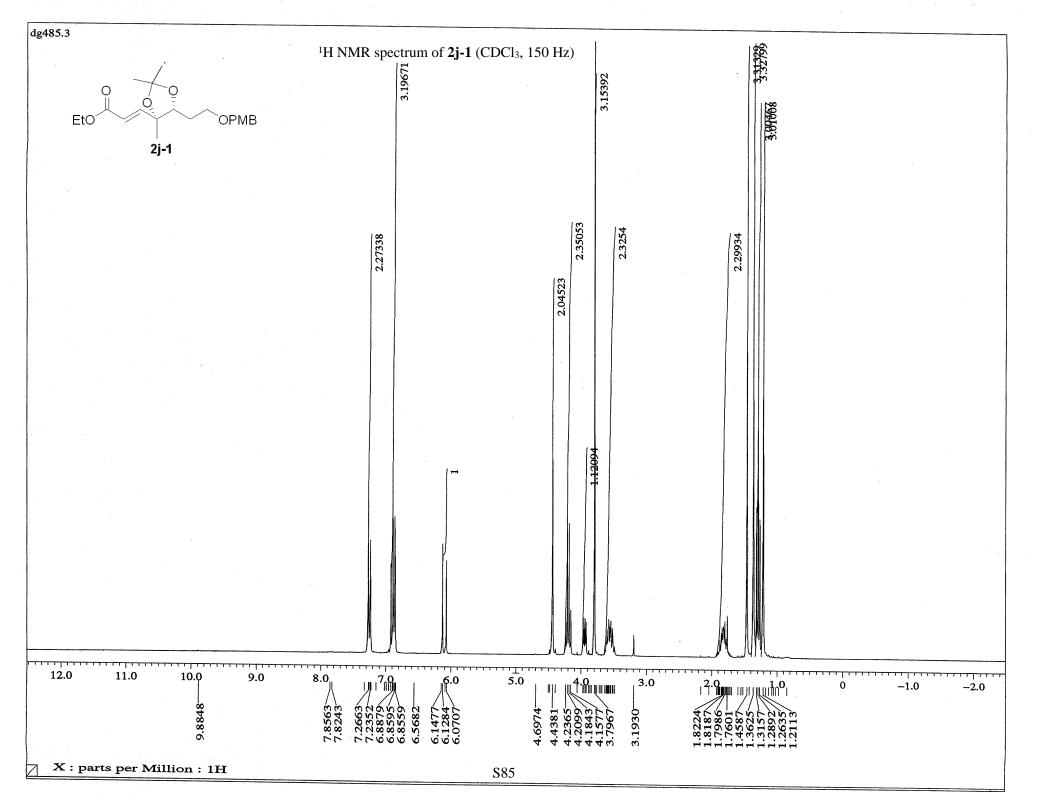


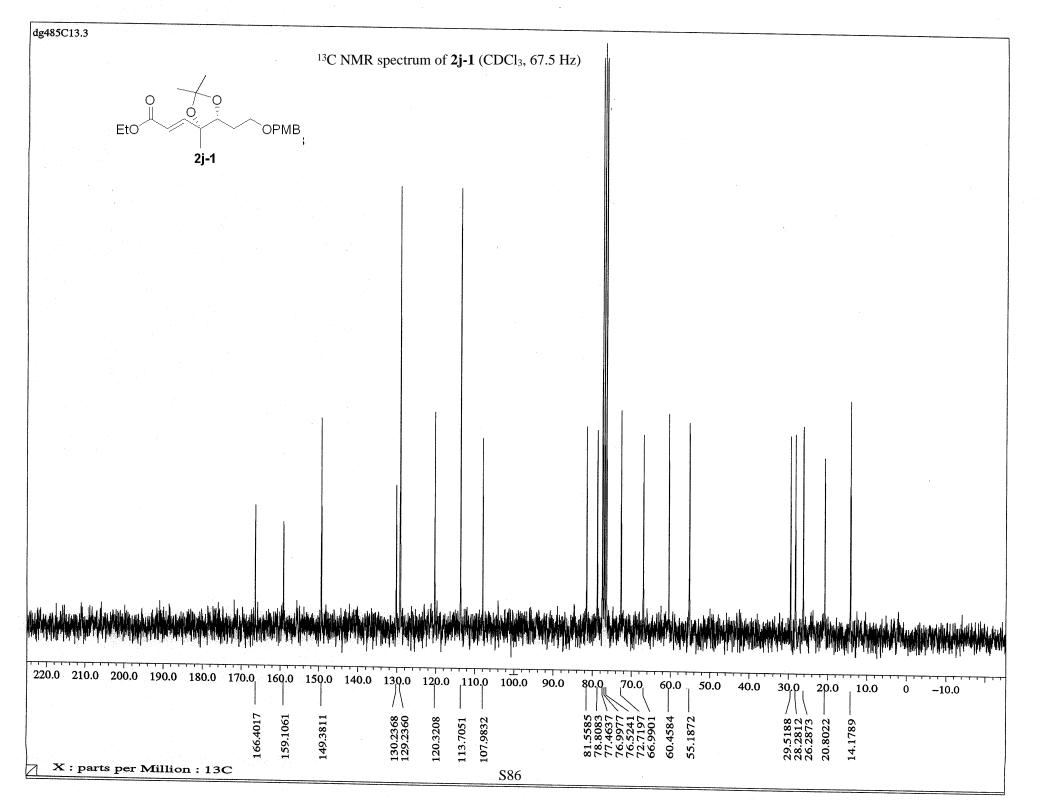

¹H NMR spectrum of **8b** (CDCl₃, 500 Hz)

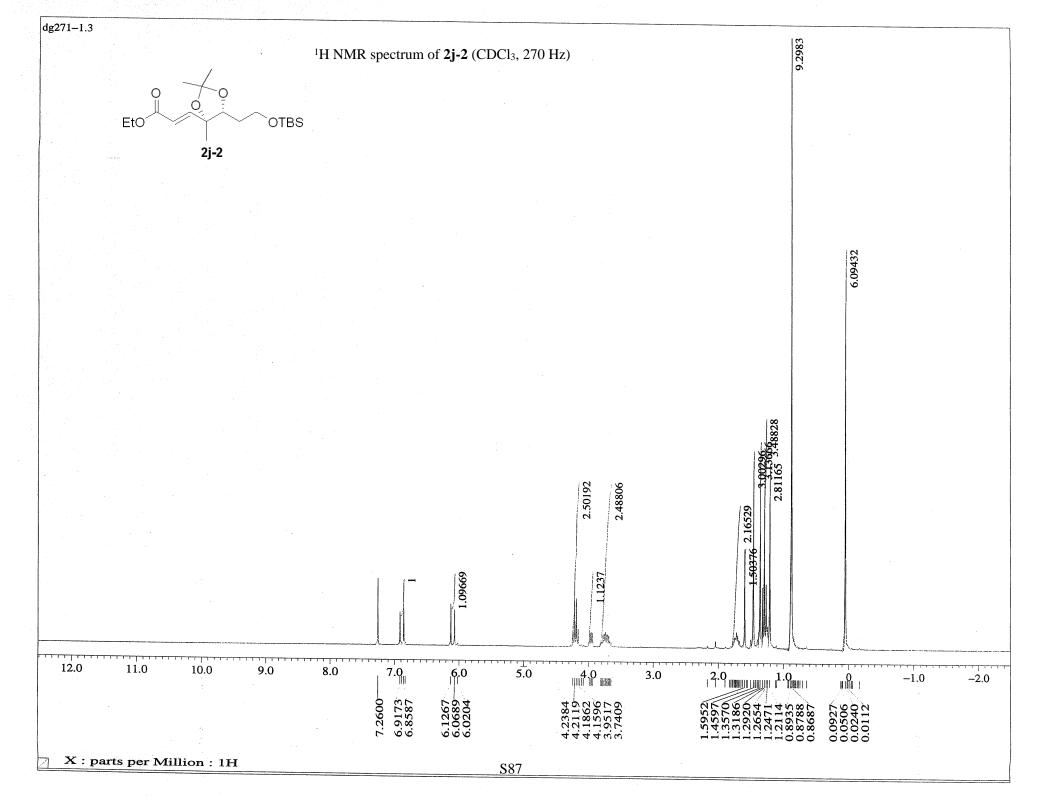


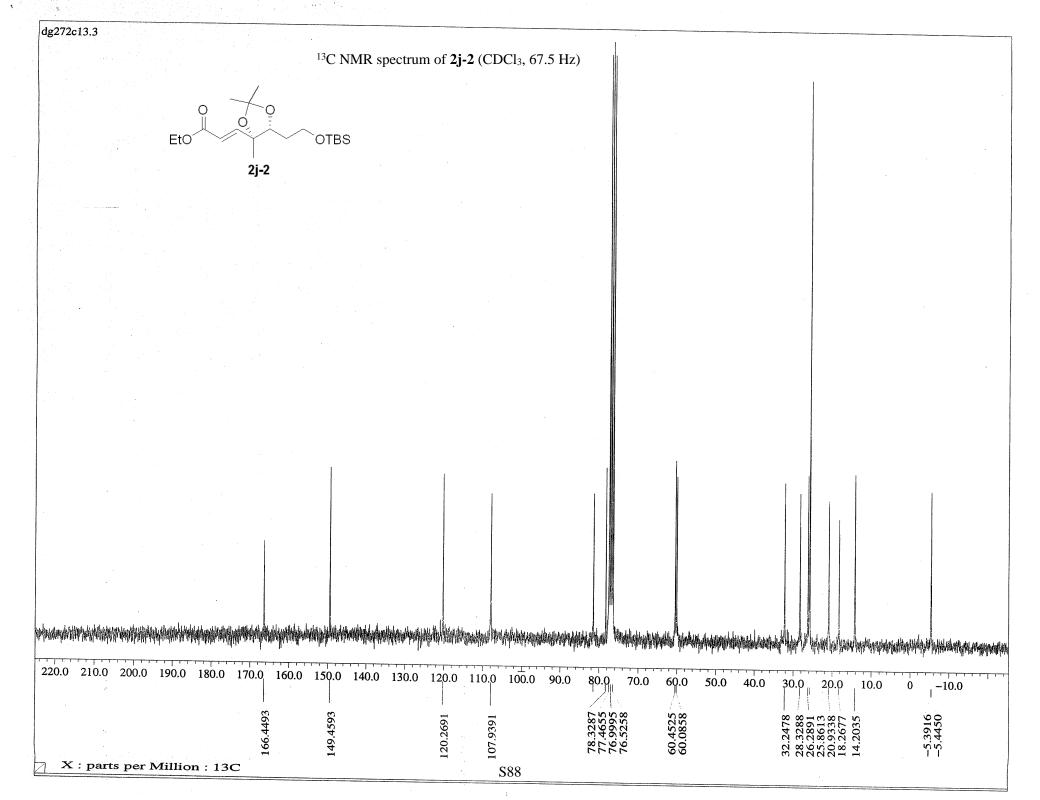

7071	4831	2393 3592	6000	2125 3146	$\begin{array}{c} 6995 \\ 0334 \\ 4418 \\ 4673 \\ 4629 \end{array}$	1724
-167.	—149.	-138.	-116.	~62. 5 60. 5	$\sim 32. ($	

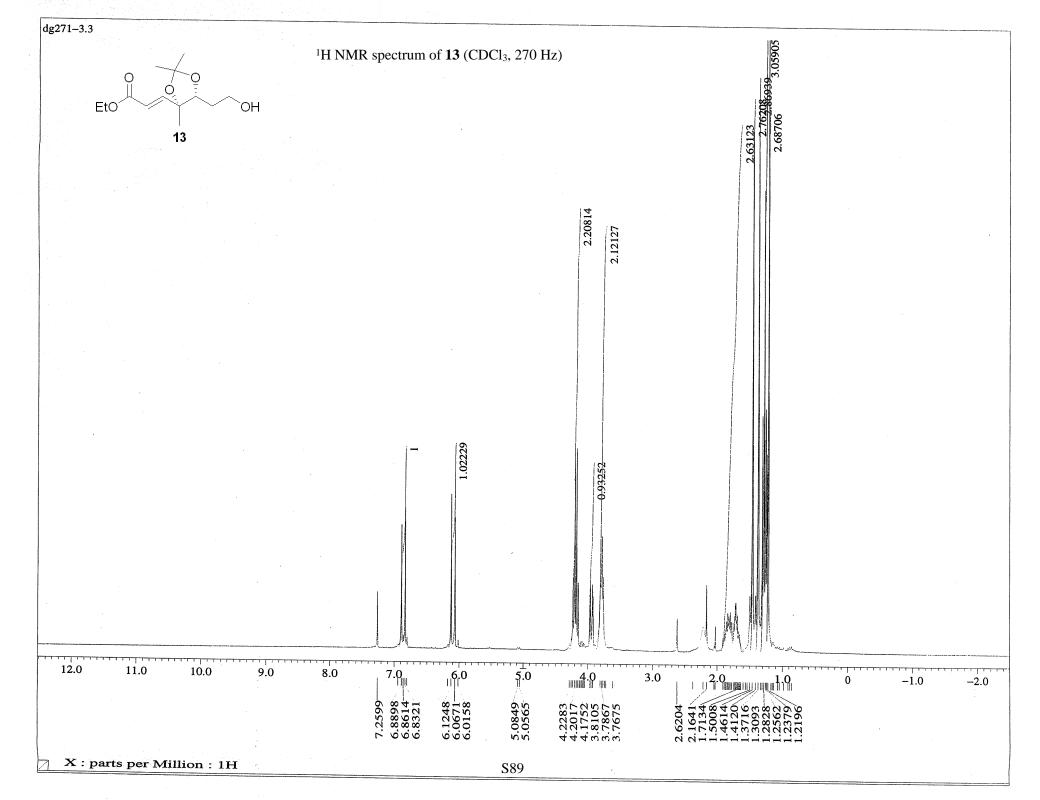


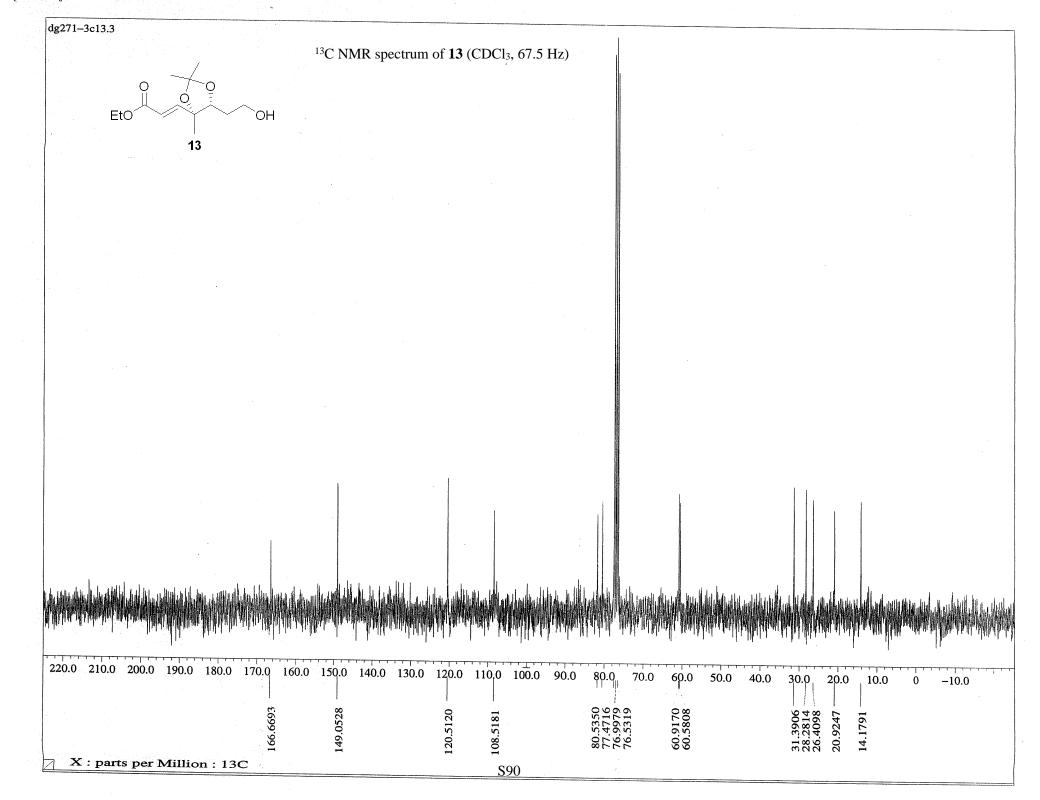

¹³C NMR spectrum of **8b** (CDCl₃, 500 Hz)

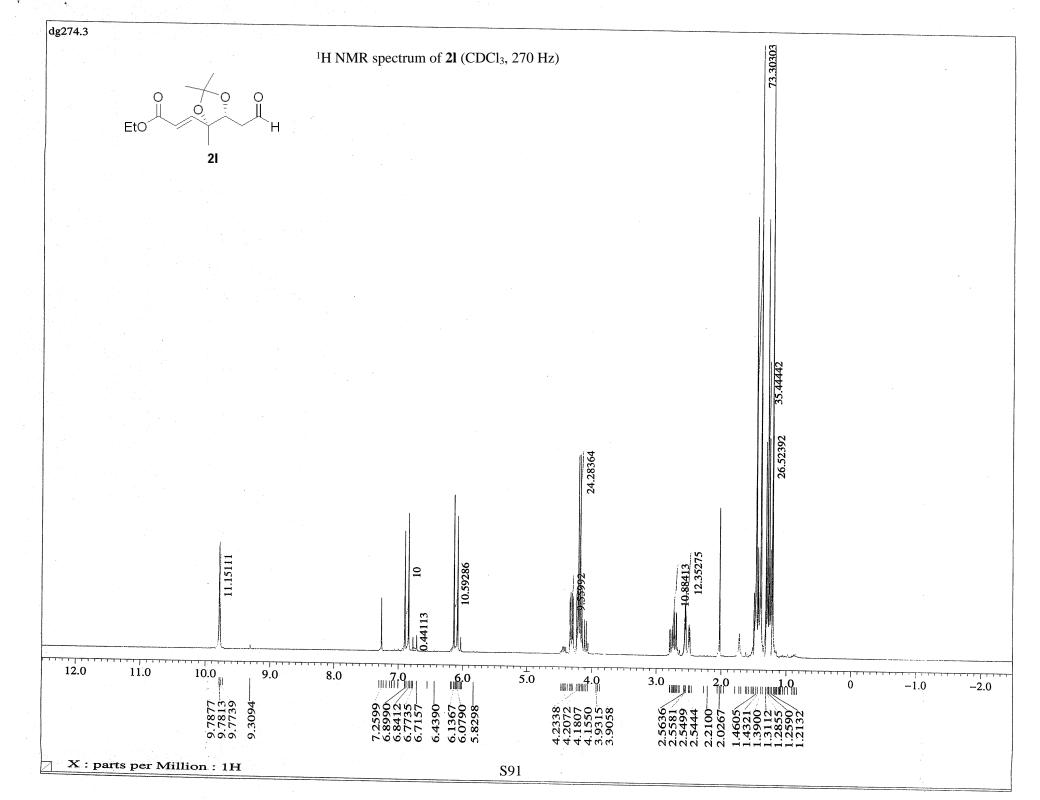


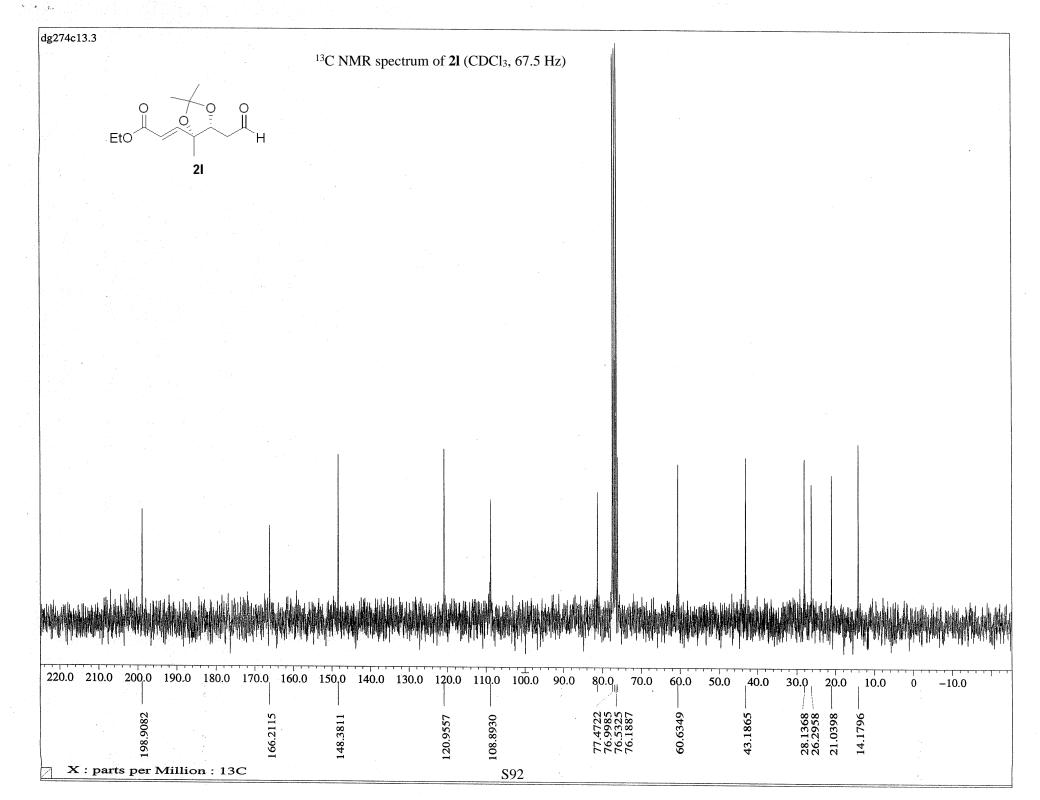


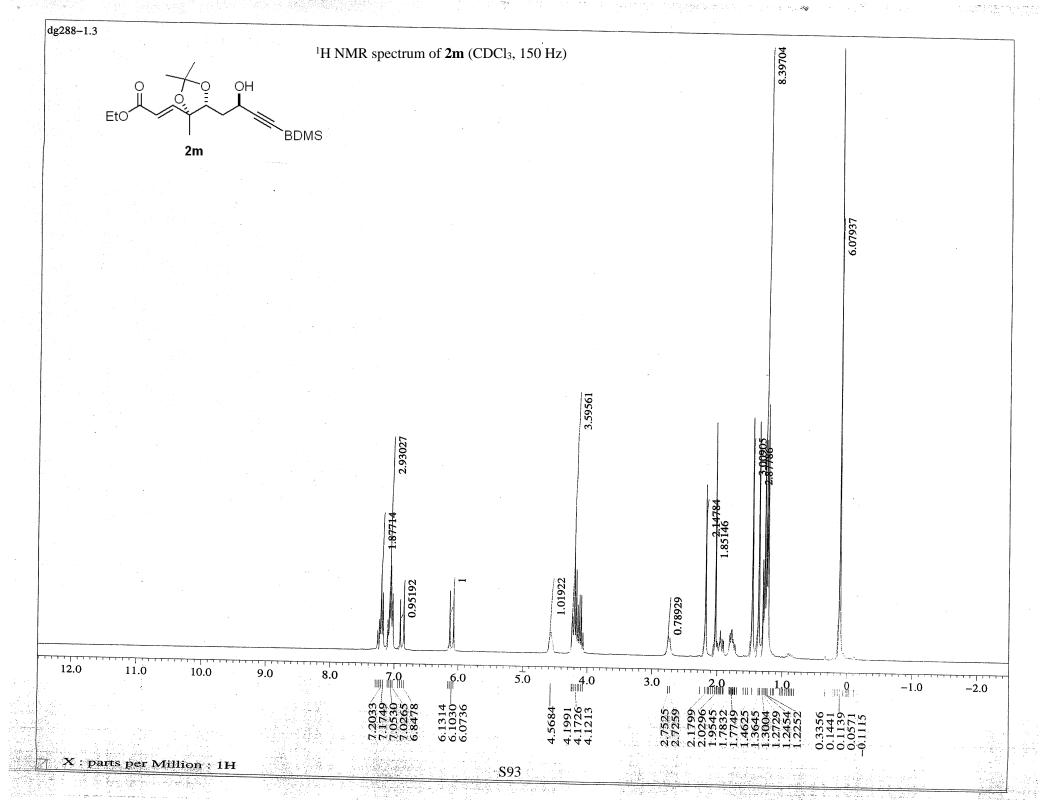


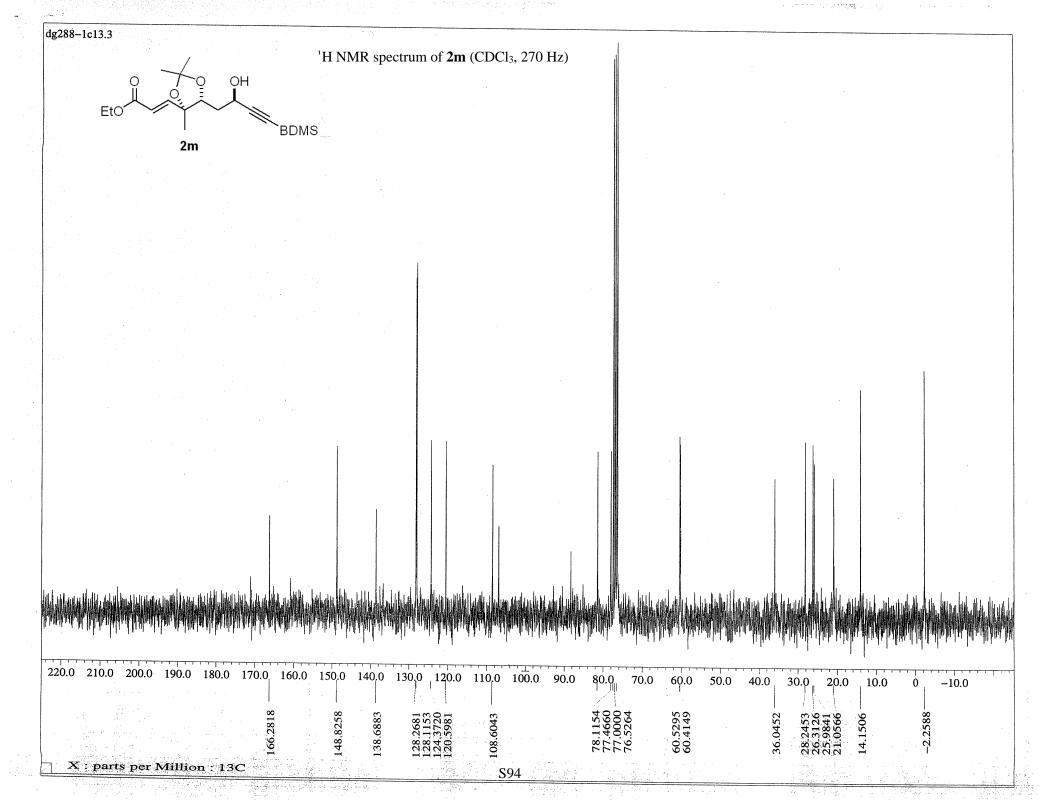


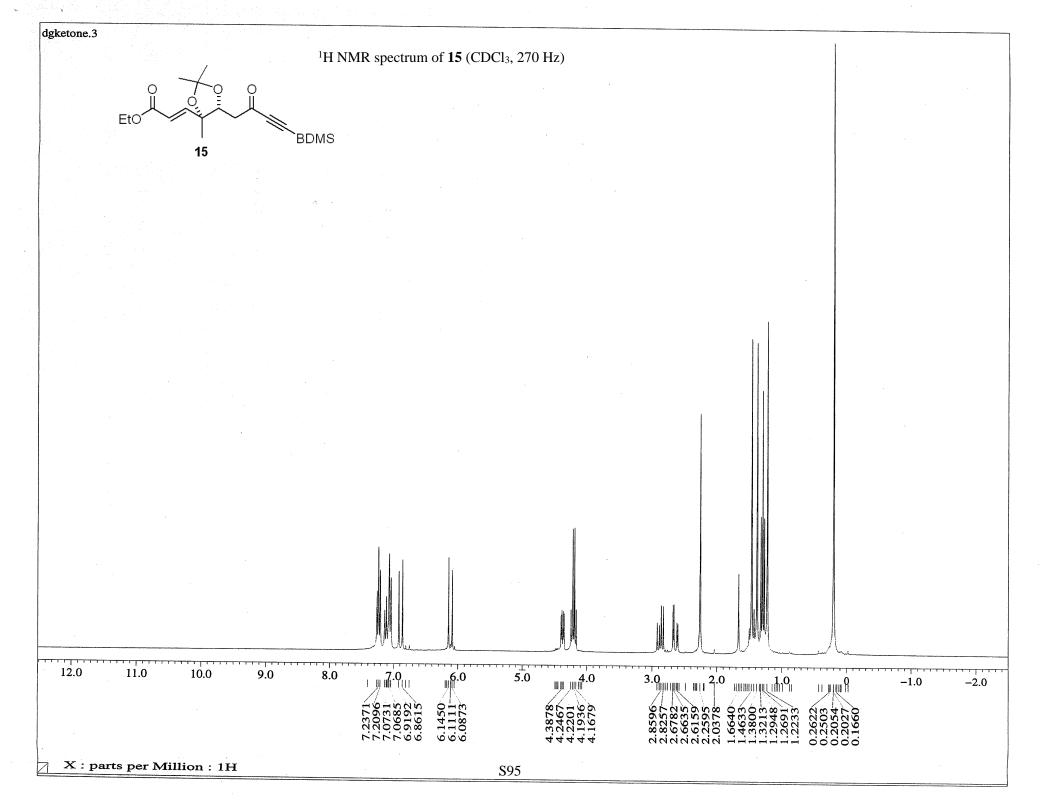


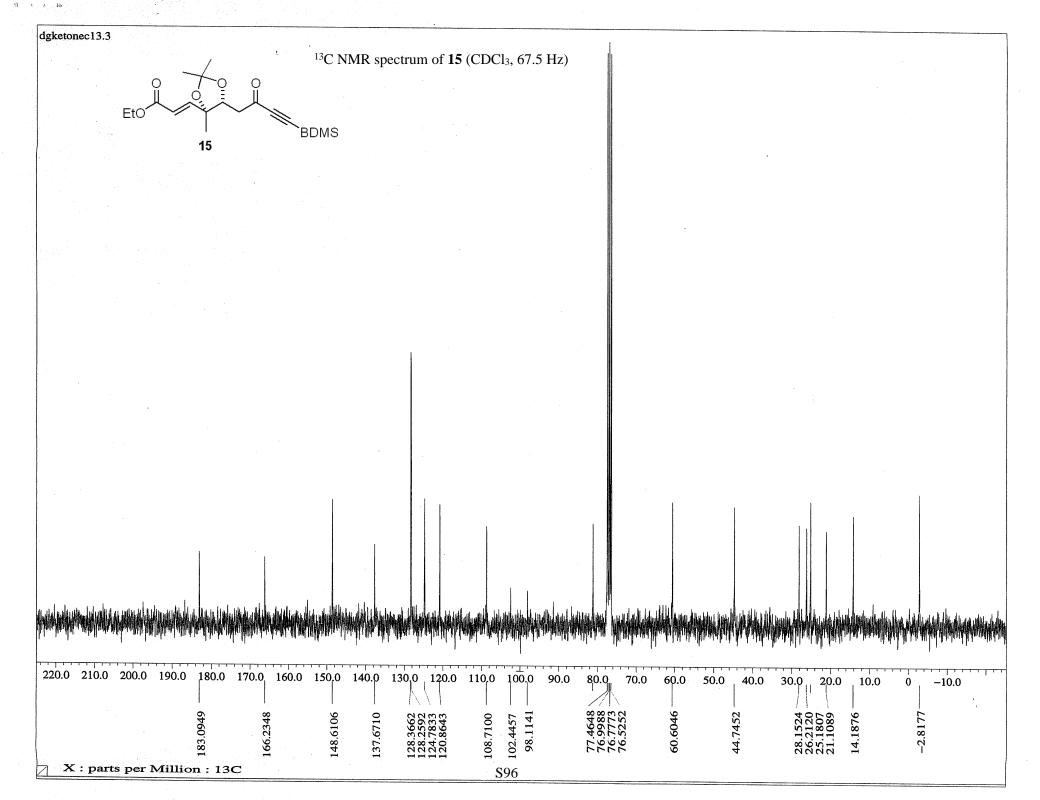


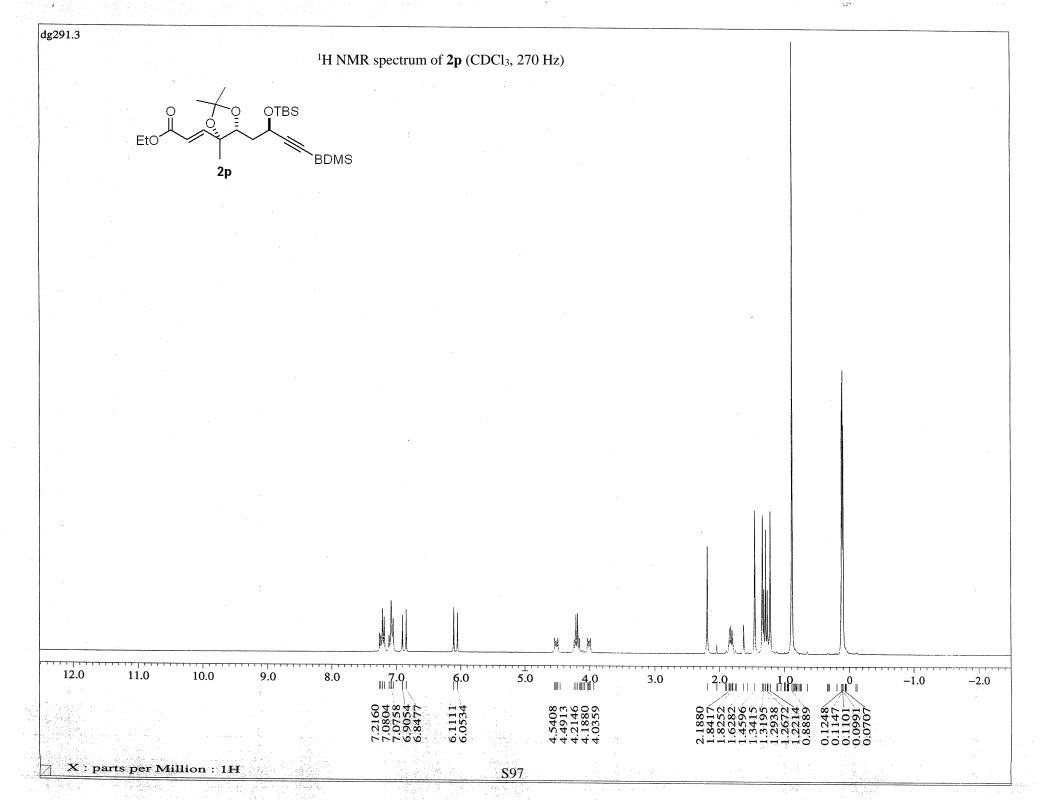


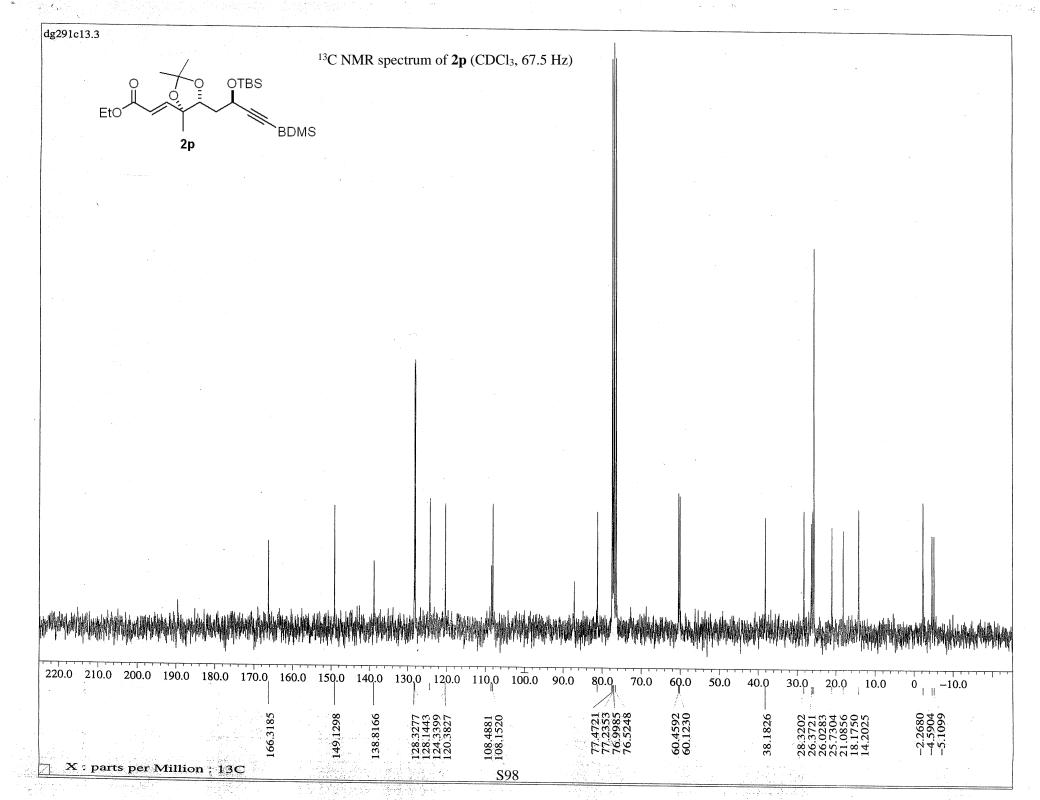


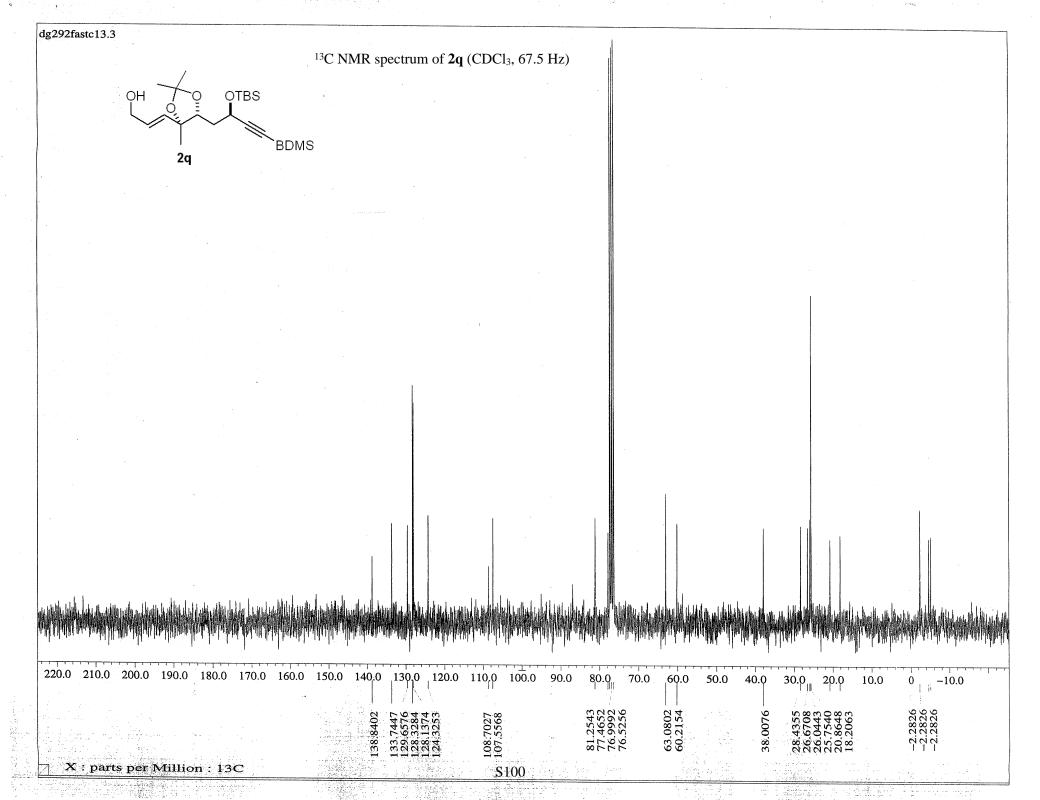


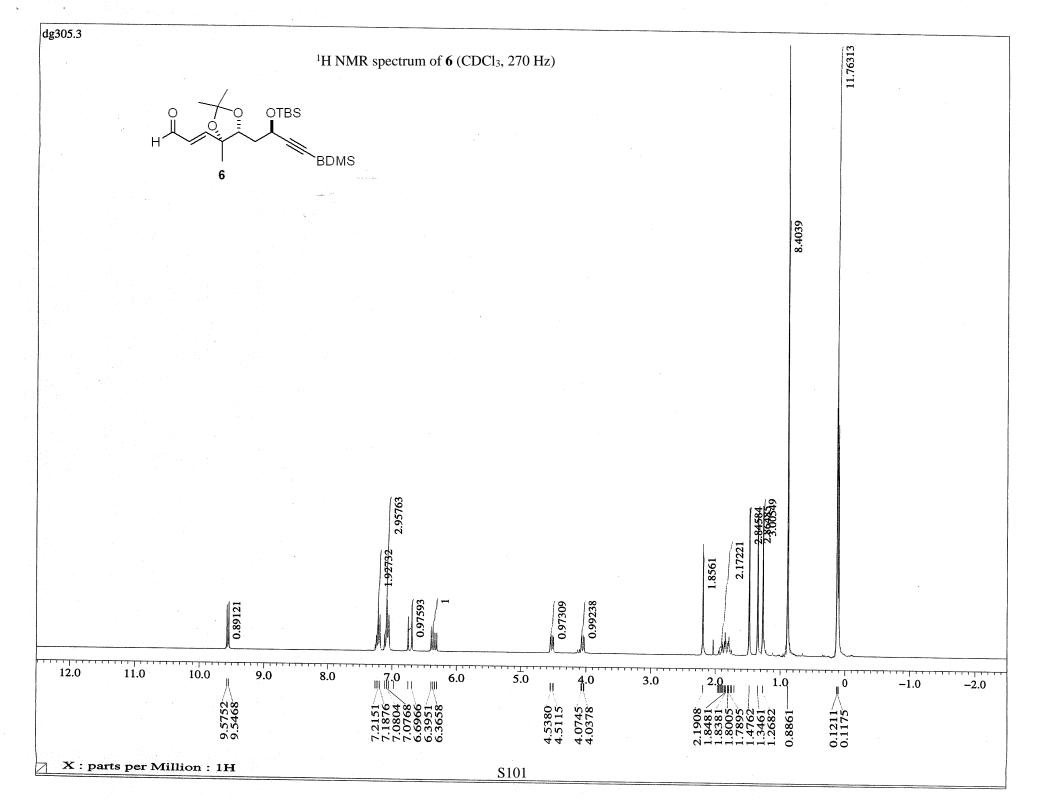


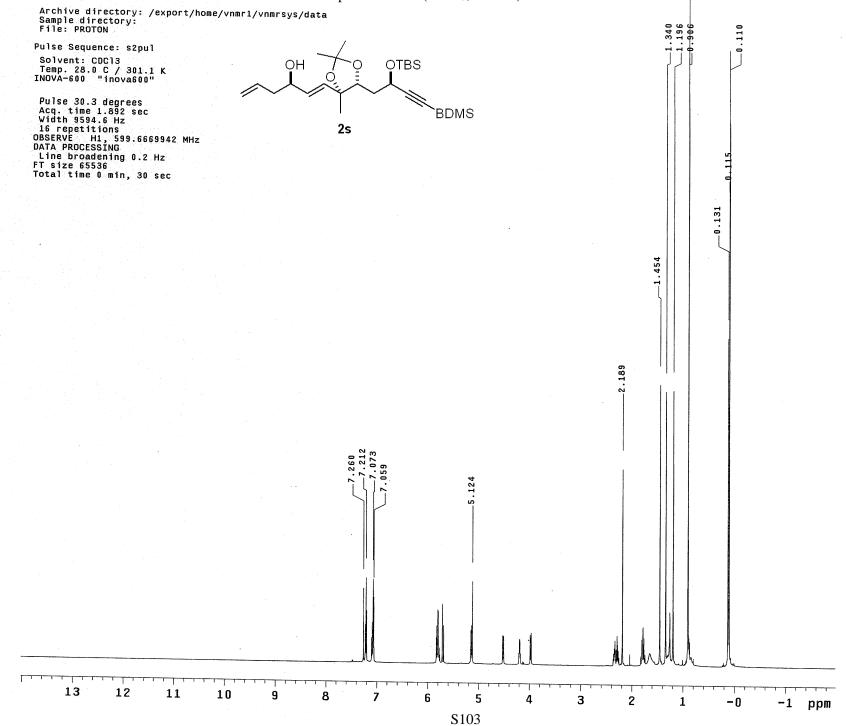


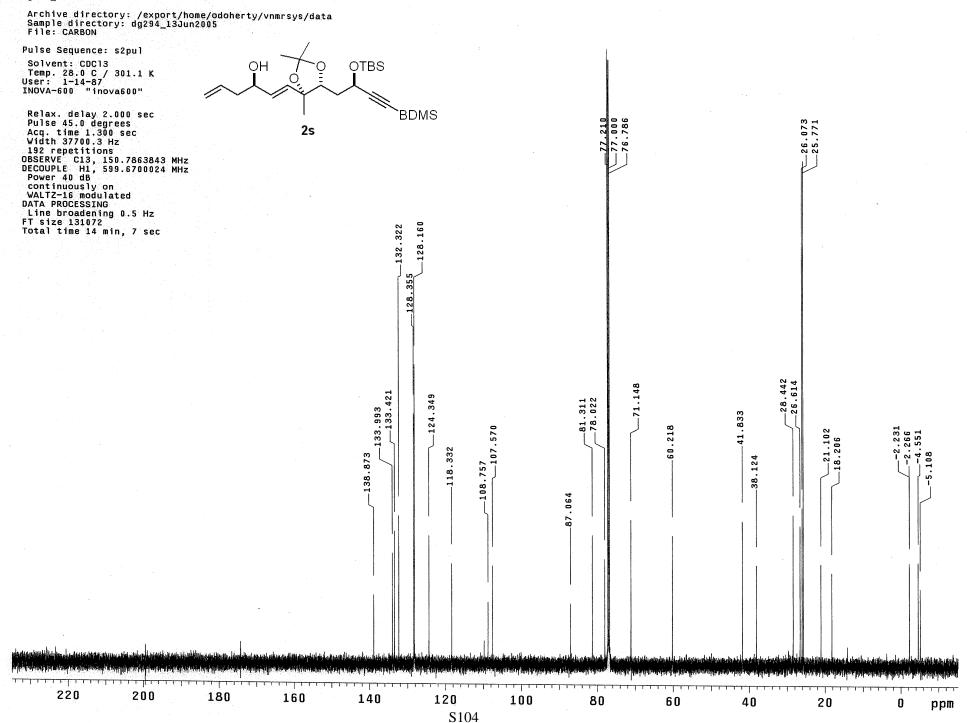











dg305c13.3										·	·
	and a second second Second second second Second second	¹³ C N	IMR sp	pectrum of 6	(CDCl ₃ , 67.5	5 Hz)					
о О											
⊢ H											
		BDMS									
	6										
								•			
				1							
elphthumpetersionskiessungungengelphilisiesen	her with a feel with attained an analy burk	Martal and him matchill	a stand in the second	AND AN MARINA	K.N.Hudenthis mentional deskilleder	معالده والمراجع المعالمة ويوزيه بالمعرجين المالية	iliteratulation with the smarts	المارية المحادثة المحاديد والمحادثات المحادثة	لله و المعالية المعالية المعالية المعالية الم	al in a data data ha ata da ata da ata a ata ata ata ata ata ata ata ata a	ىد ئەللىرىدى ئە
TALL THAT THE THE TALL			n hiti kara a hiti i	article and a state of a state of the state		a i.i	nd ittel auser and in here where the state of	adaalihindha. Afalan Adisa dha	tsautau Anhereda Maha	ulan kulan kulan kulan kulan kulan tahun ku	and the second
220.0 210.0 200.0	190.0 180.0 170.	0 160.0 150.0	140.0	130.0 120.0	110,0 100.0	90.0 80.0 70	.0 60.0 50	.0 40.0 :	30.0 20.0	10.0 0 -1	++++++ 10.0
				$(A \wedge A)$	$\bigwedge =$					/ //	
	2250	.7399	38.6872	130.7193 128.2594 128.0990 124.3099	108.4428 108.2365	87.3122 81.3000 77.4726 77.0601 76.9990 76.5254	59.9555	38.1526	28.2290 26.2428 25.9372 25.6469 25.6469 20.8188 18.1068		
	93	157.7	38.6	28.0	08.7	87 81 77 76 76 76	59.5	38.1	225.62	2	
				·							

¹H NMR spectrum of **2s** (CDCl₃, 600 Hz)

dg294_13Jun2005

dg296_15Jun2005

13

12

11

10

9

¹H NMR spectrum of **18** (CDCl₃, 600 Hz)

Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg296_15Jun2005

Pulse Sequence: s2pul

Solvent: CDC13 Temp. 28.0 C / 301.1 K File: PROTON INOVA-600 "inova600"

Relax. delay 2.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 9594.6 Hz 32 repetitions OBSERVE H1, 599.6670558 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 65536 Total time 2 min, 4 sec

8

S105

6

5

4

3

2

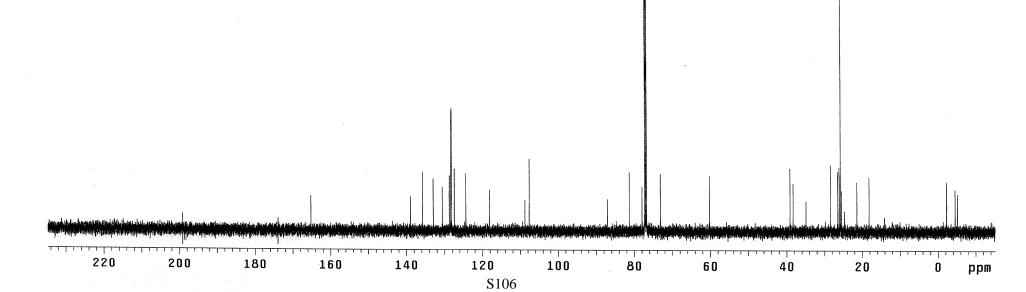
1

-0

-1

ppm

7


dg296_15Jun2005

Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg296_15Jun2005

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 28.0 C / 301.1 K User: 1-14-87 File: CARBON INOVA-600 "inova600"

Relax. delay 2.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 37700.3 Hz 256 repetitions OBSERVE C13, 150.7863837 MHz DECOUPLE H1, 599.6700024 MHz Power 40 dB continuously on WALT2-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 14 min, 7 sec BDMS 18

¹H NMR spectrum of 2u (CDCl₃, 600 Hz)

dg299_18Jun2005

Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg299_18Jun2005

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 28.0 C / 301.1 K File: PROTON INOVA-600 "inova600"

13

12

11

10

9

8

7

6

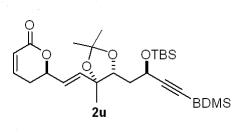
S107

5

4

3

2


1

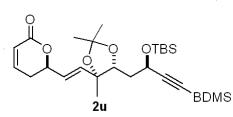
-0

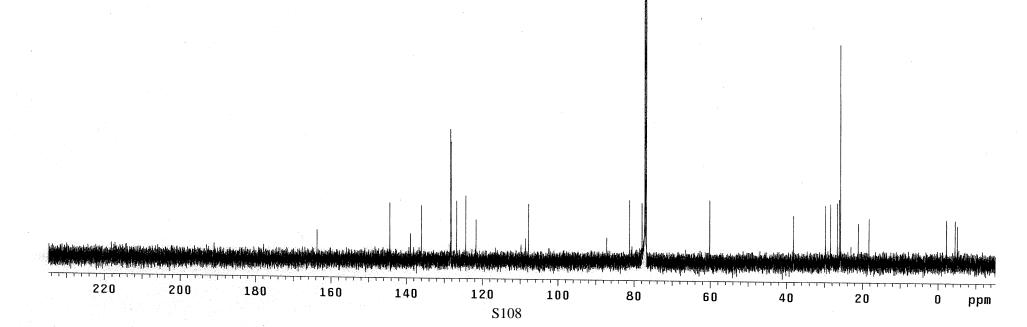
-1

ppm

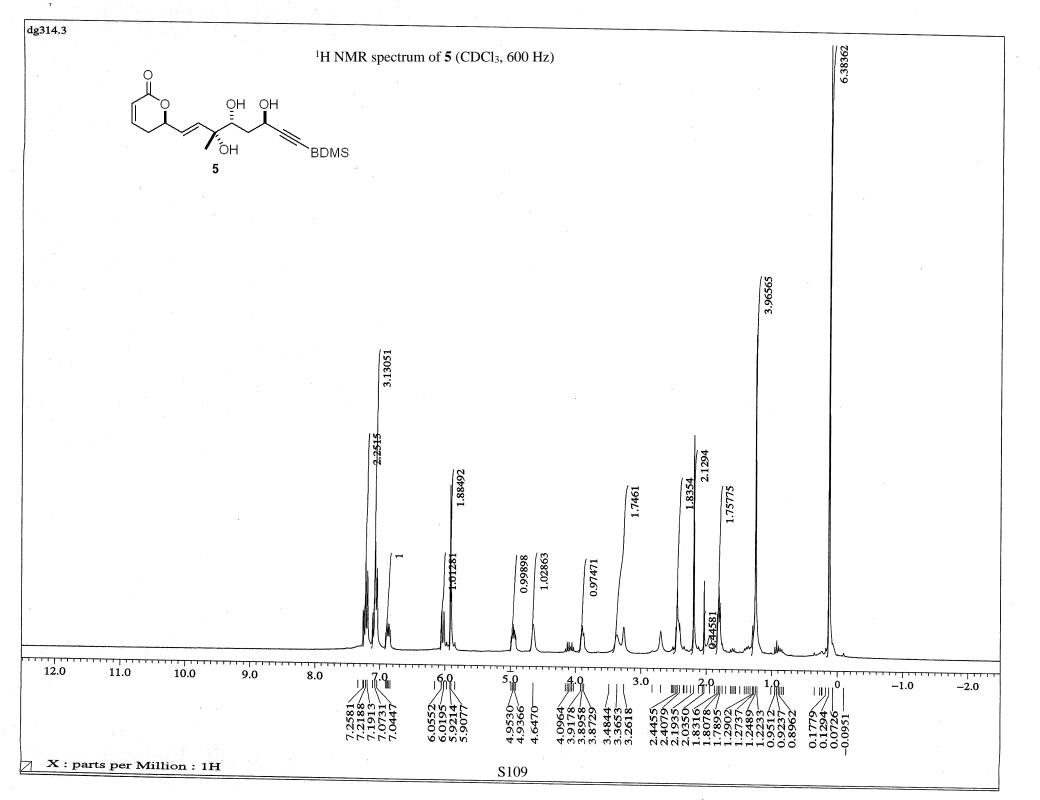
Relax. delay 2.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 9594.6 Hz 32 repetitions OBSERVE H1, 599.6669951 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 65536 Total time 2 min, 4 sec

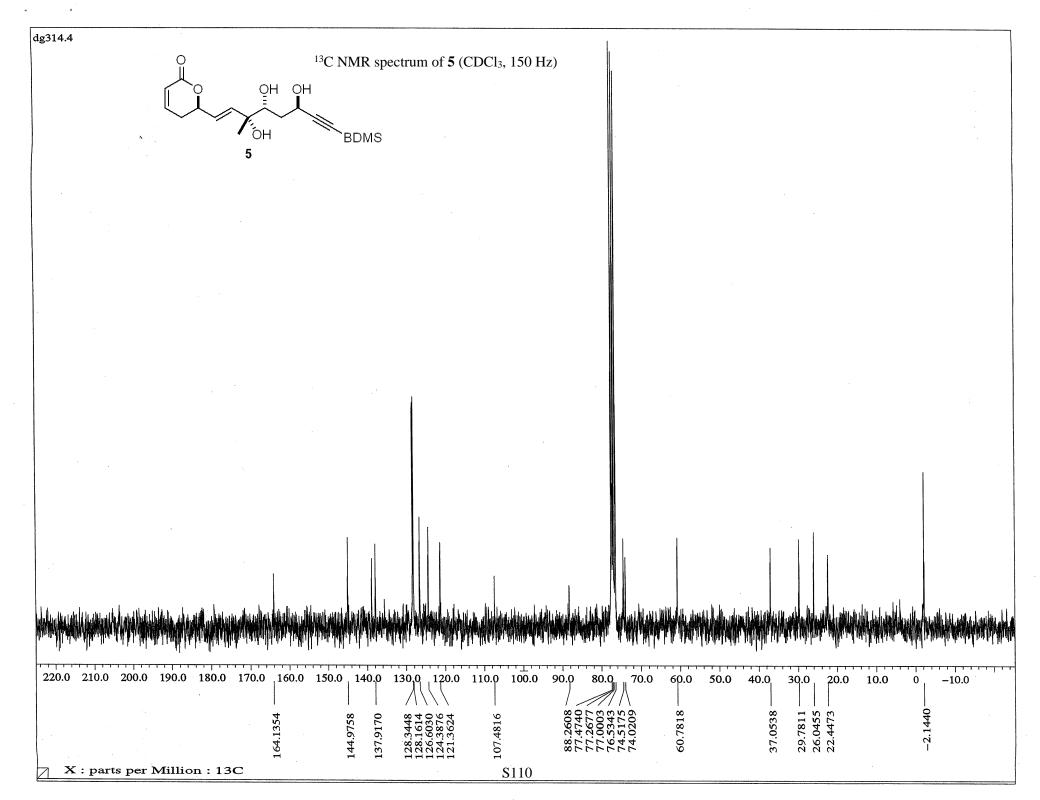
dg299_18Jun2005


¹³C NMR spectrum of **2u** (CDCl₃, 150 Hz)


Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg299_18Jun2005

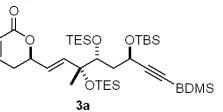
Pulse Sequence: s2pul

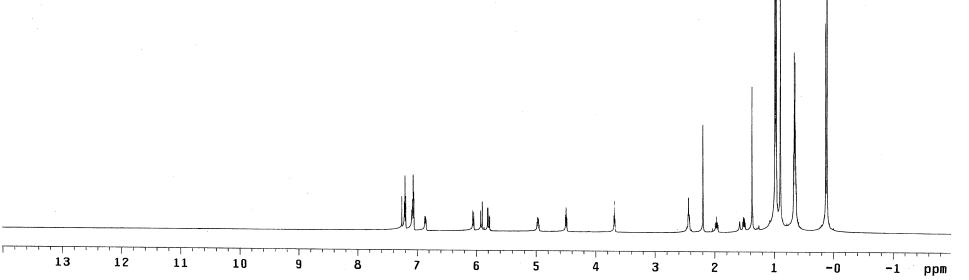

Solvent: CDCl3 Temp. 28.0 C / 301.1 K User: 1-14-87 File: CARBON INOVA-600 "inova600"


Relax. delay 2.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 37700.3 Hz 512 repetitions OBSERVE C13, 150.7863837 MHz DECOUPLE H1, 599.6700024 MHz Power 40 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 28 min, 14 sec

77.214 77.000 76.790

Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON


Pulse Sequence: s2pul


а

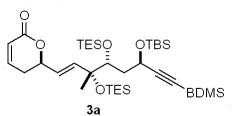
 \mathfrak{D}

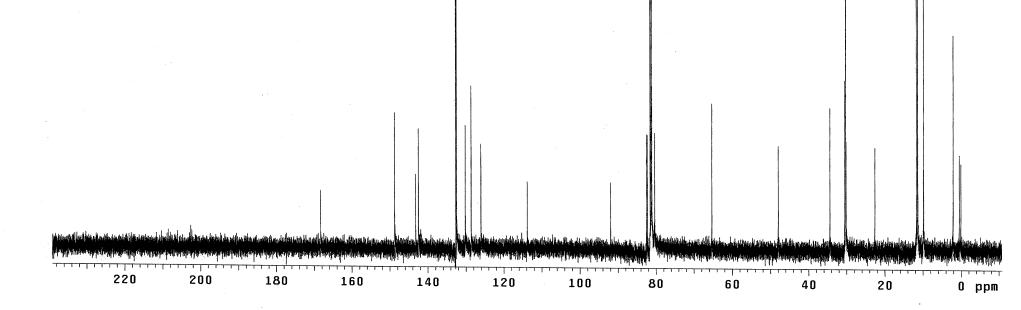
Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 26.9 degrees Acq. time 1.892 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6669954 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 65536 Total time 0 min, 46 sec

S111

dg366-1_03Nov2005

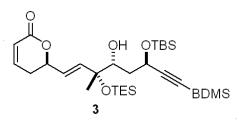

¹³C NMR spectrum of **3a** (CDCl₃, 150 Hz)

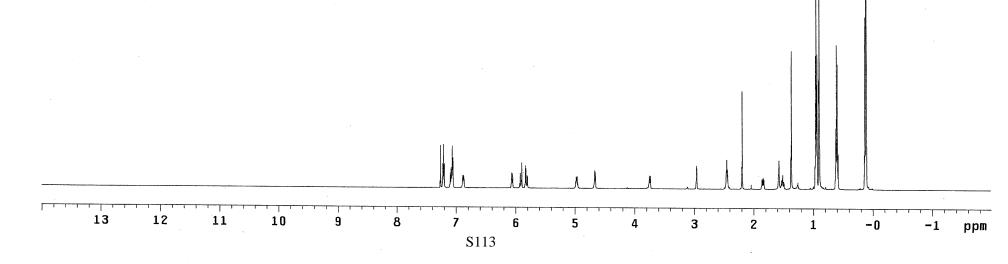

Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg366-1_03Nov2005

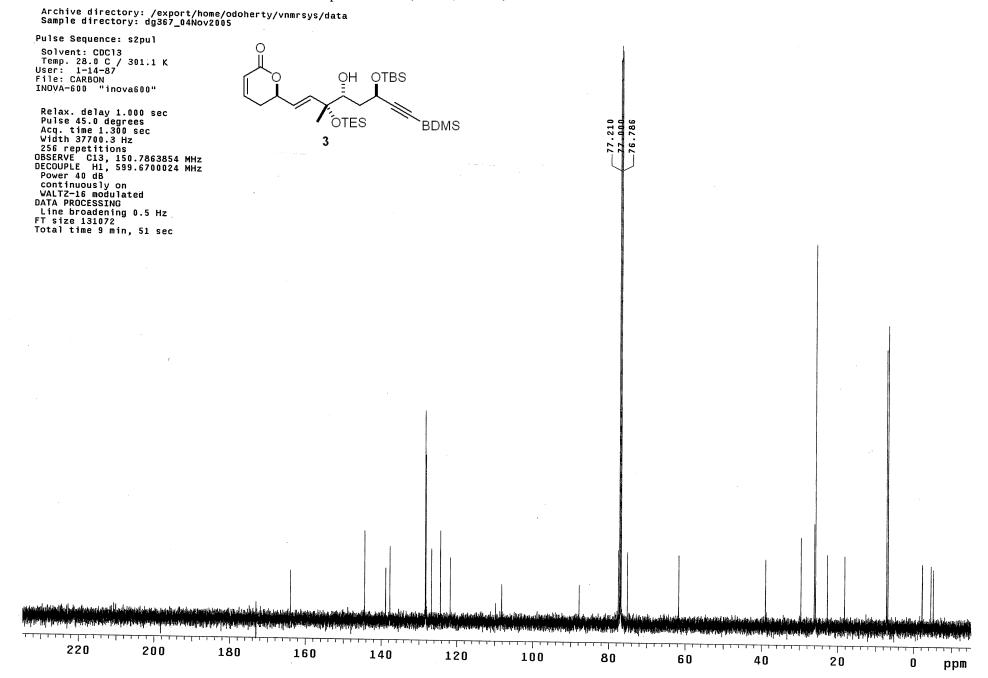
Pulse Sequence: s2pul

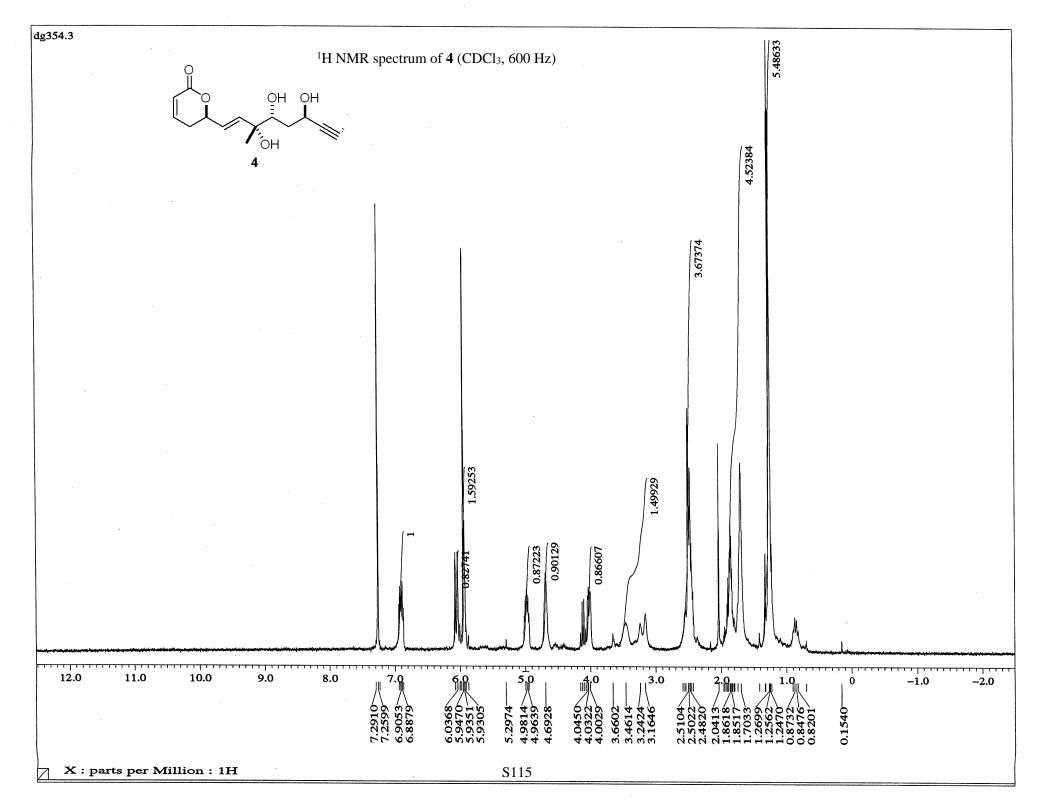
Solvent: CDC13 Temp. 28.0 C / 301.1 K User: 1-14-87 File: CARBON INOVA-600 "inova600"

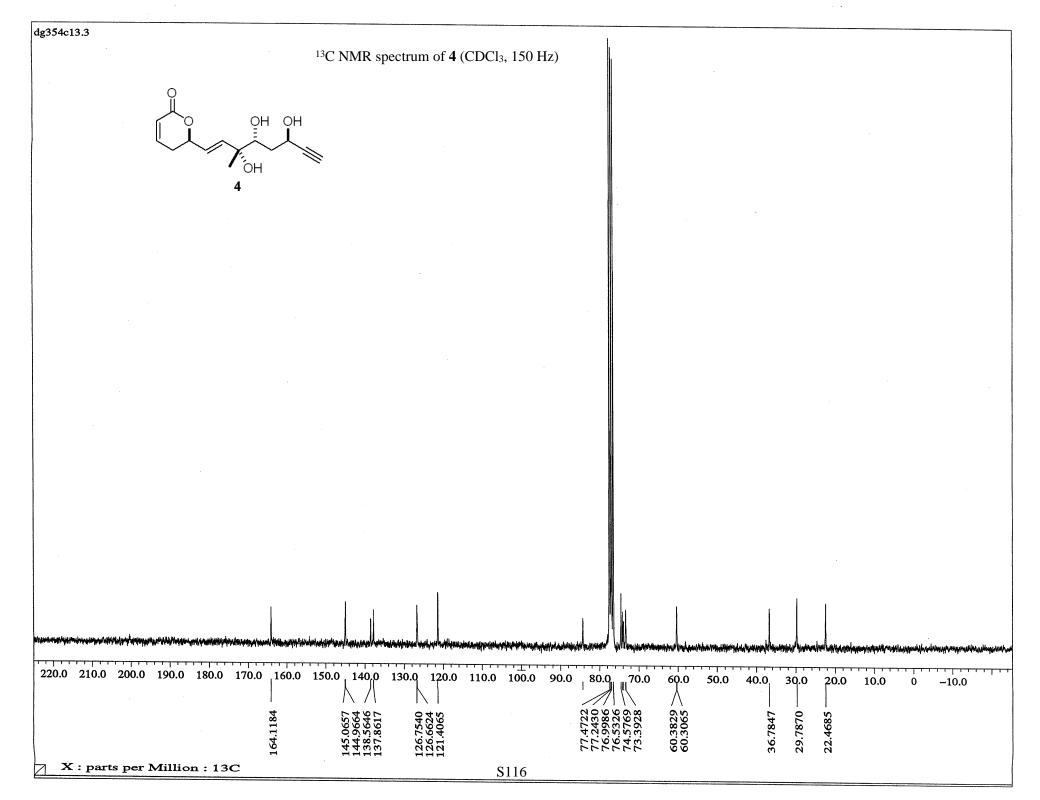
Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 37700.3 Hz 256 repetitions OBSERVE C13, 150.7857285 MHz DECOUPLE H1, 599.6700024 MHz Power 40 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 9 min, 51 sec


dg367_04Nov2005


Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg367_04Nov2005

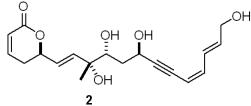

Pulse Sequence: s2pul

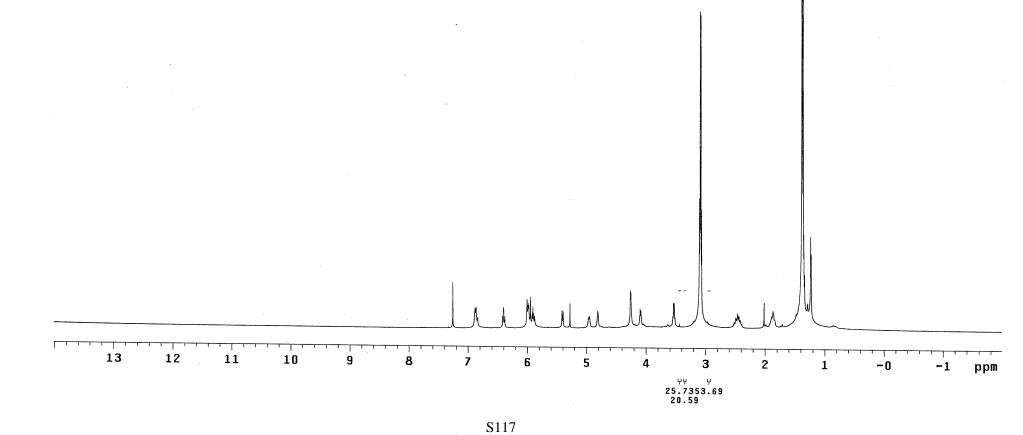

Solvent: CDCl3 Temp. 28.0 C / 301.1 K File: PROTON INOVA-600 "inova600"


Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6669957 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 65536 Total time 0 min, 46 sec

۶.

- 12

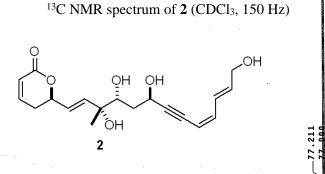

¹H NMR spectrum of **2** (CDCl₃, 600 Hz)


Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 26.9 degrees Acq. time 1.892 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6669957 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 65536 Total time 0 min, 46 sec

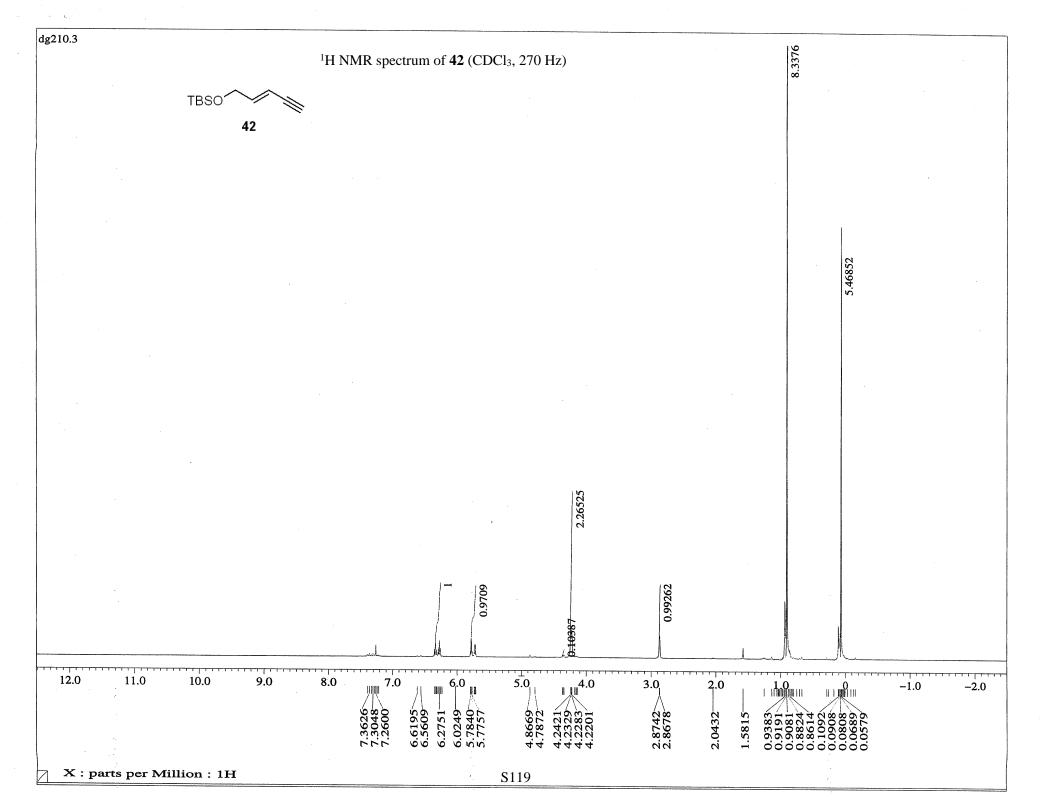


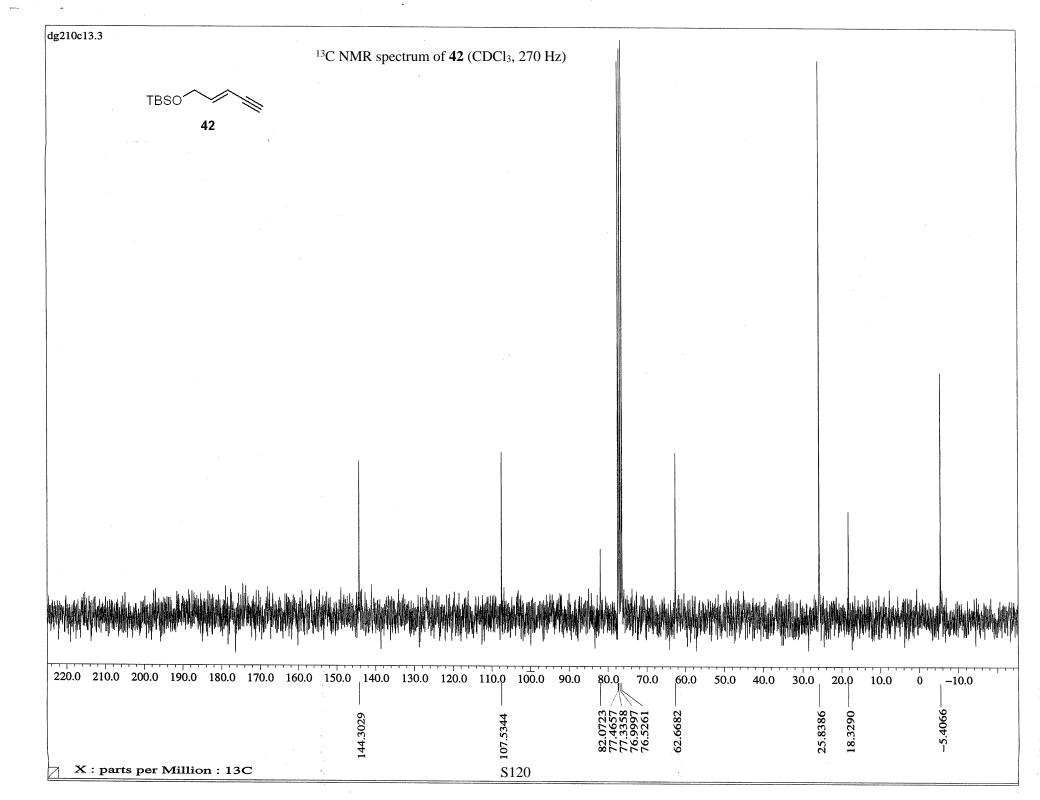
STANDARD CARBON PARAMETERS

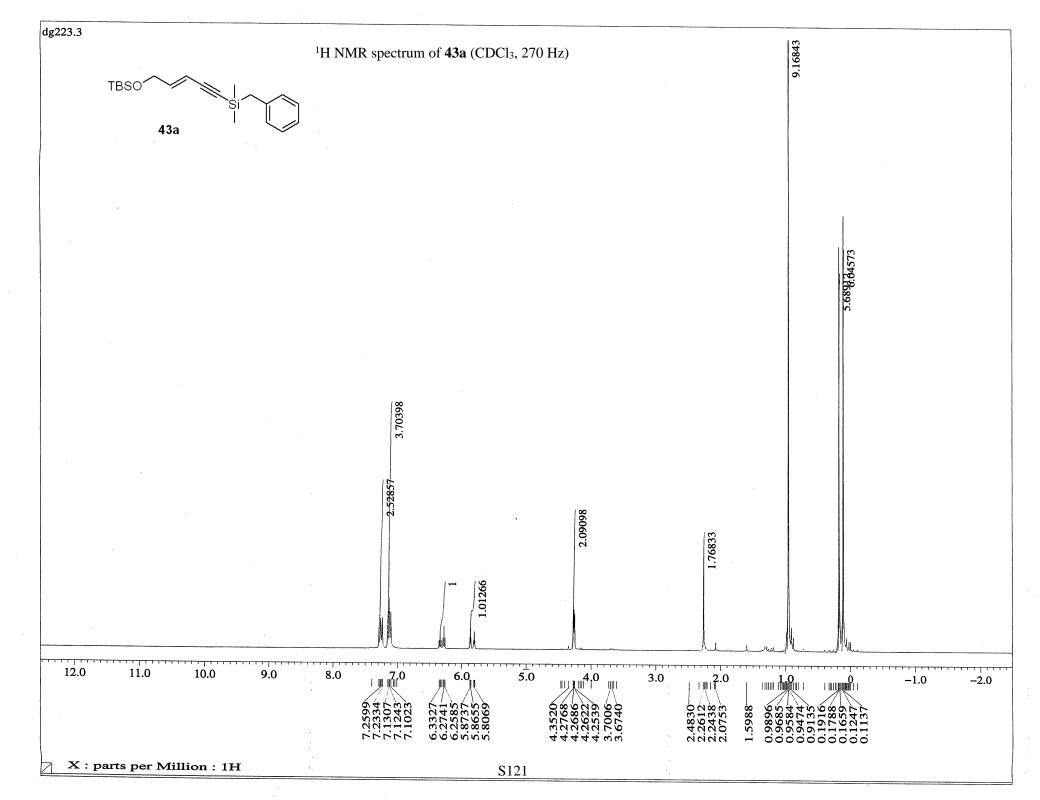
Pulse Sequence: s2pul Solvent: CDCl3 Temp. 28.0 C / 301.1 K User: 1-14-87 INOVA-600 "inova600"

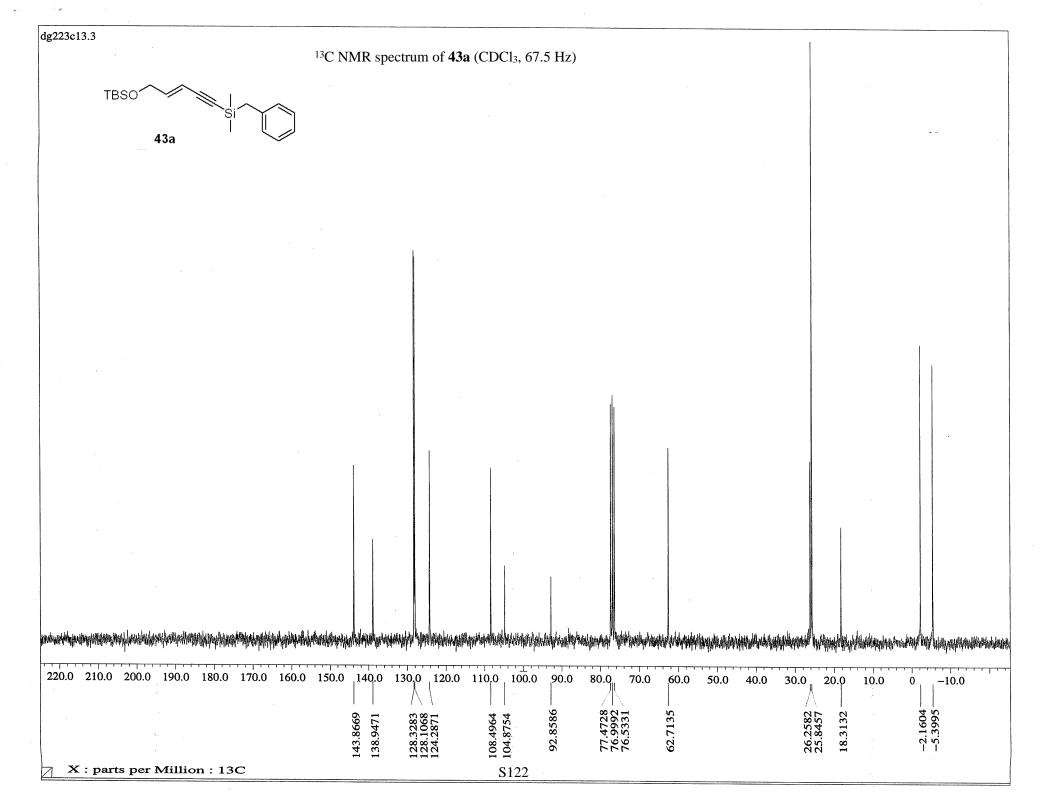
Relax. delay 1.000 sec Pulse 36.5 degrees Acq. time 1.300 sec Width 36003.6 Hz 1000 repetitions OBSERVE C13, 150.7863852 MH DECOUPLE H1, 599.6700024 MH Power 40 dB continuously on WALT2-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 38 min, 29 sec

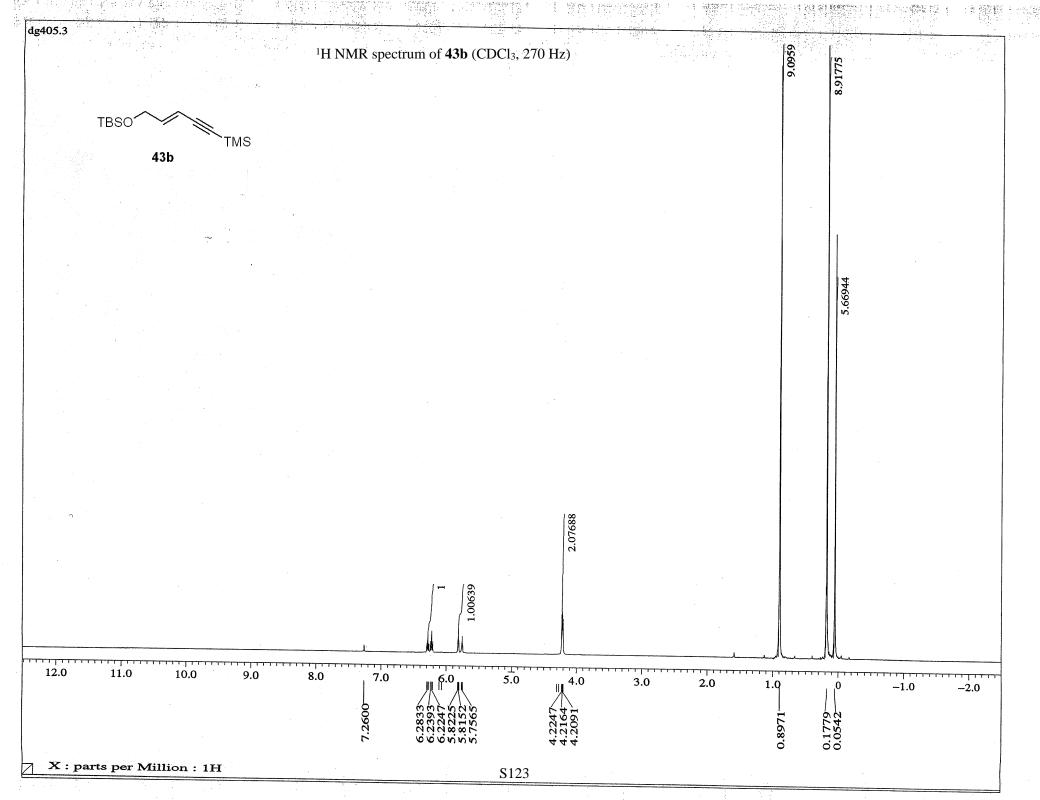
76.789

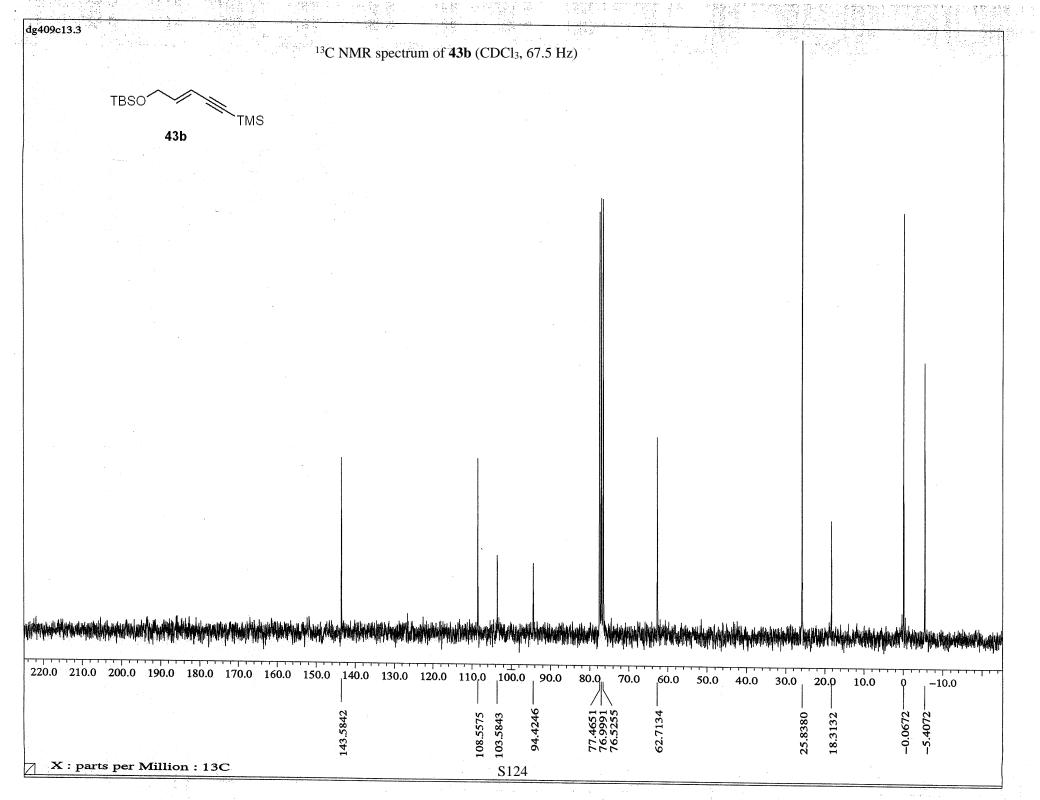

S118

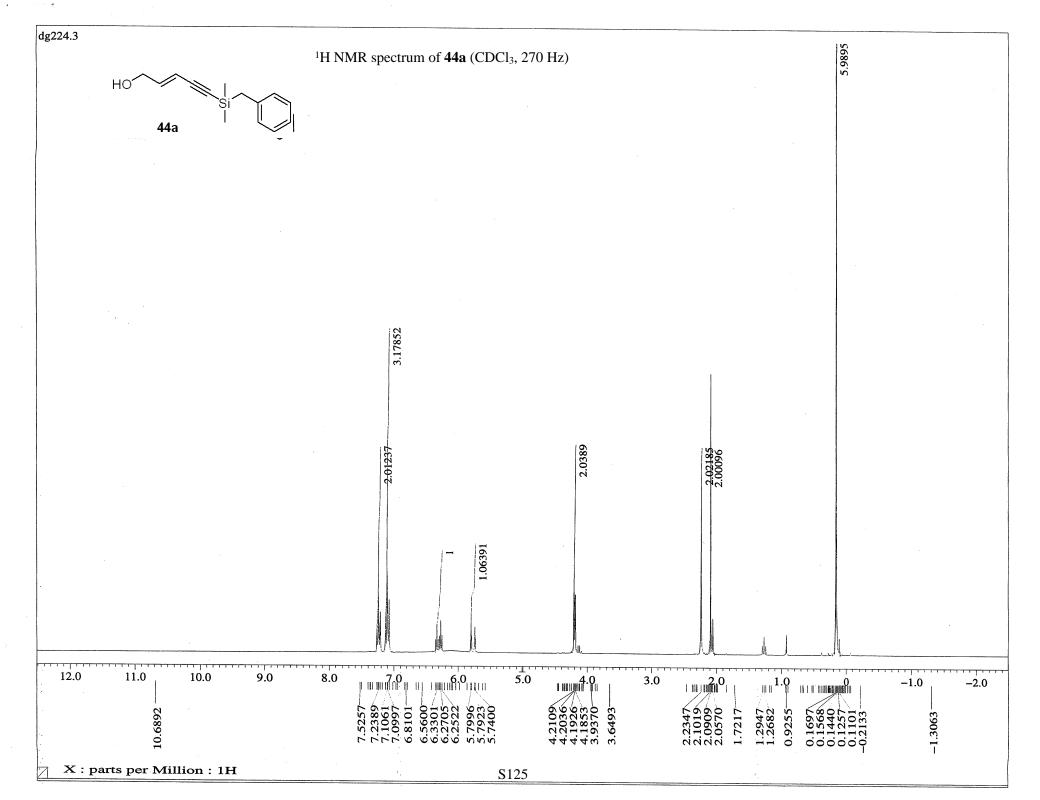

60

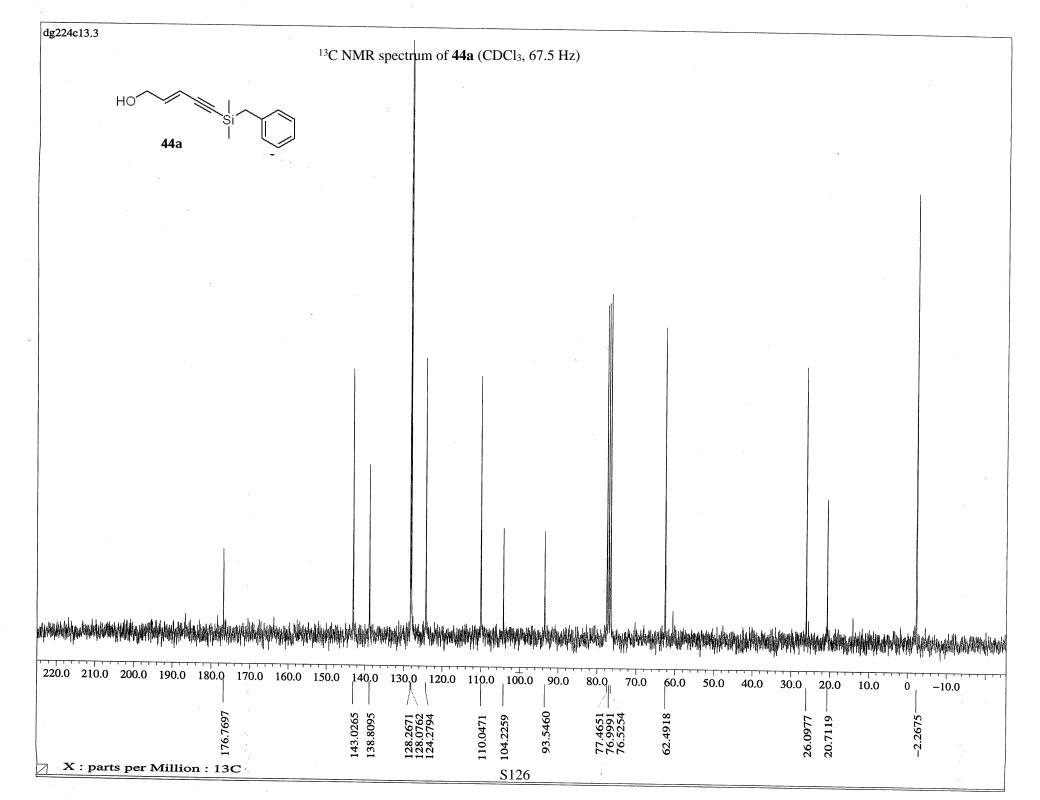

40

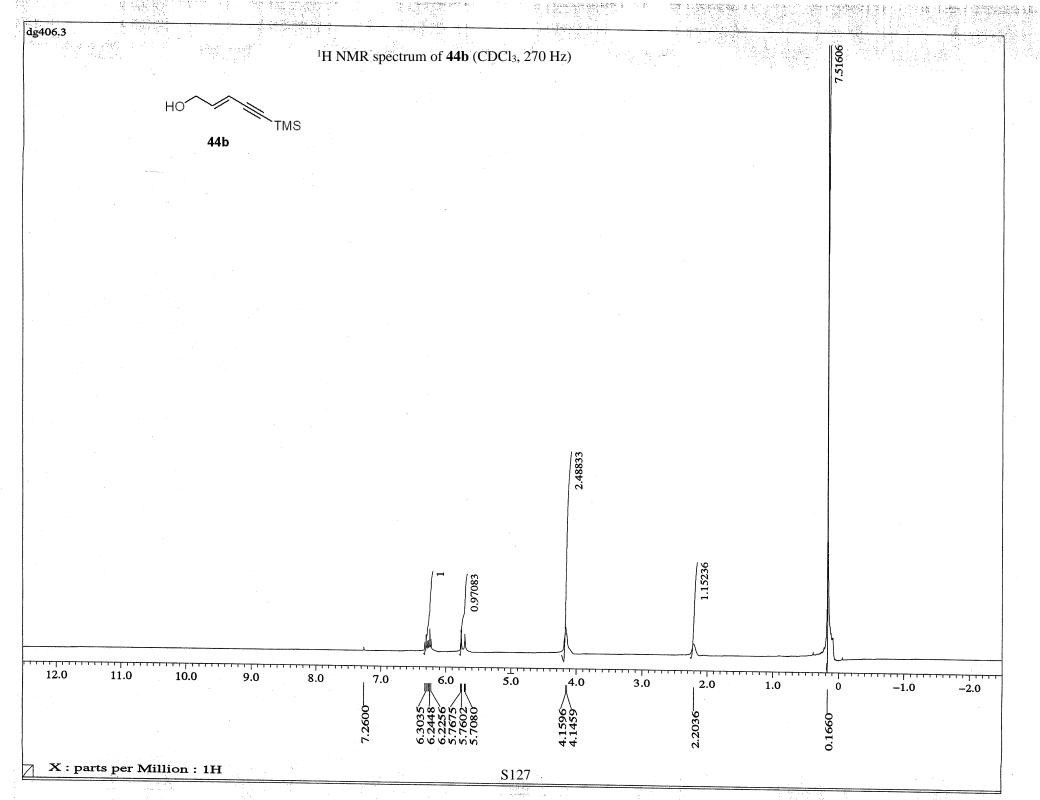

20

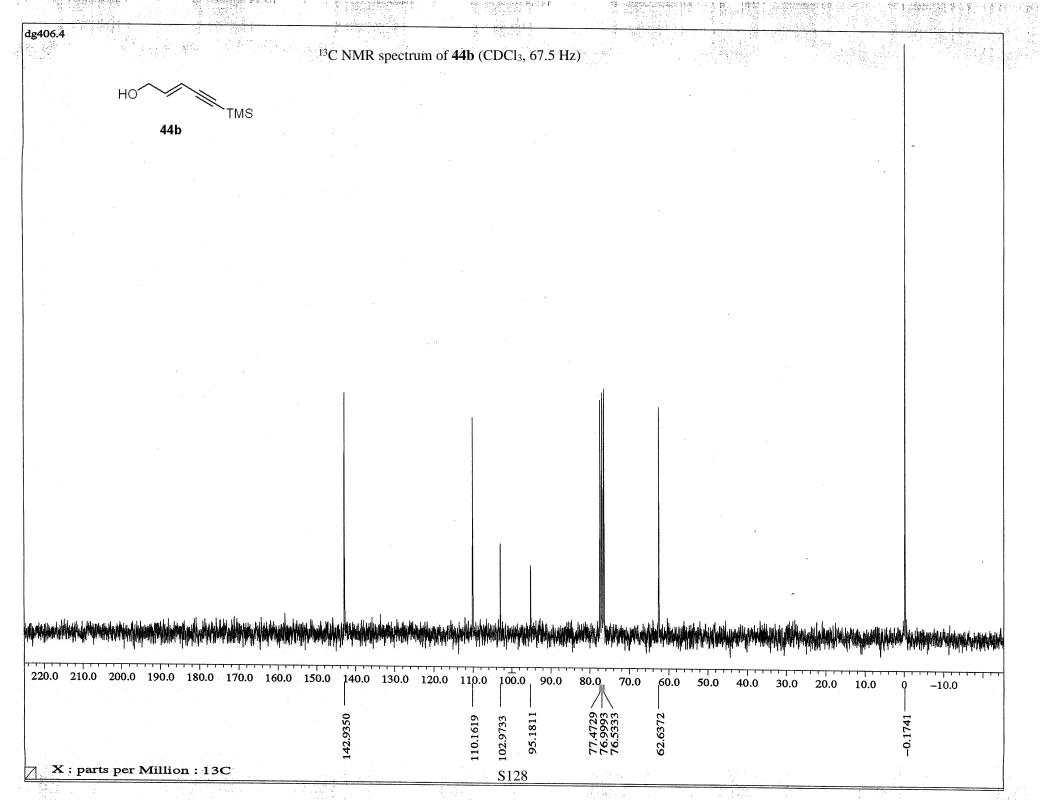

ppm

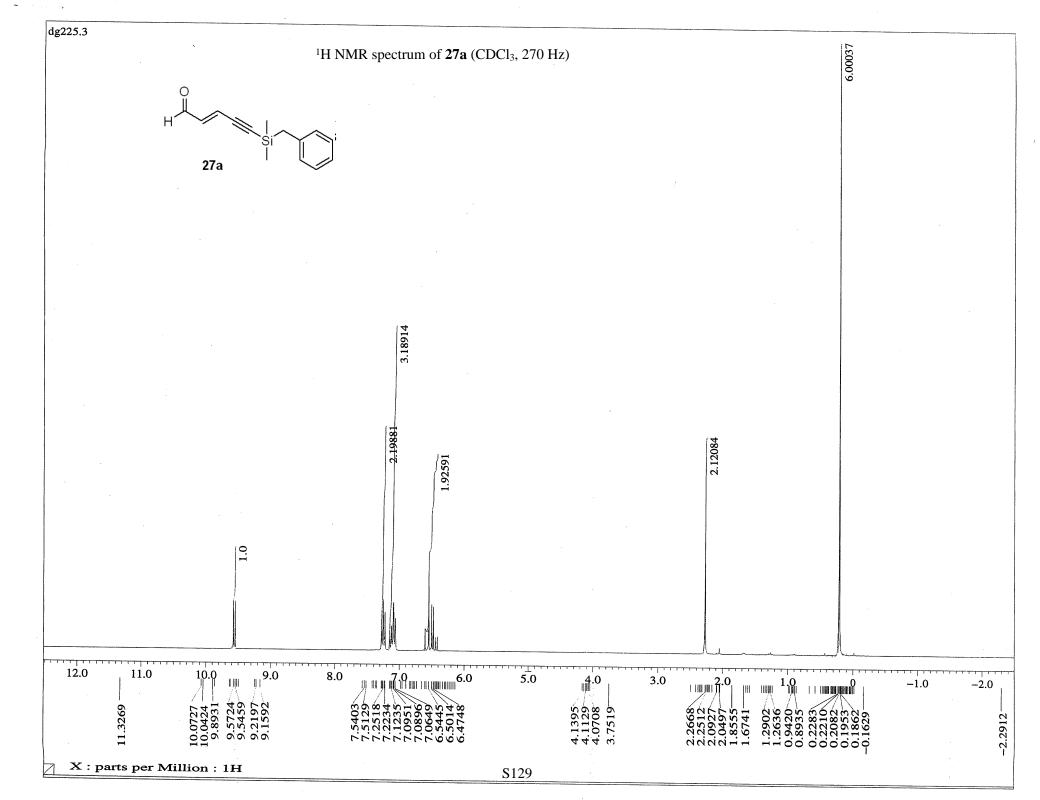


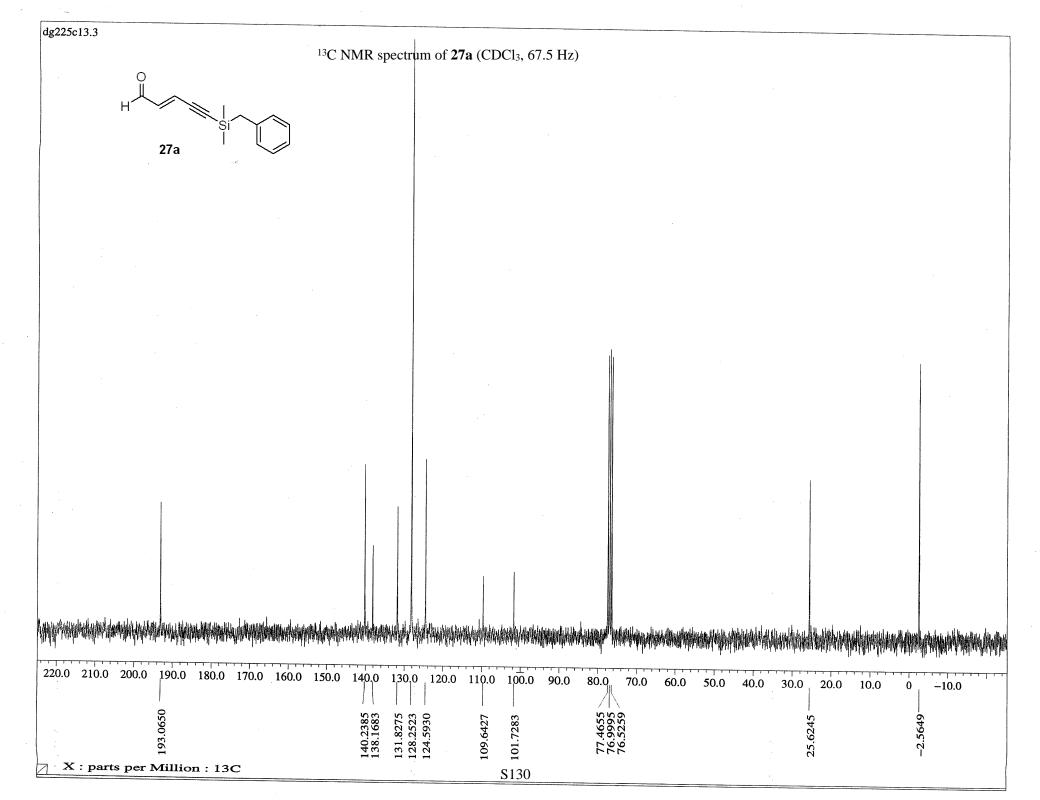


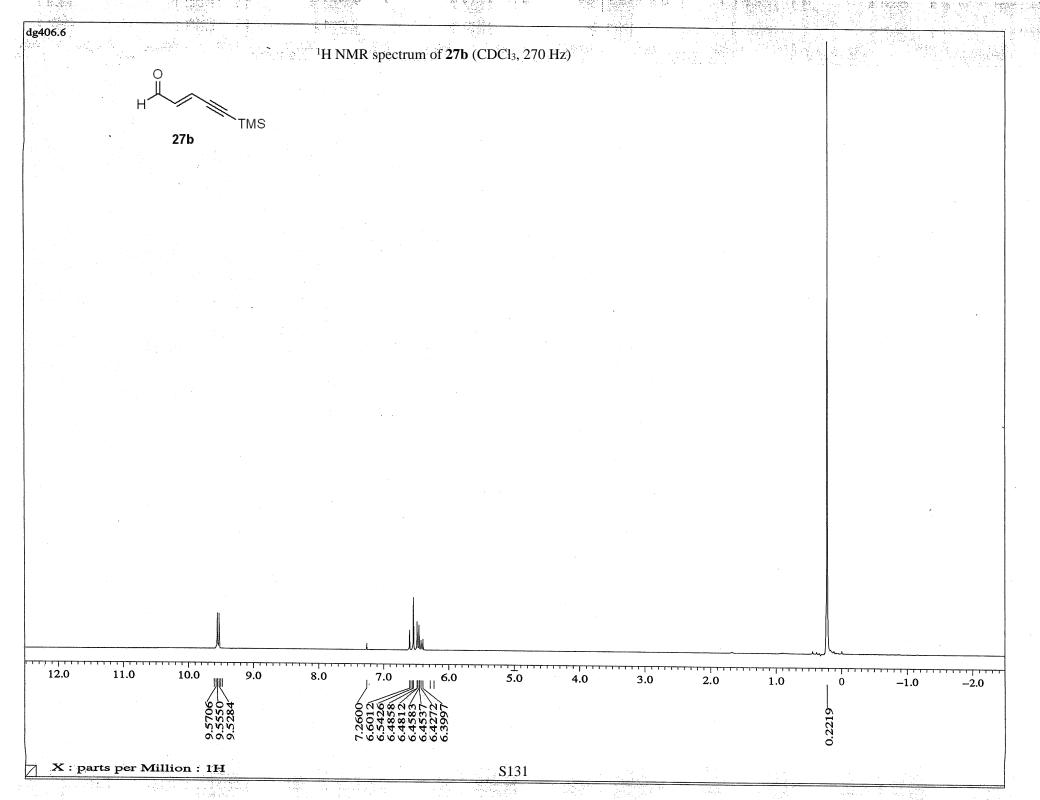


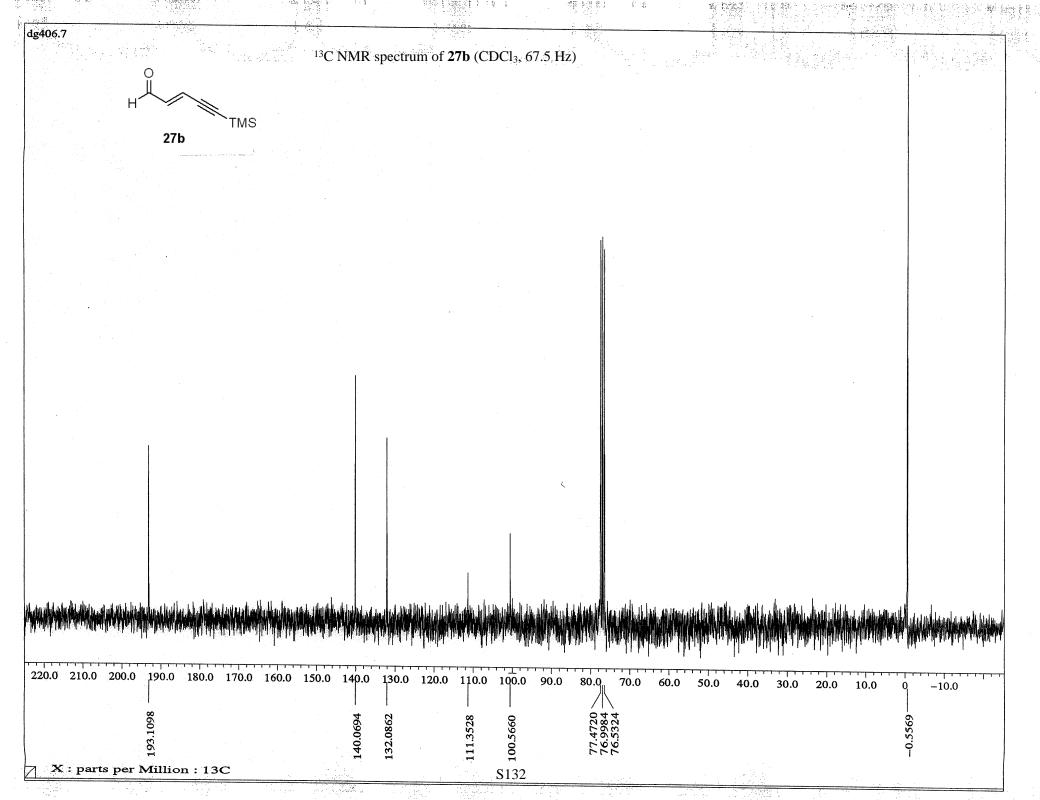


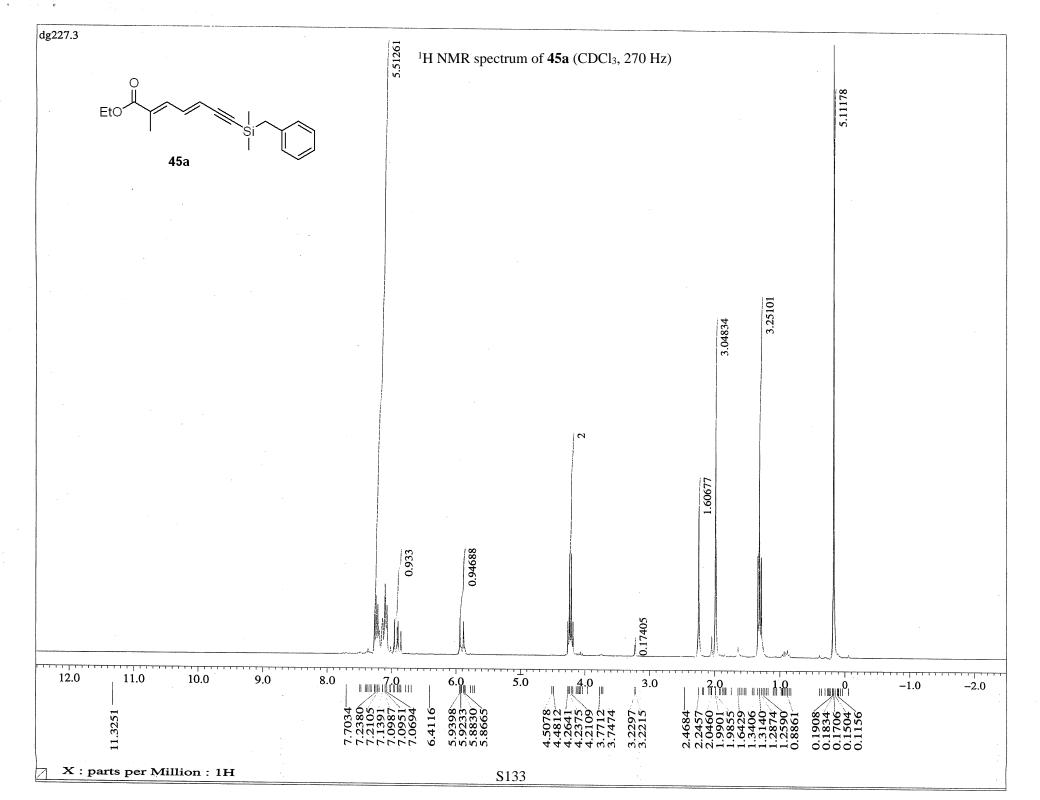


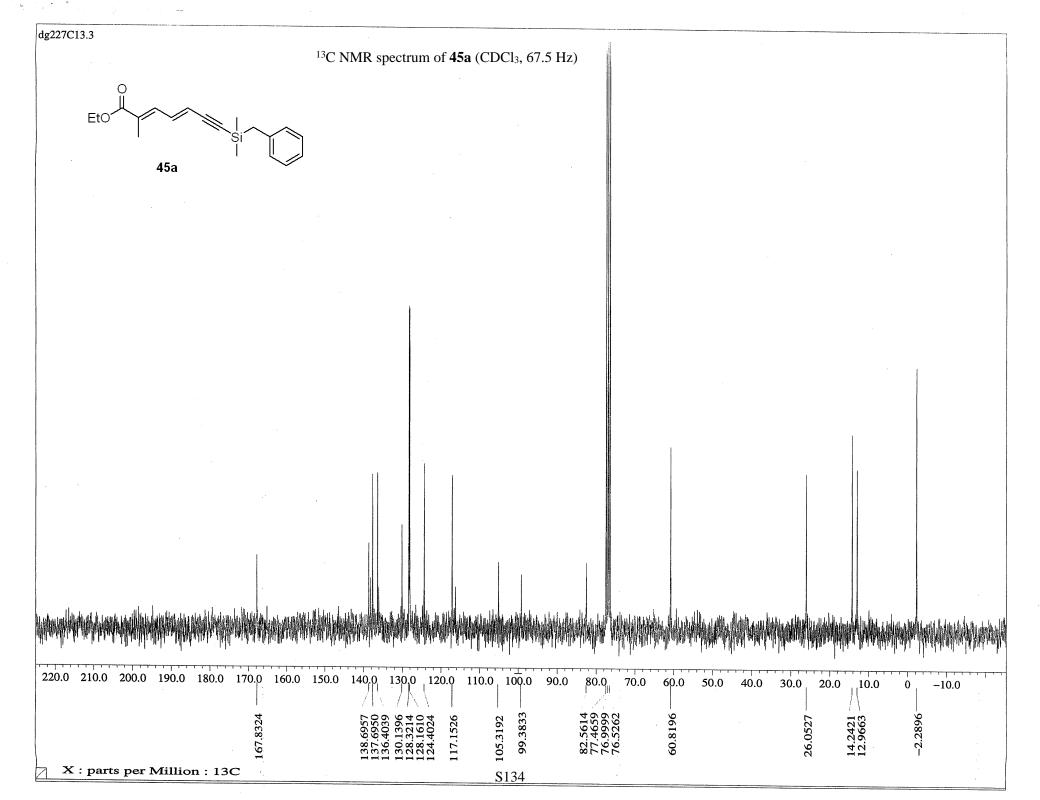


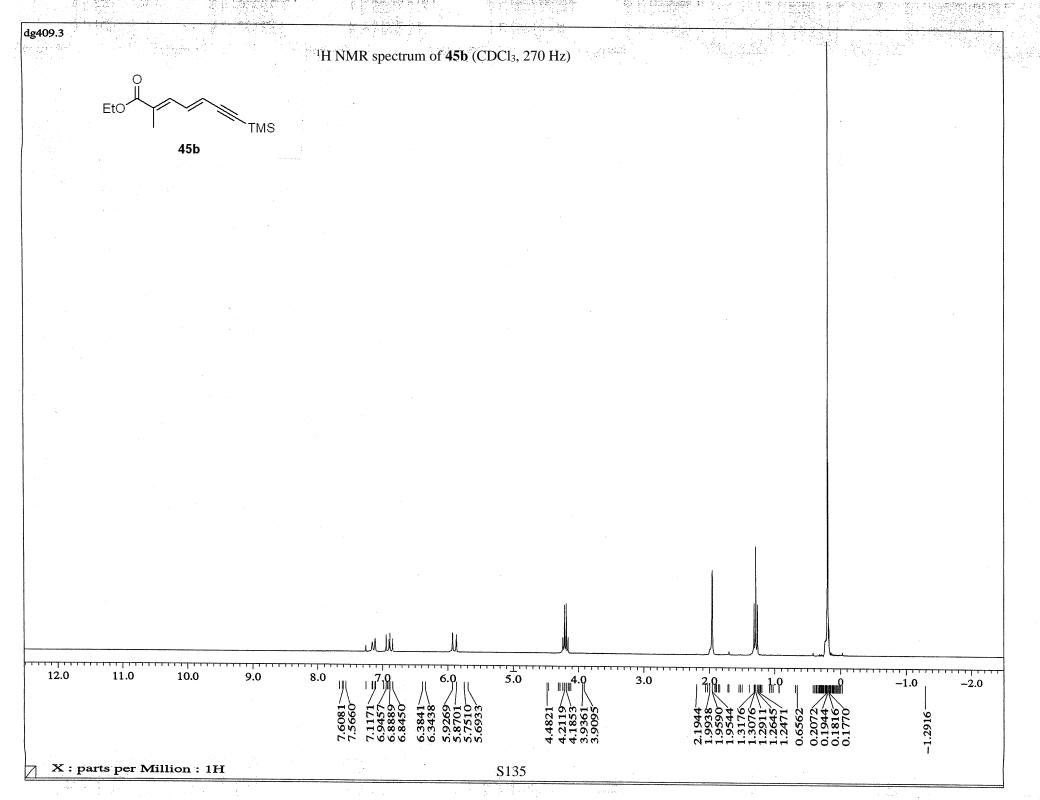


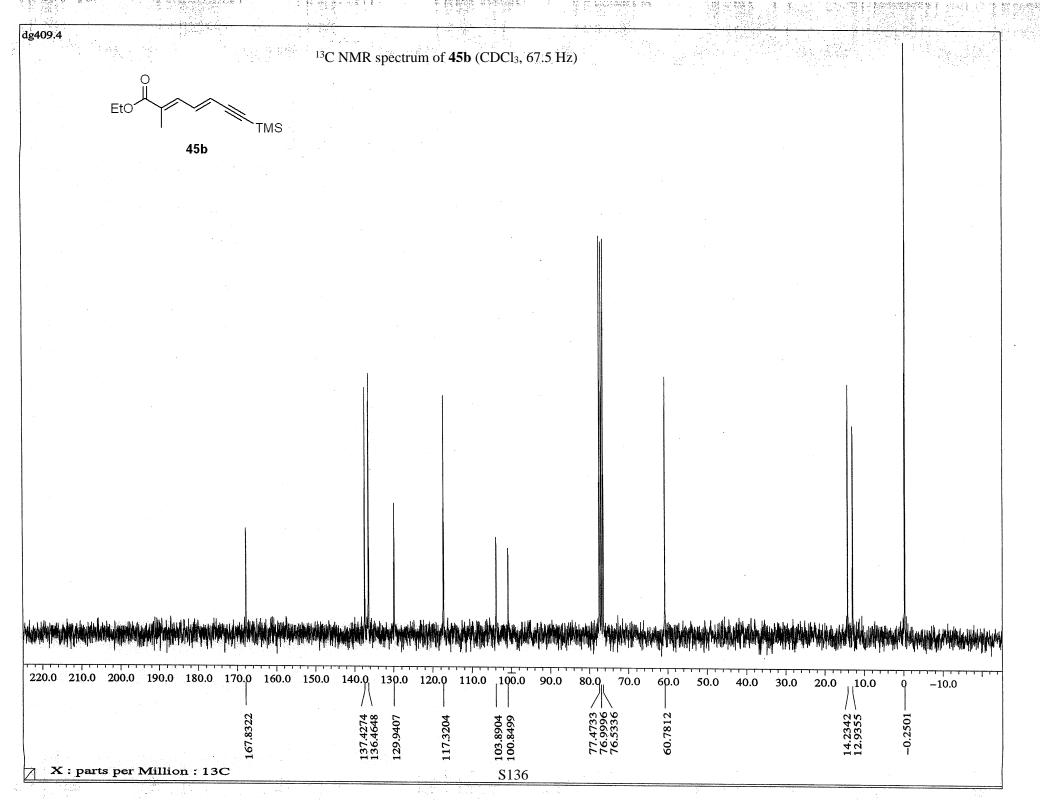


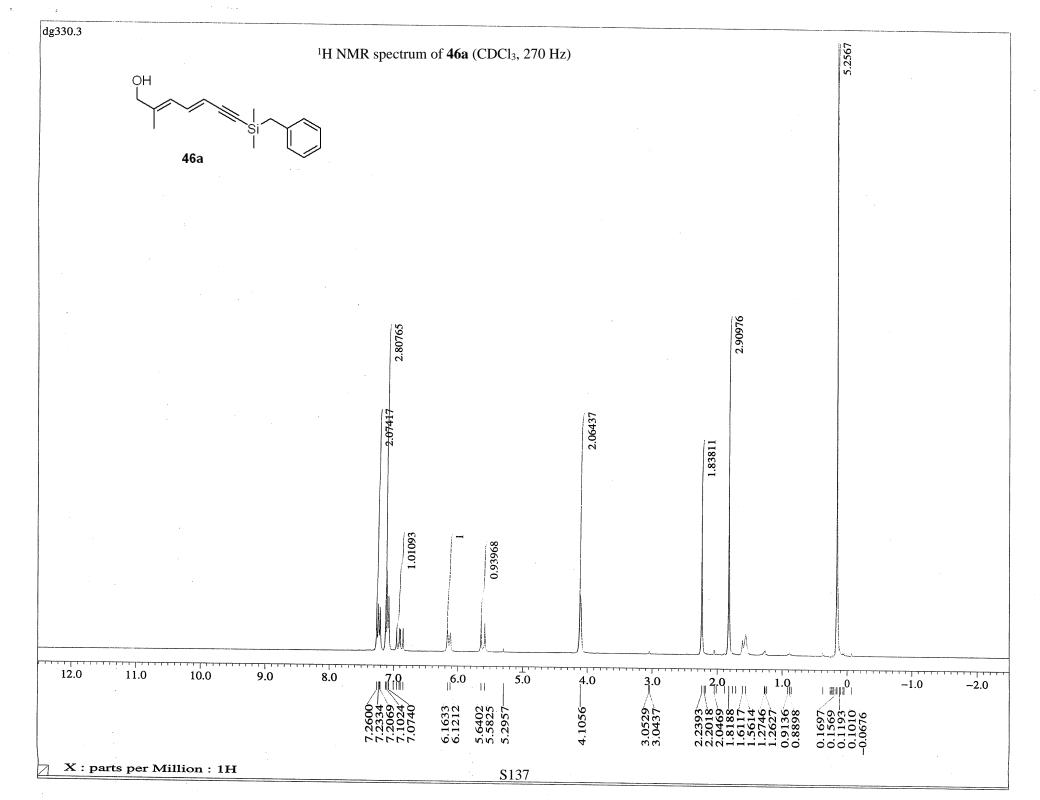


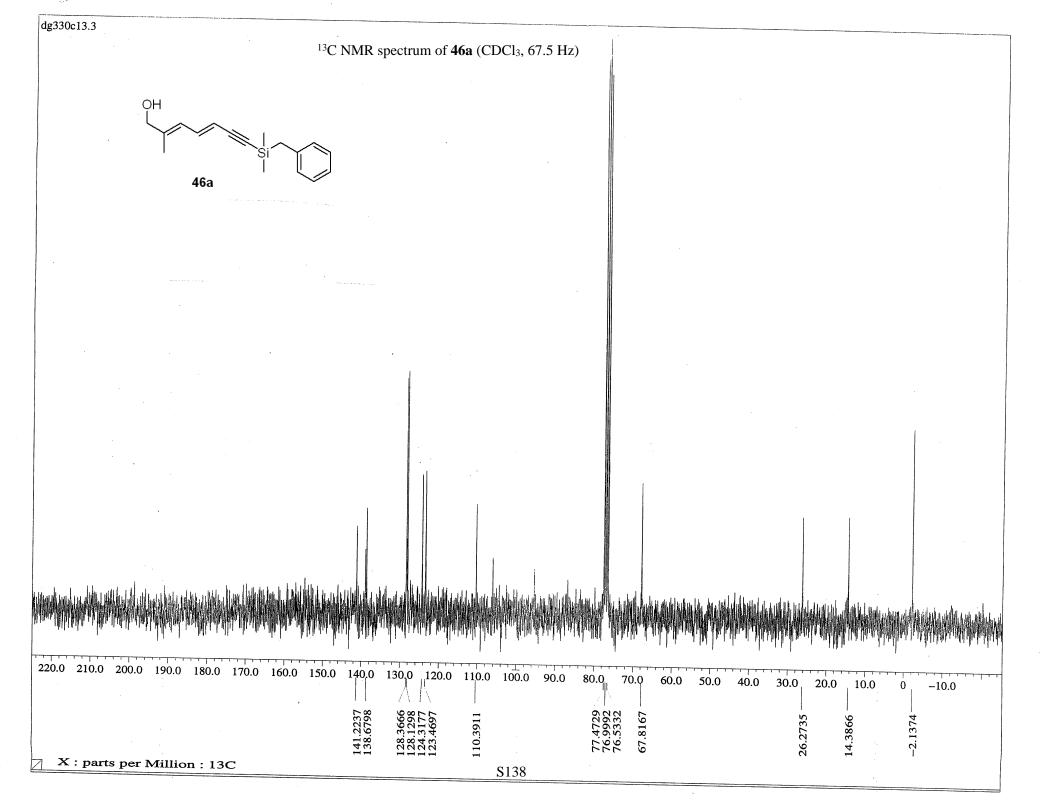


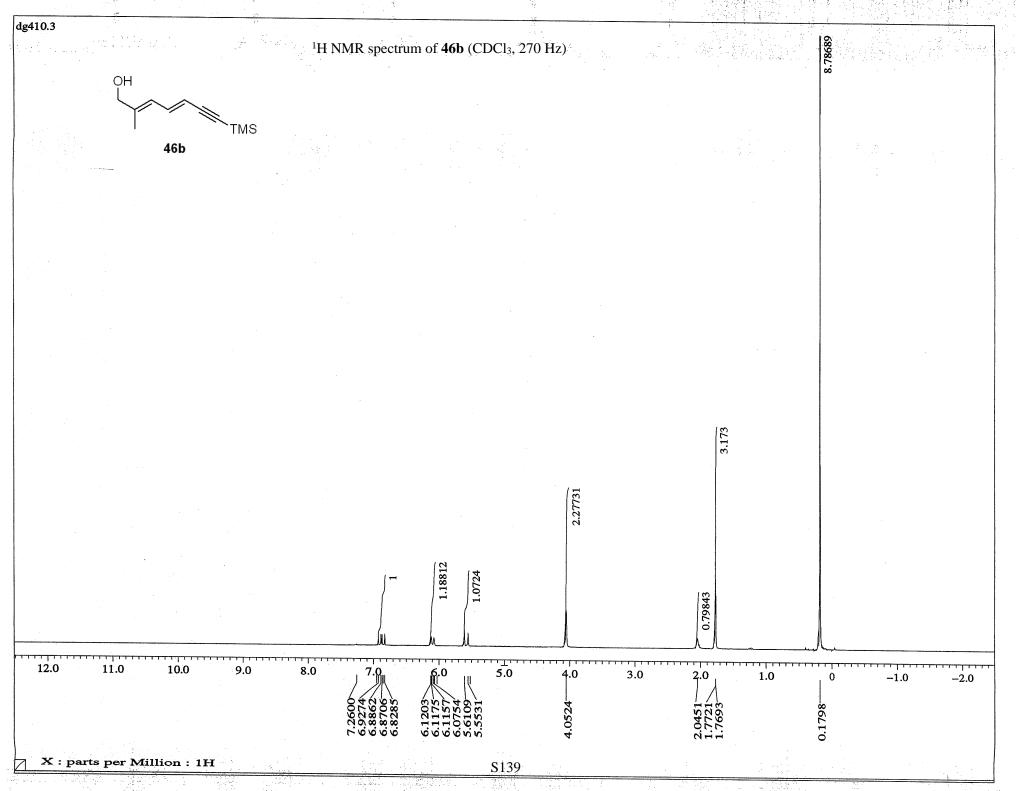


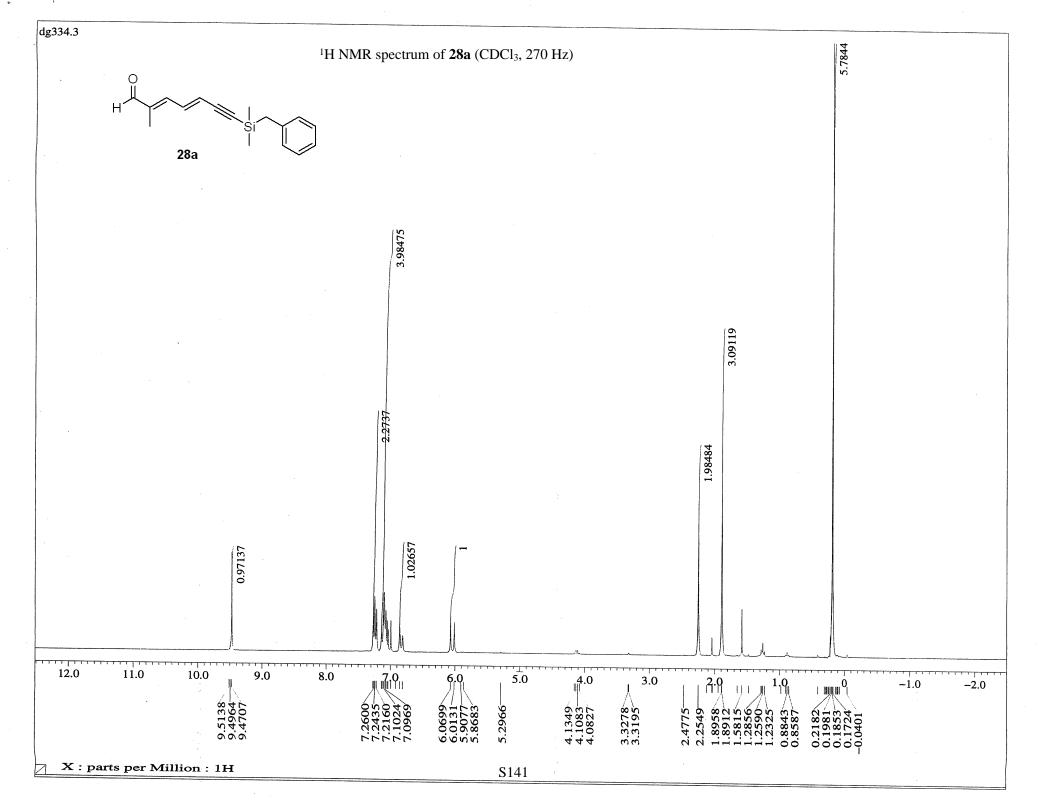


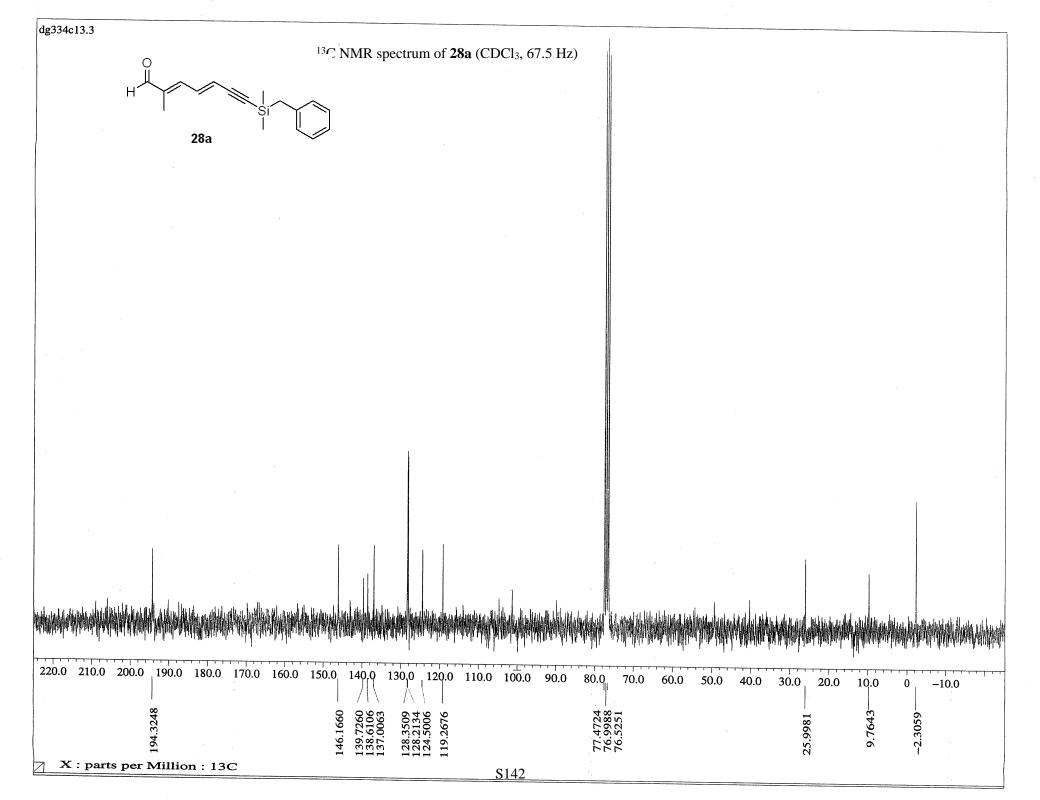


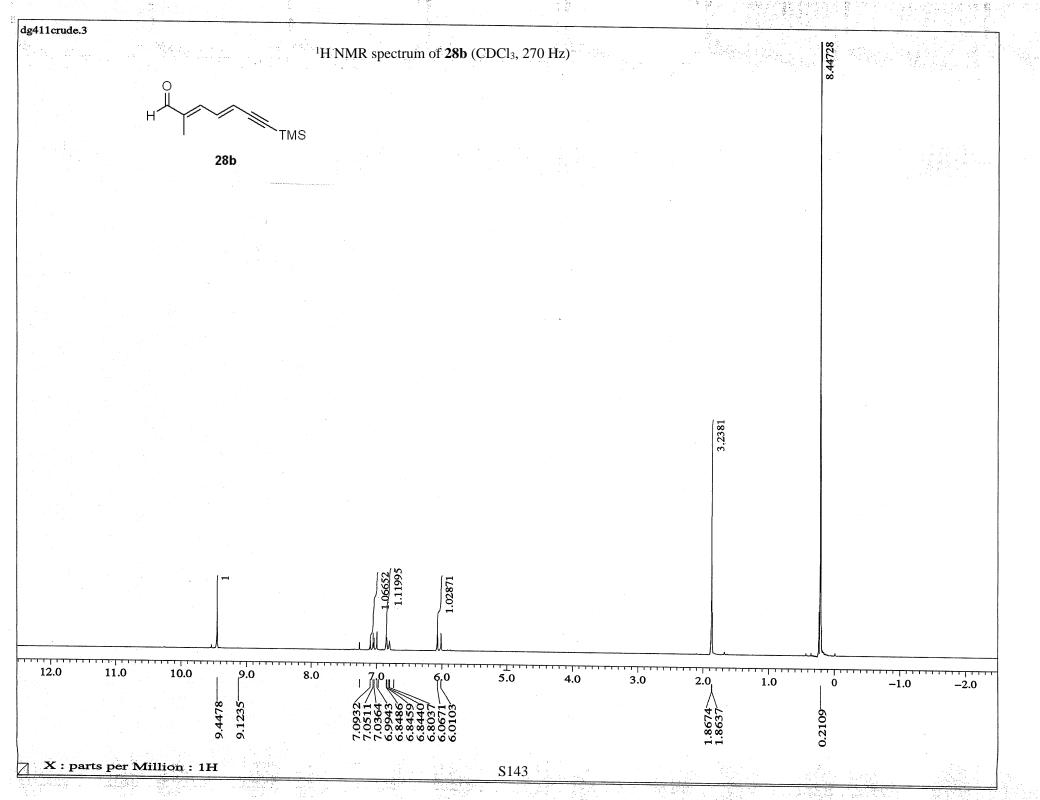


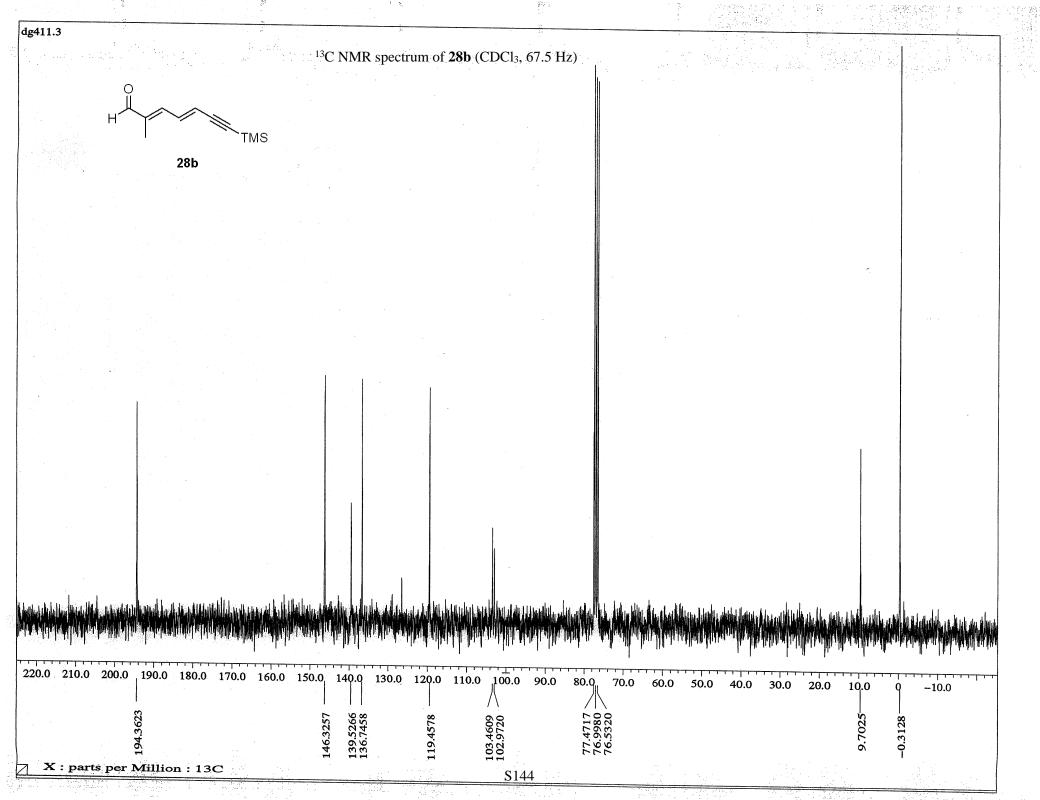


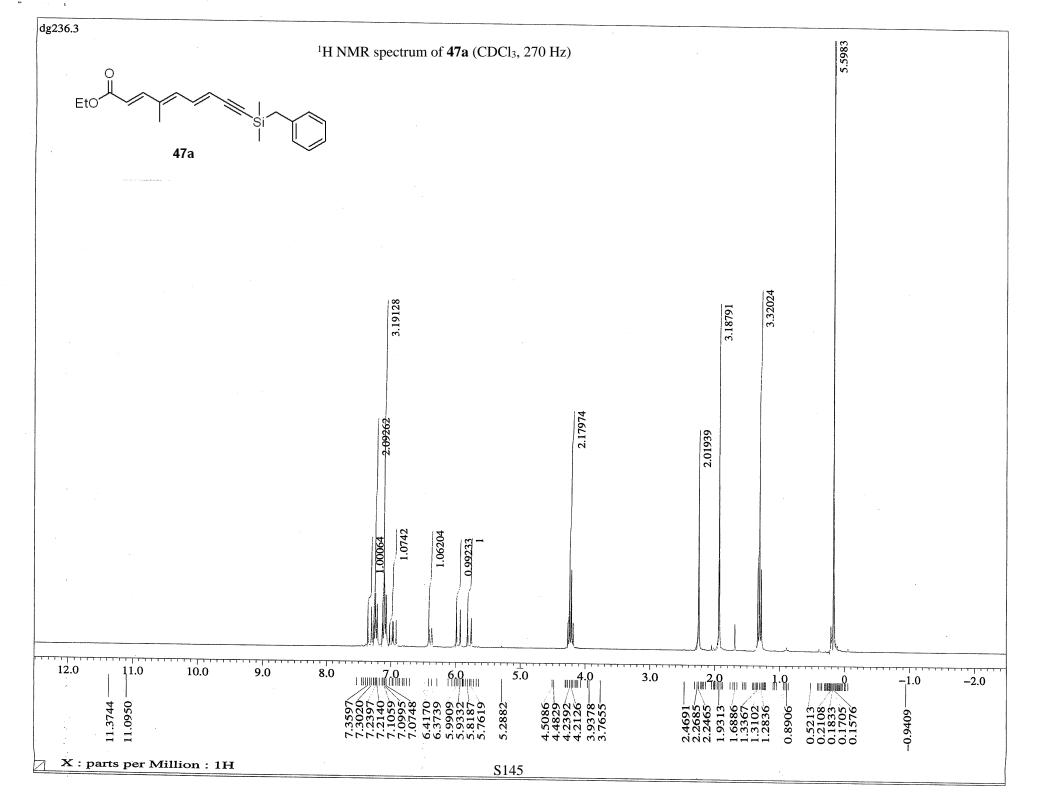


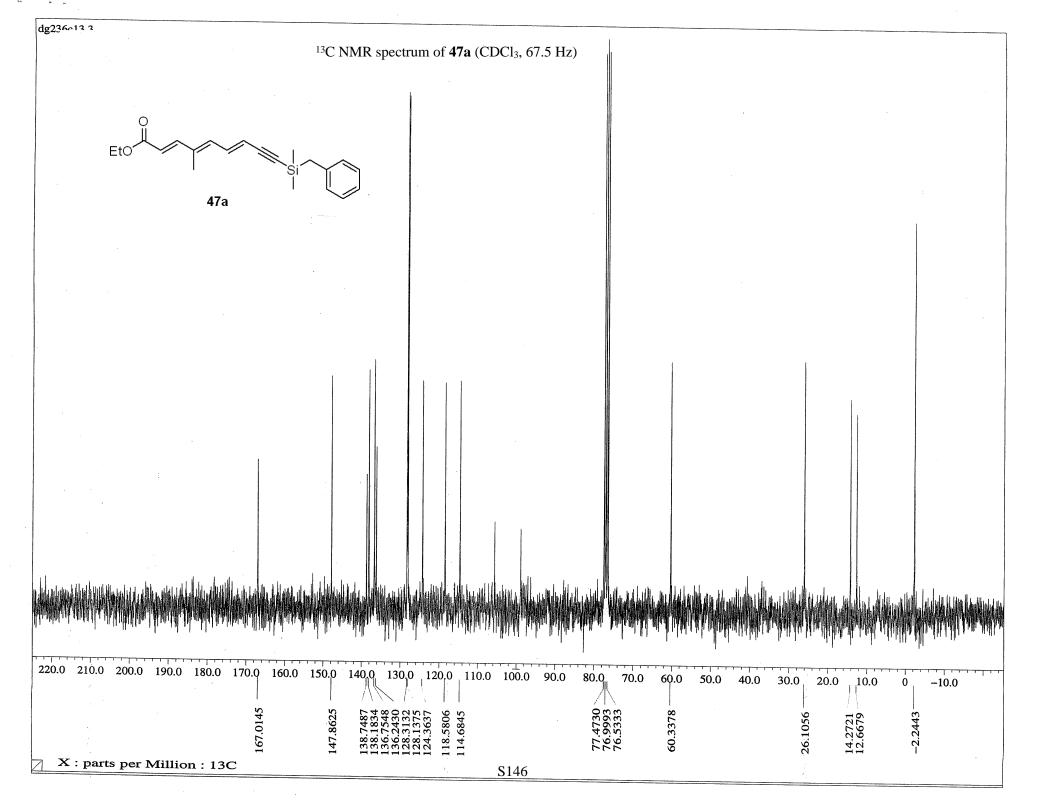


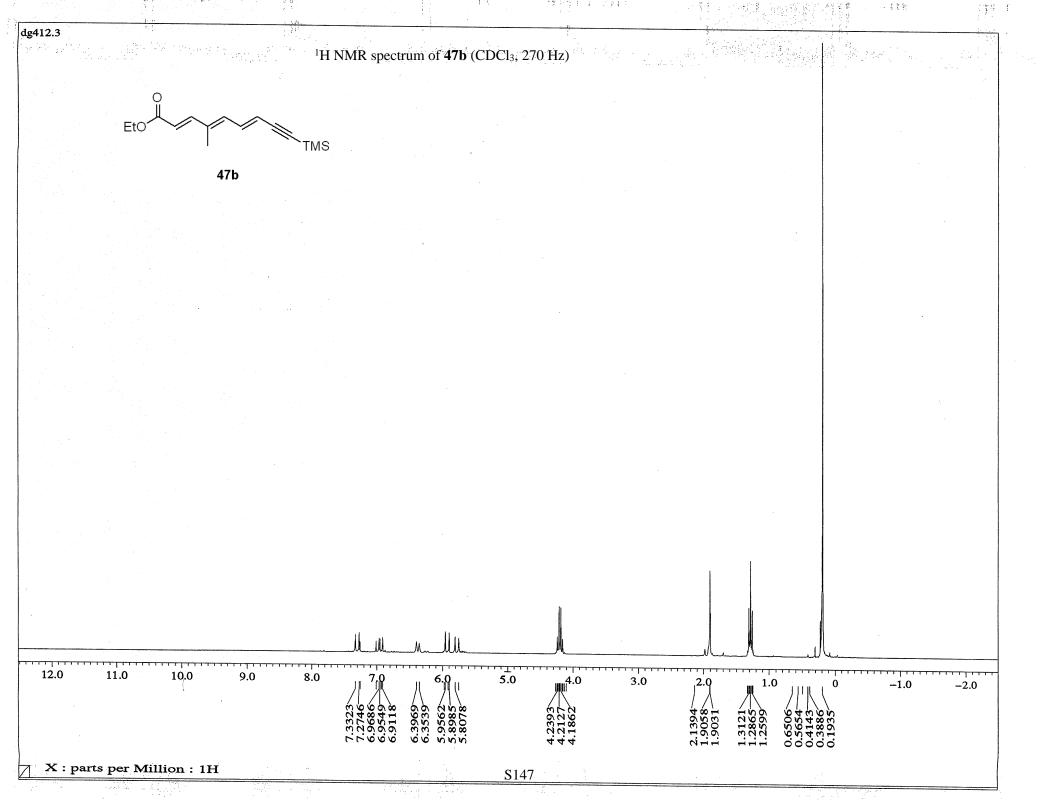


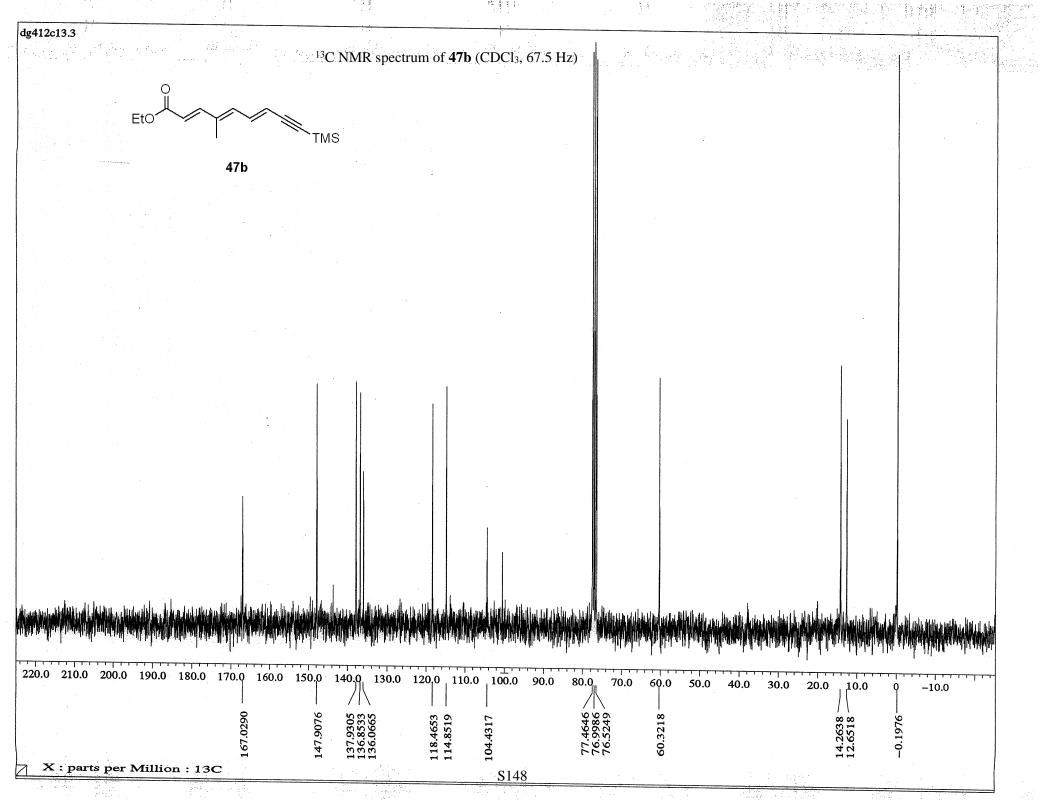




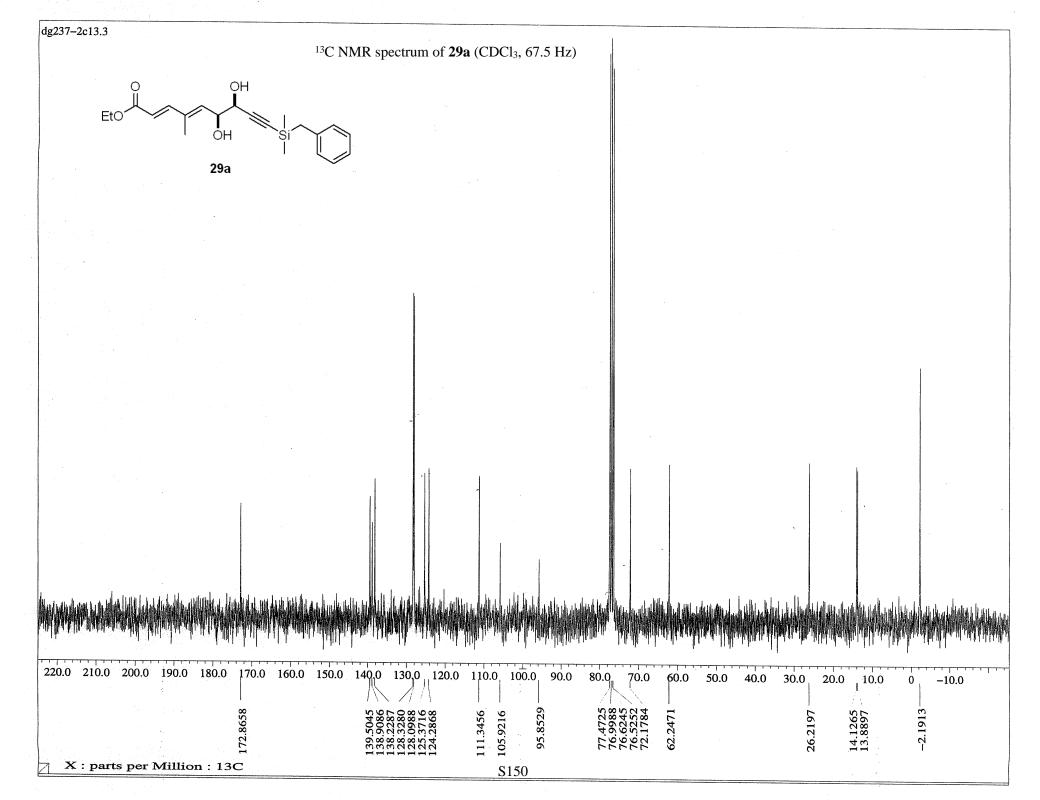

10010 0								
410C13.3		n de la constant Anna de la constante de la cons	³ C NMR spectrum of	A6b (CDC1- 67 5 1	J 7)			
			C INVIX SPECIFUM OI		12)	したたい。 「「「「「「」」」 「」	가 있는 것은 가 가 가 있는 것이다. 같은 것 	
	OH							
	line Nation	TMS	en e		· · · ·			
	46b	na artista Antaria						
• • • • • • • • •				1	, I			
	station and the							
and the second se			neininan har den her her han han her han her	when the property of the second second	Harlan and The Albert House and the			
					A second s	ed a construction relation of the second	. ա.հ.մ. ու հոմու ա. հ.մ.ննան	يعلواه يرامياها هايمواجينا فينكم ببنيا تقادا تناكبه بن
0.0 210.0	200.0 190.0 180	0.0 170.0 160.0 150	0 140,0 130.0 120.0	110.0 100.0 90.0	80.0 70.0 60.0	50.0 40.0	30.0 20.0 10.0	0 0 -10.0
			141.0245 138.4118 123.4157	110.4058 104.7908 96.9298	77.4646 76.9986 76.5250 67.6633		14.3249	-0.0983
			41.(38.4 23.4	10.4 04.7 96.9	77.4 76.5 67.6		4.3	
			and and		· · · · •			• •

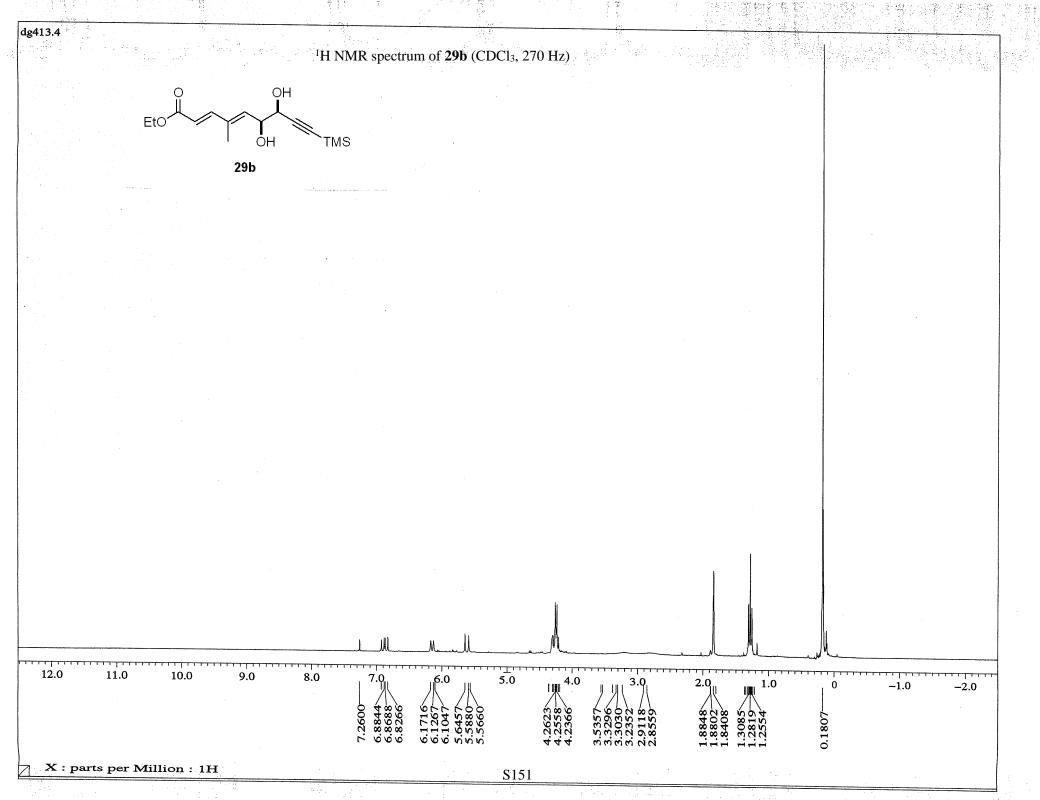


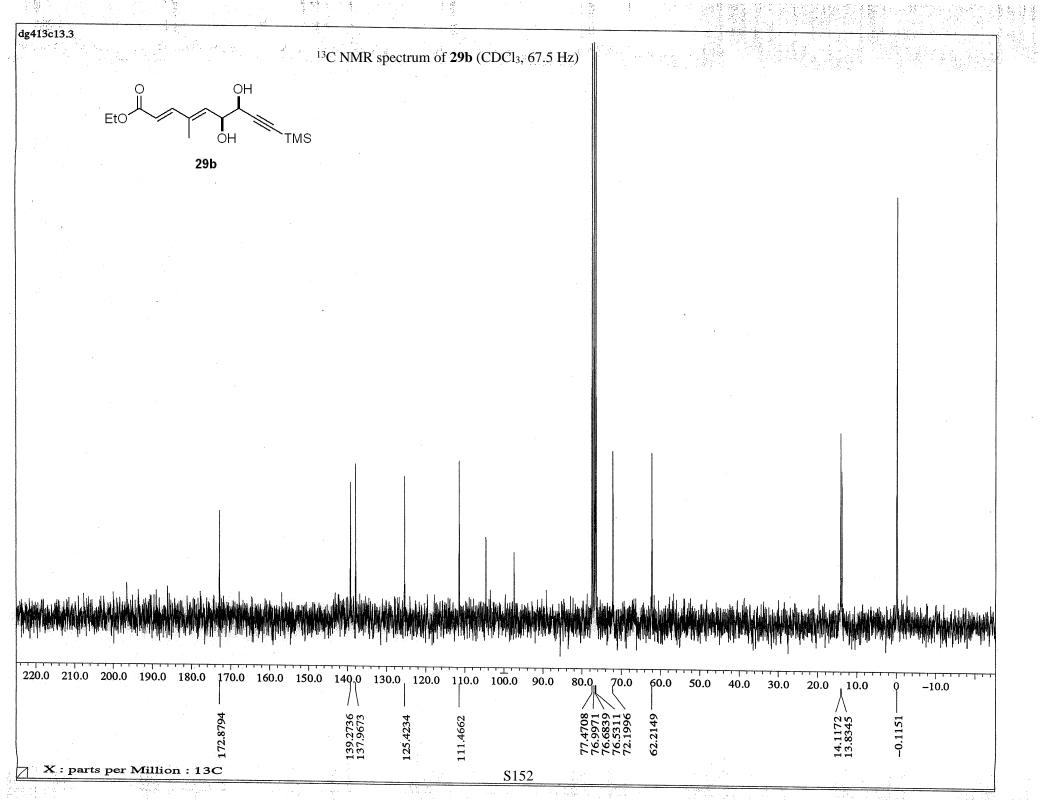


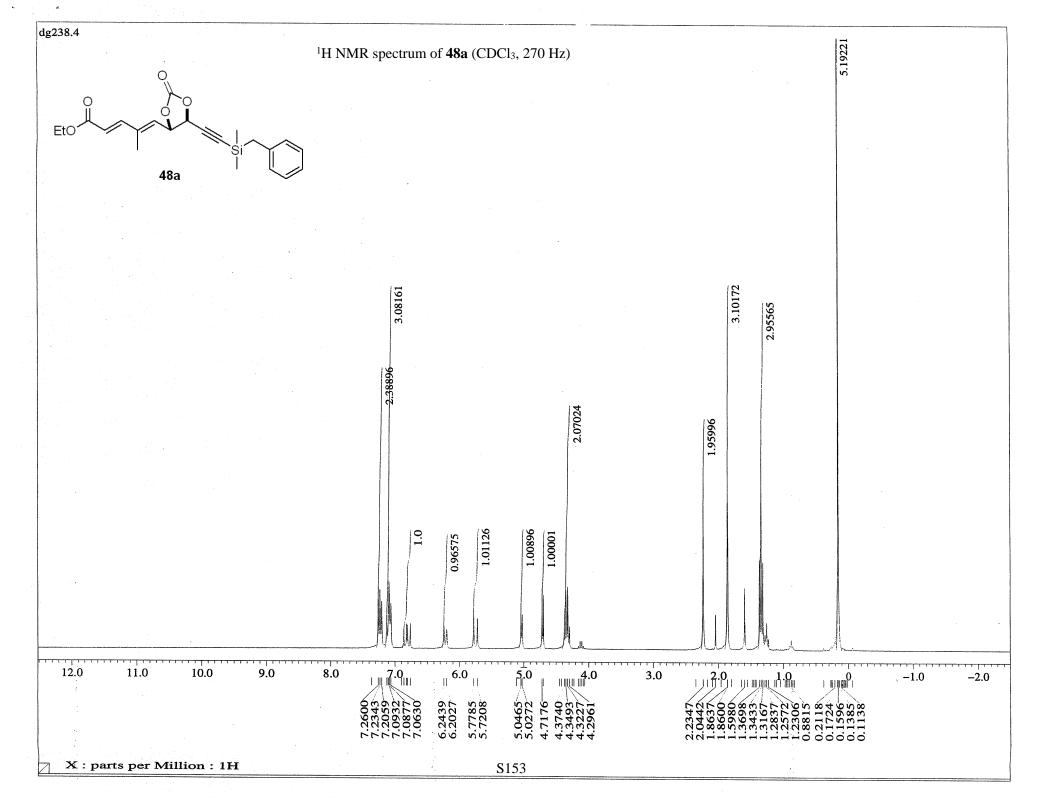


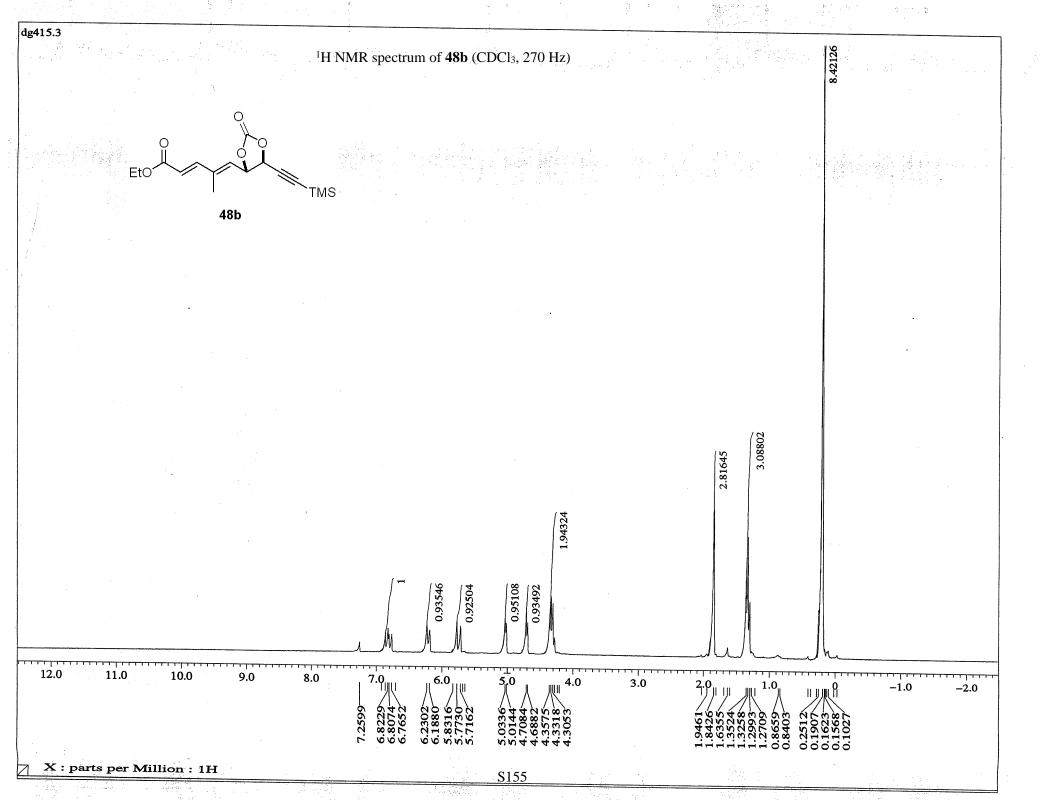


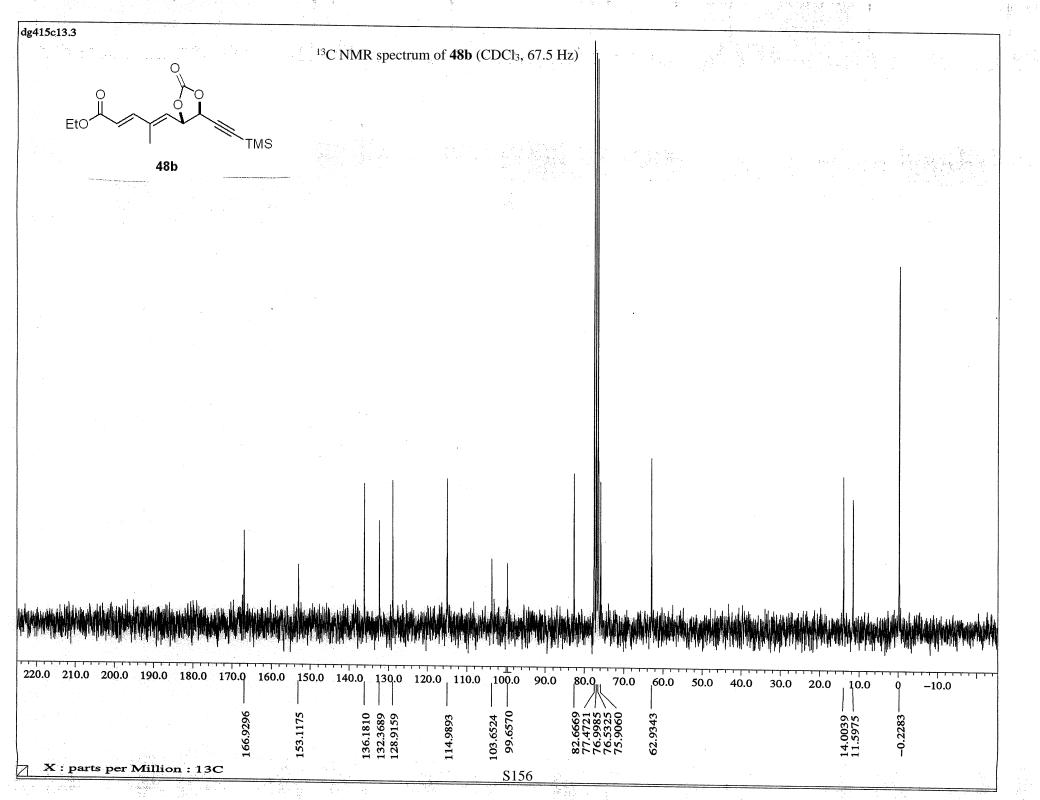












dg238c13.4	¹³ C NMR spectrum of 48a	(CDCl ₃ , 67.5 Hz)			
0 \					
Eto	\sim				
48a					
			1		
n an					
andra andra andra anna an			htten stand in nie werden die stand sta In the stand st	inonpolitation interference and inflation practices	Balannyi lakkin piran mangaring panga katak
220.0 210.0 200.0 190.0 180.0 170.	0 160.0 150.0 140.0 130.0 120.0 1	10.0 100.0 90.0 80.0 70.	0 60.0 50.0 40.0	30.0 20.0 10.0	0 -10.0
	527 9527	83 - 83 - 964 - 96	551 -	- 996 70 141	2526
	166.9527 153.0413 153.0413 136.4333 132.5983 132.5983 132.5983 132.5983 124.3936 124.3936	104.9283 98.1064 82.6442 77.4723 76.9987 75.9673 75.9673	62.9651	26.0896 14.0270 11.6741	-2.25
X : parts per Million : 13C					

dg244-11_27Apr2005

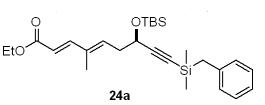
.87

¹H NMR spectrum of **24a** (CDCl₃, 600 Hz)

Archive directory: /export/home/odoherty/vnmrSys/data Sample directory: dg244-11_27Apr2005 File: PROTON

Pulse Sequence: s2pul

1 1 1 1 1 1


13

12

11

Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6670037 MHz DATA PROCESSING FT size 65536 Total time 0 min, 46 sec

7

S157

6

5

4

3

2

1

T

-0

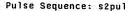
T T

-1

ppm

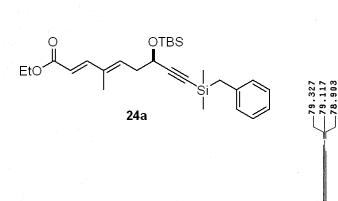
~ 7

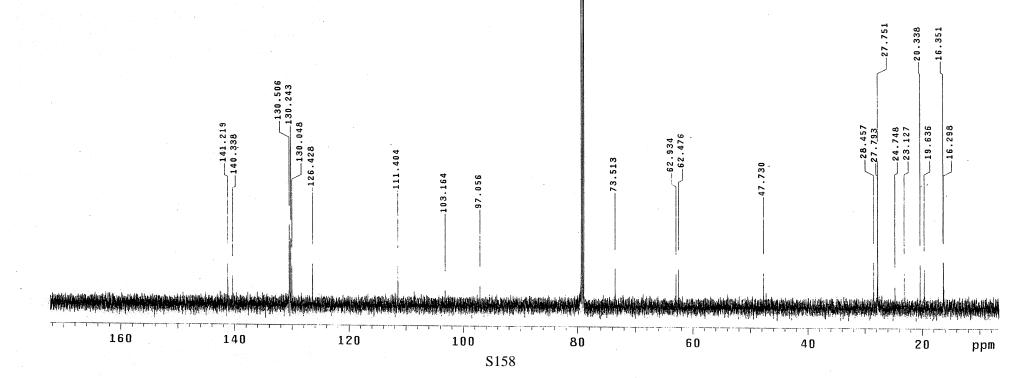
8

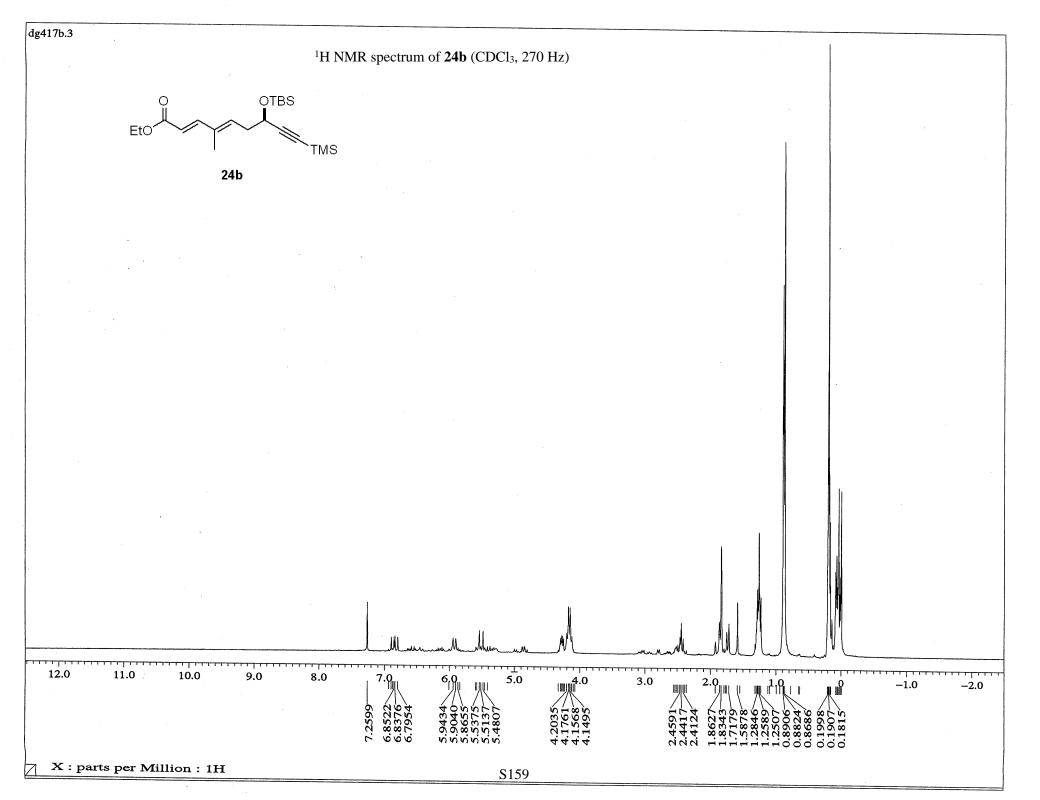

T

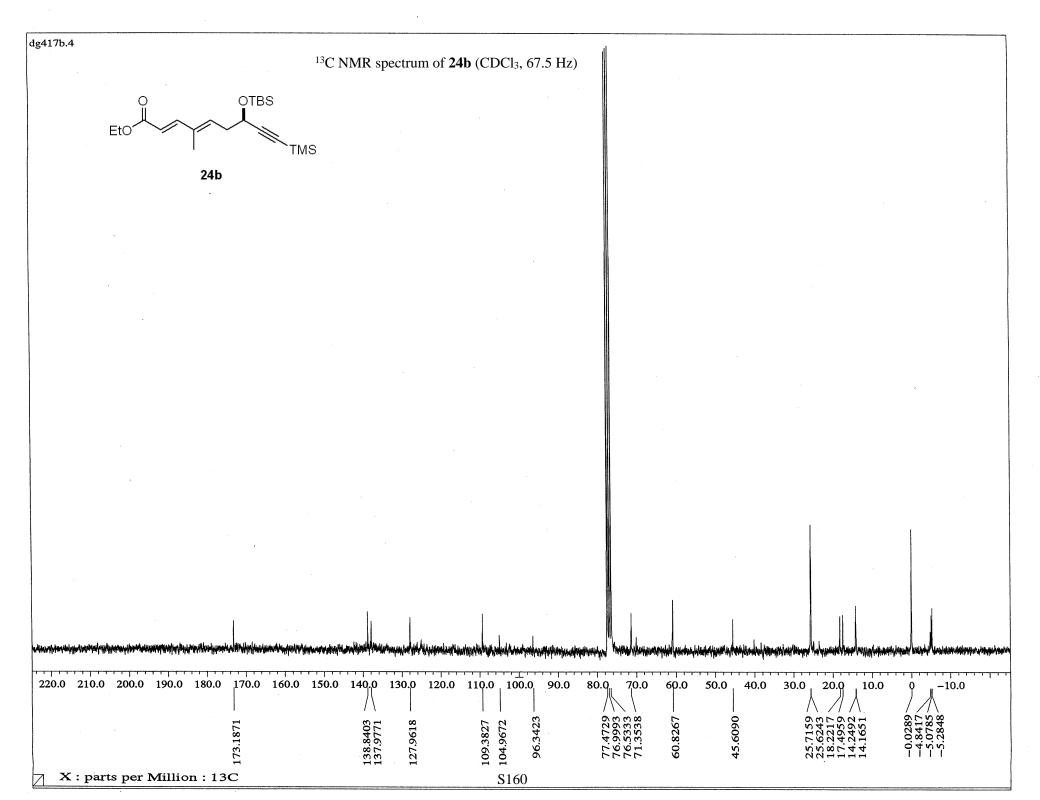
10

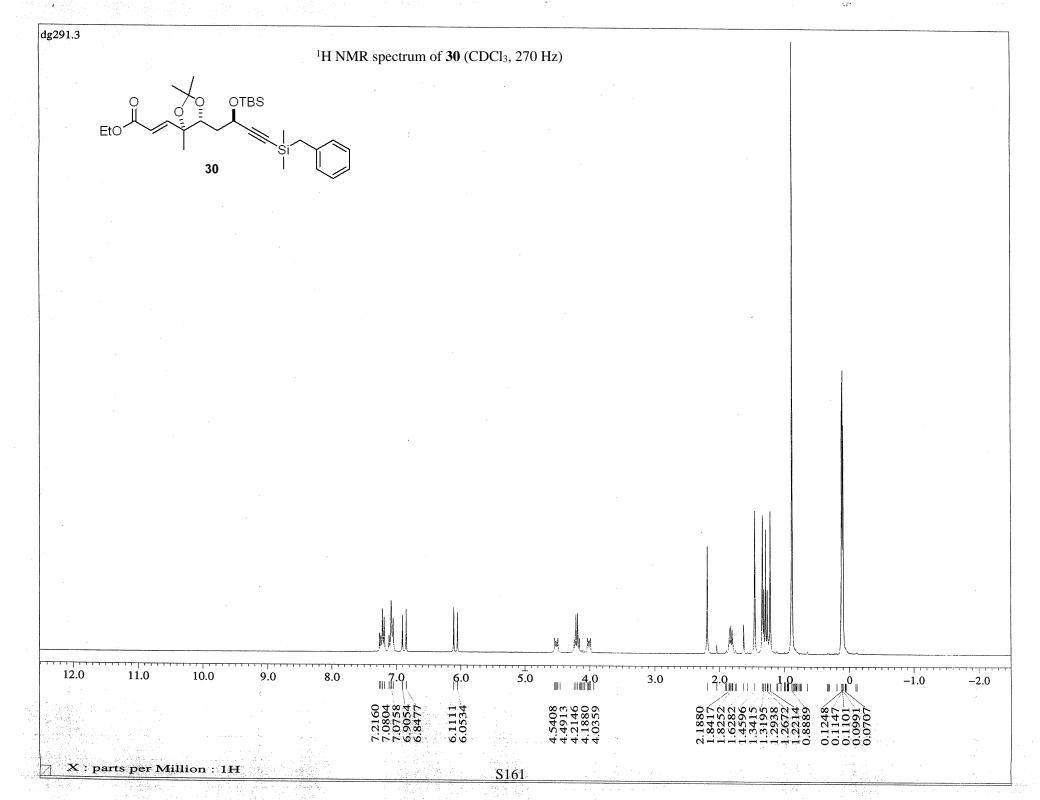
9

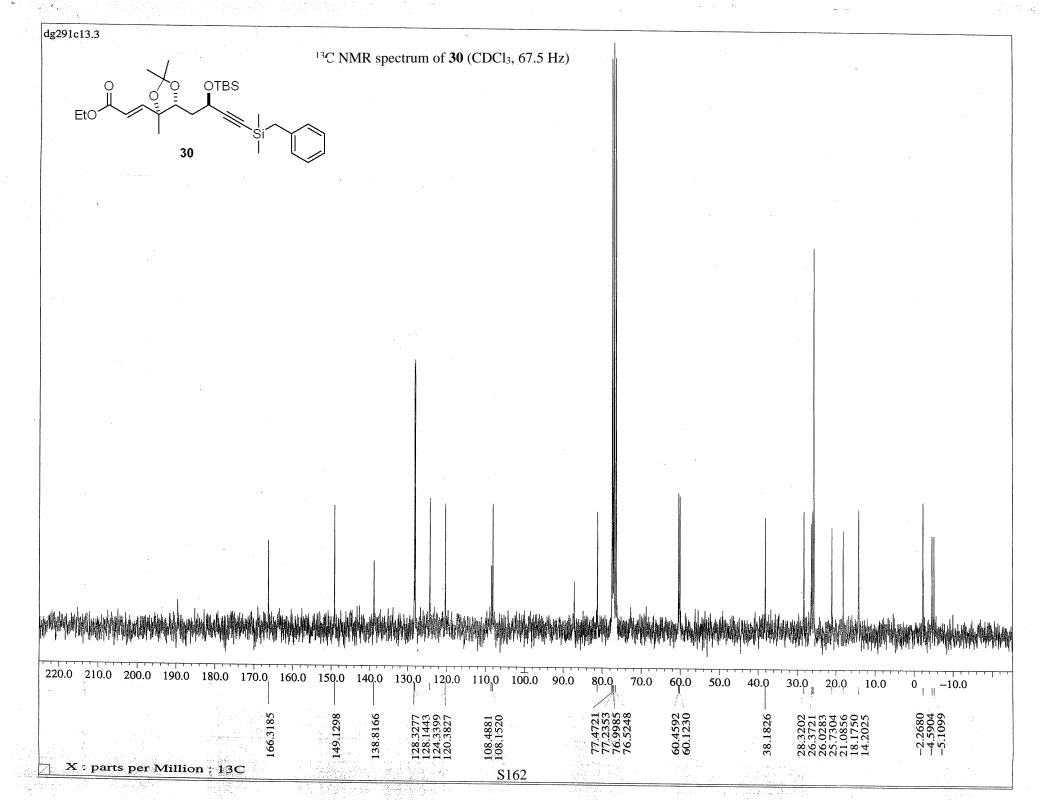

۰

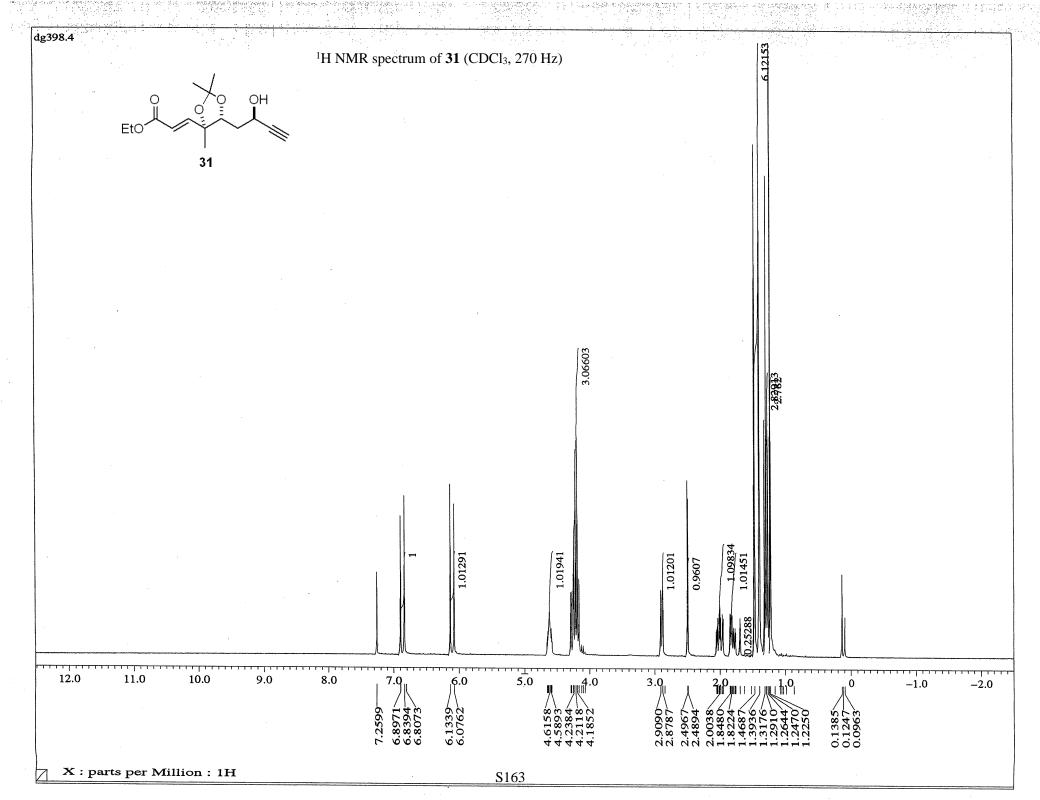

Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg244-11_27Apr2005 File: CARBON

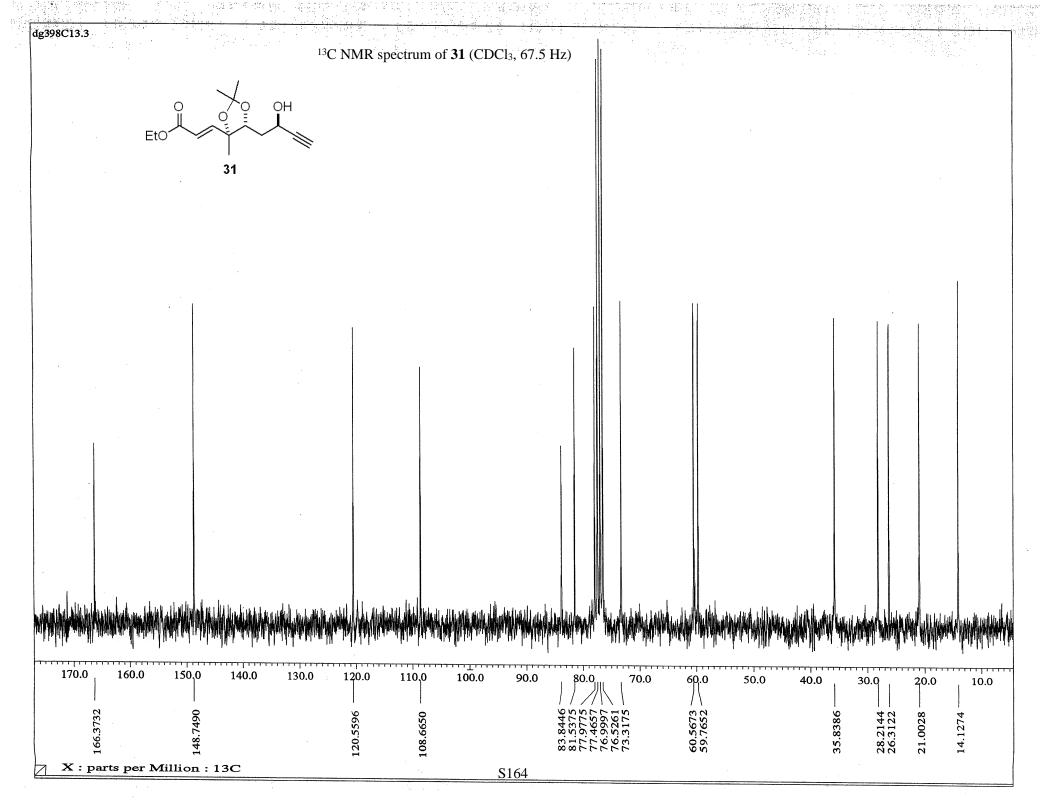


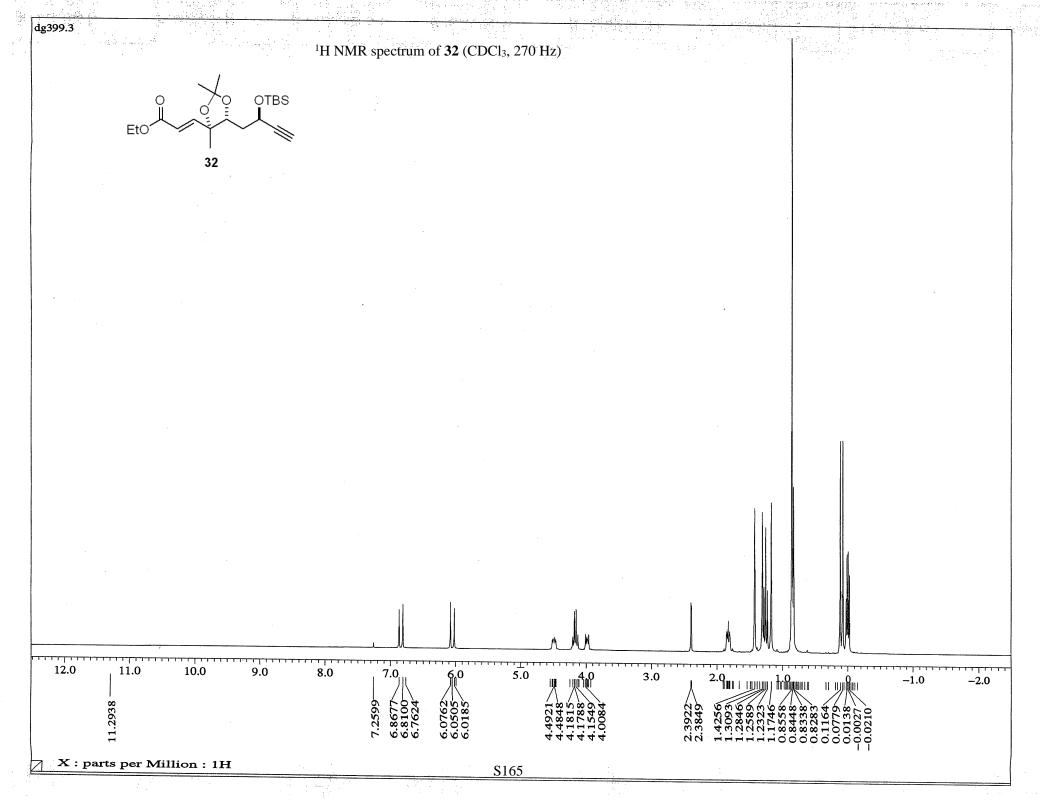

Solvent: CDC13 Temp. 28.0 C / 301.1 K User: 1-14-87 INOVA-600 "inova600"

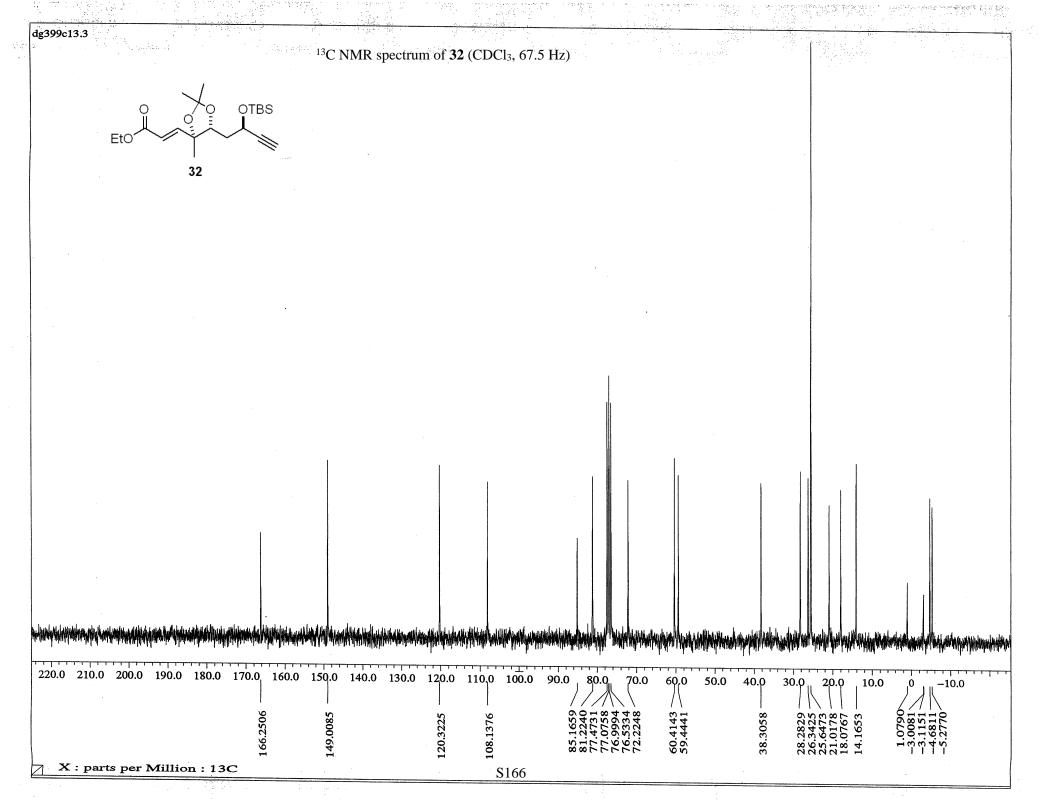

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 37700.3 Hz 256 repetitions DBSERVE C13, 150.7860656 MHz DECOUPLE H1, 599.6700024 MHz Power 40 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 9 min, 51 sec

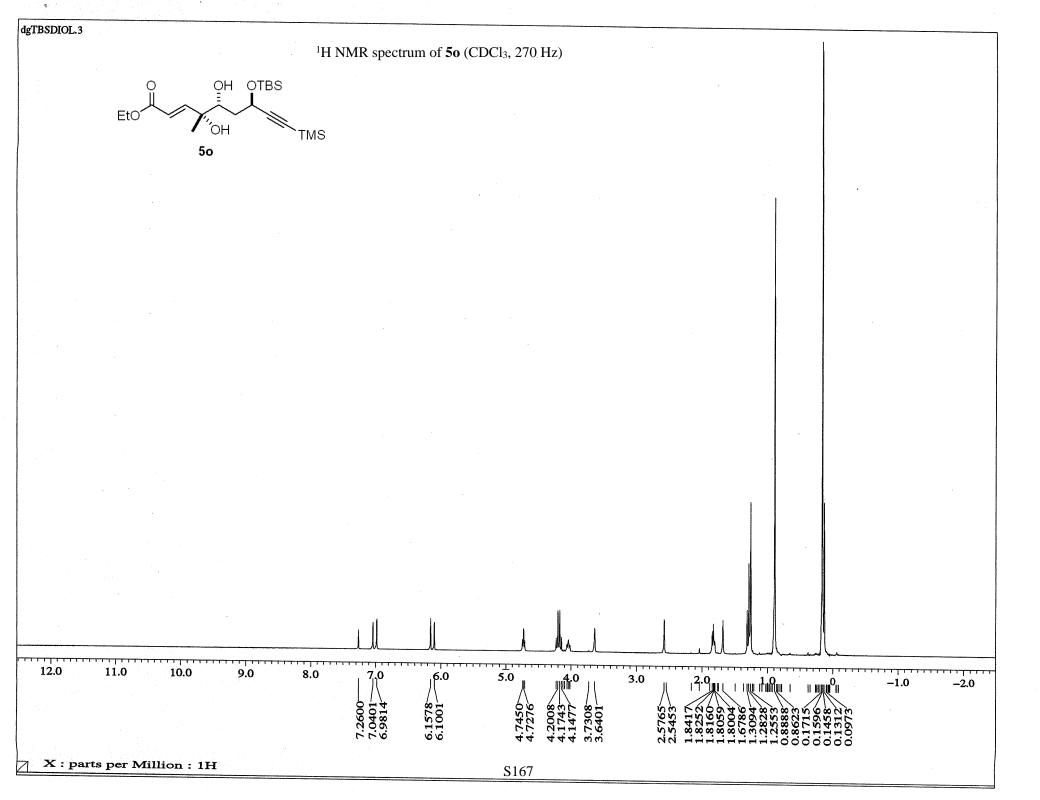


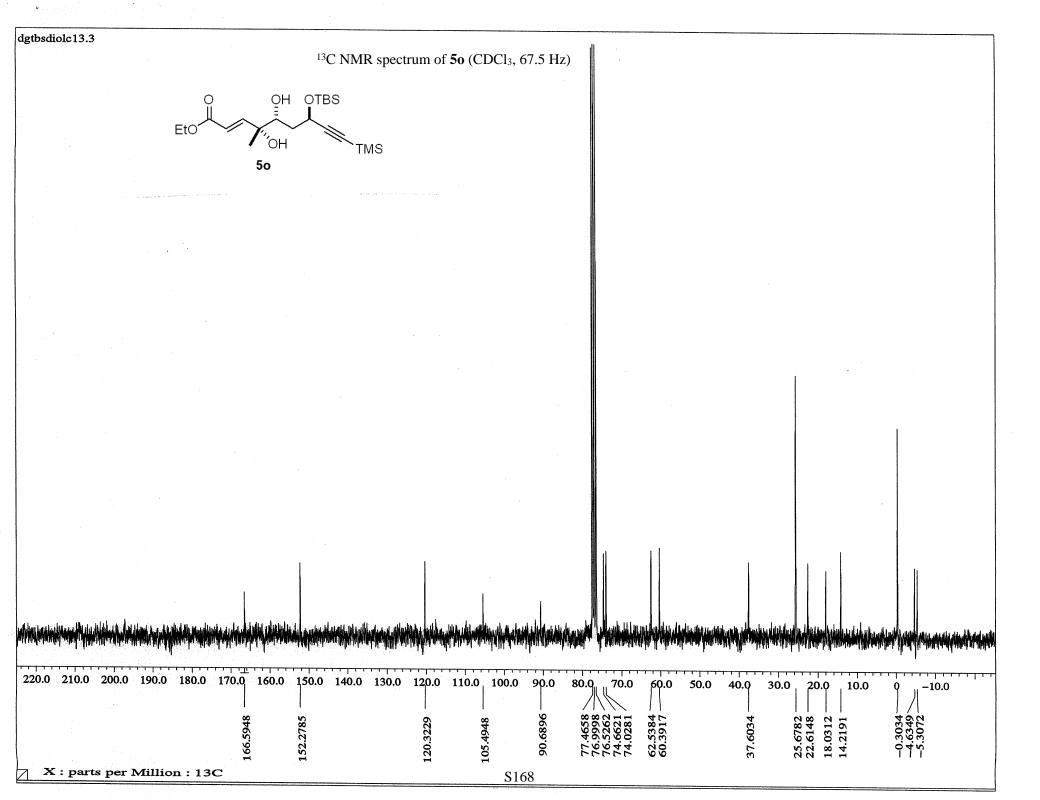


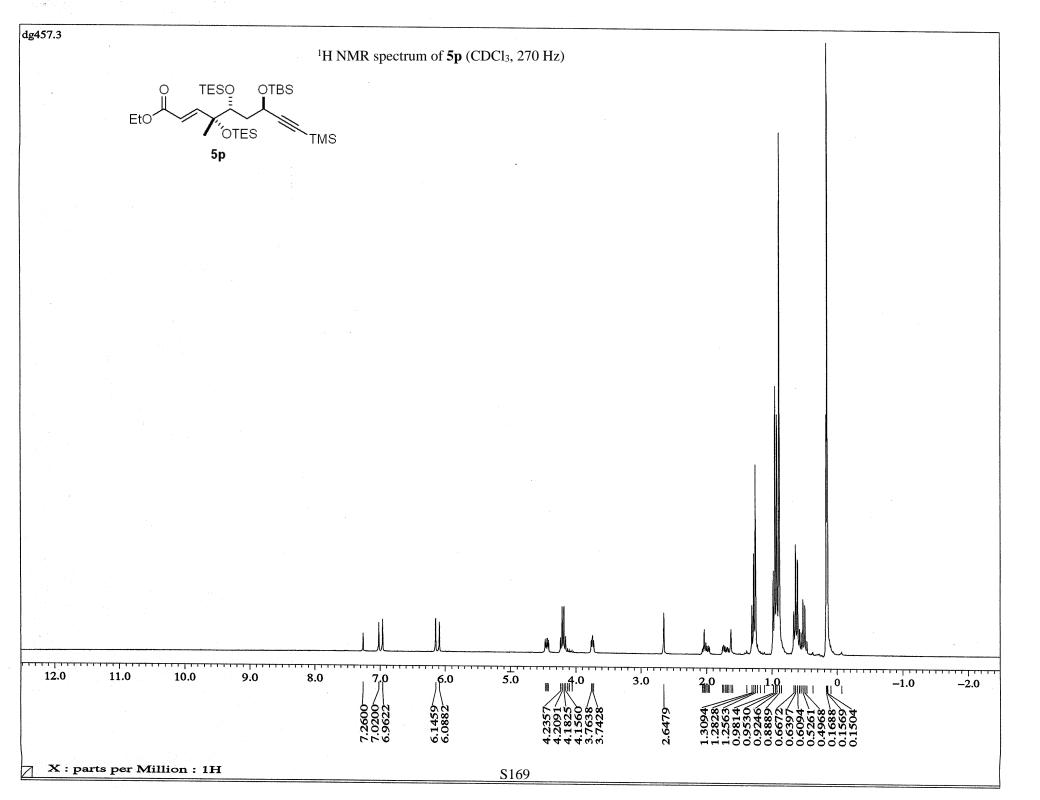


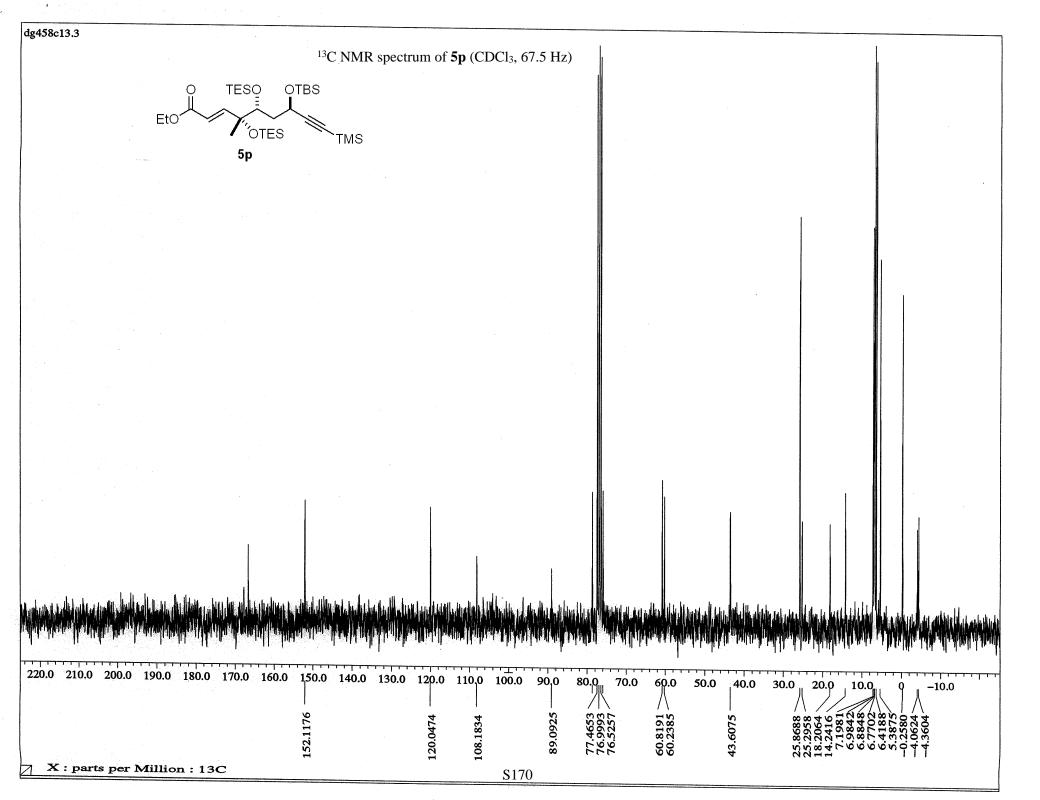


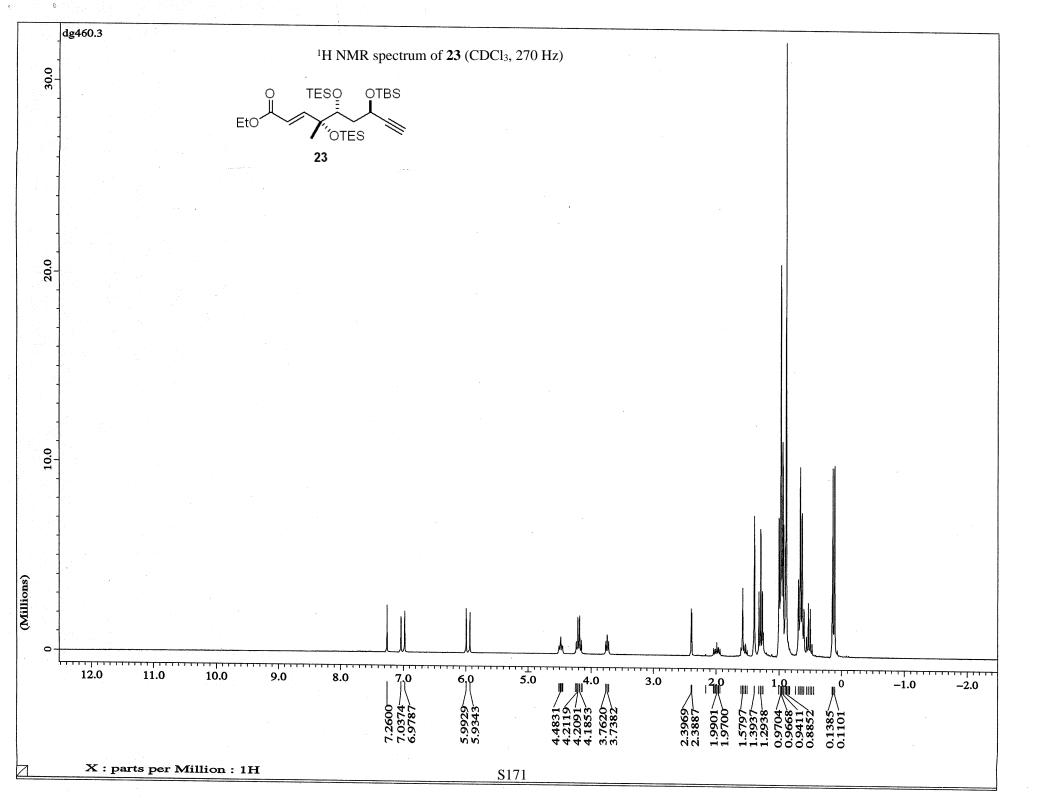


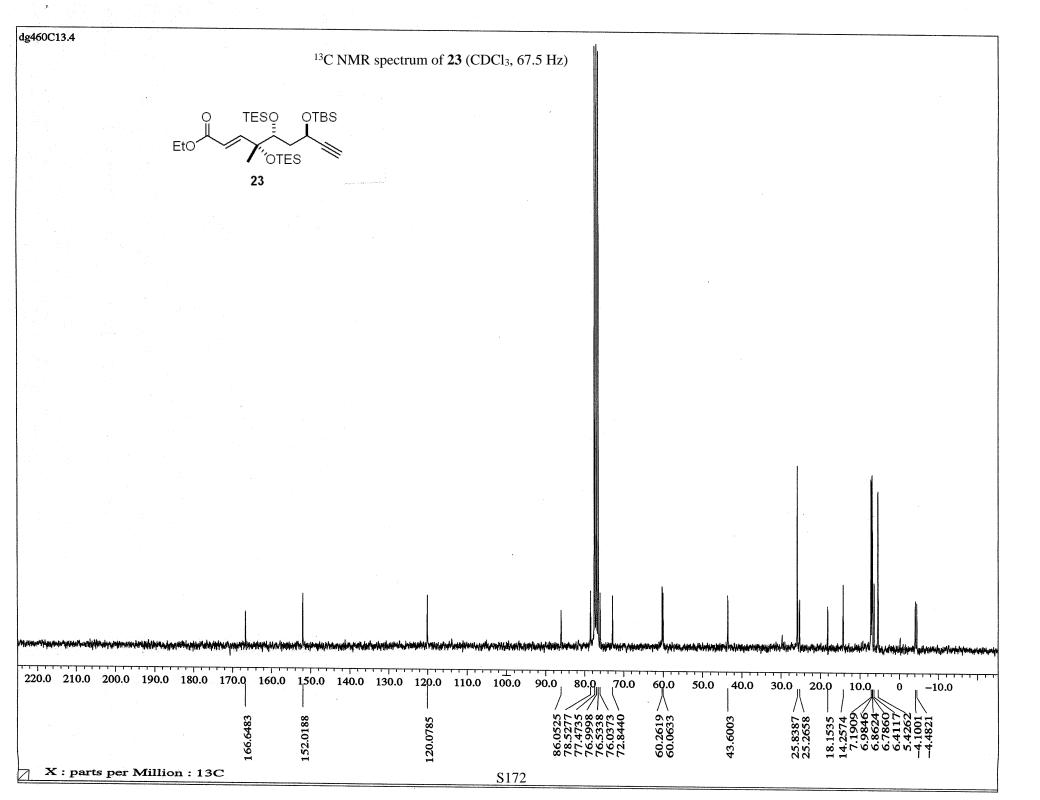


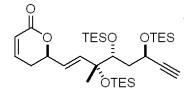




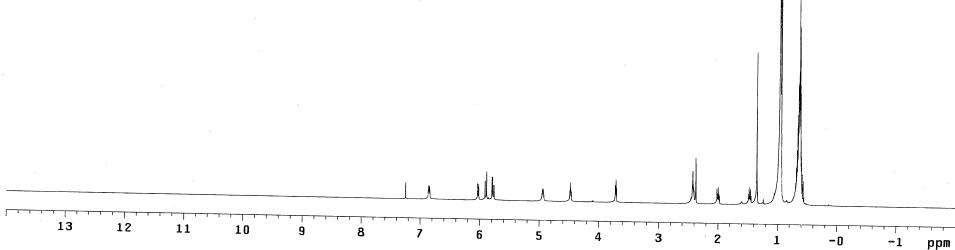






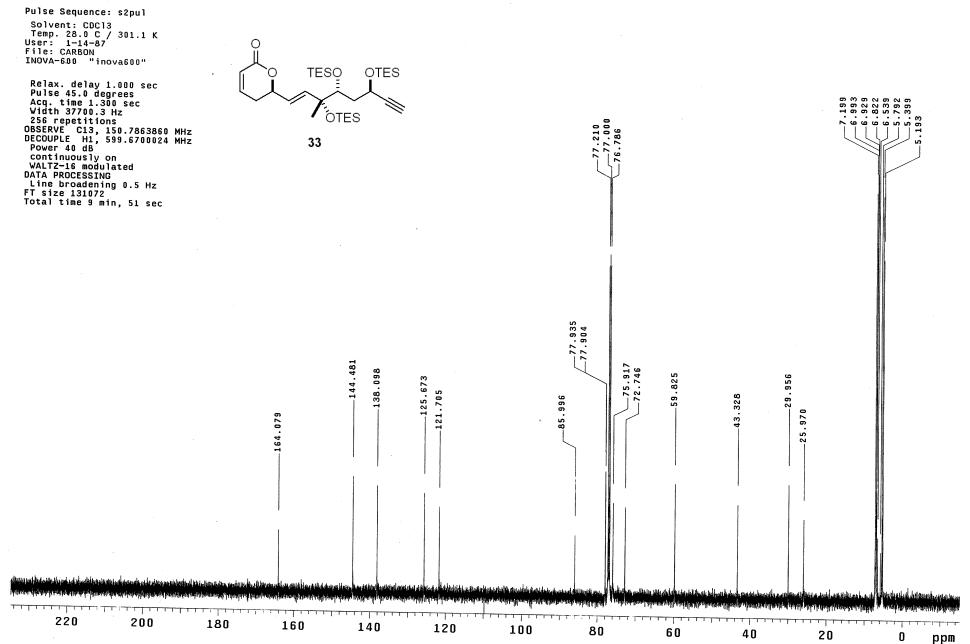


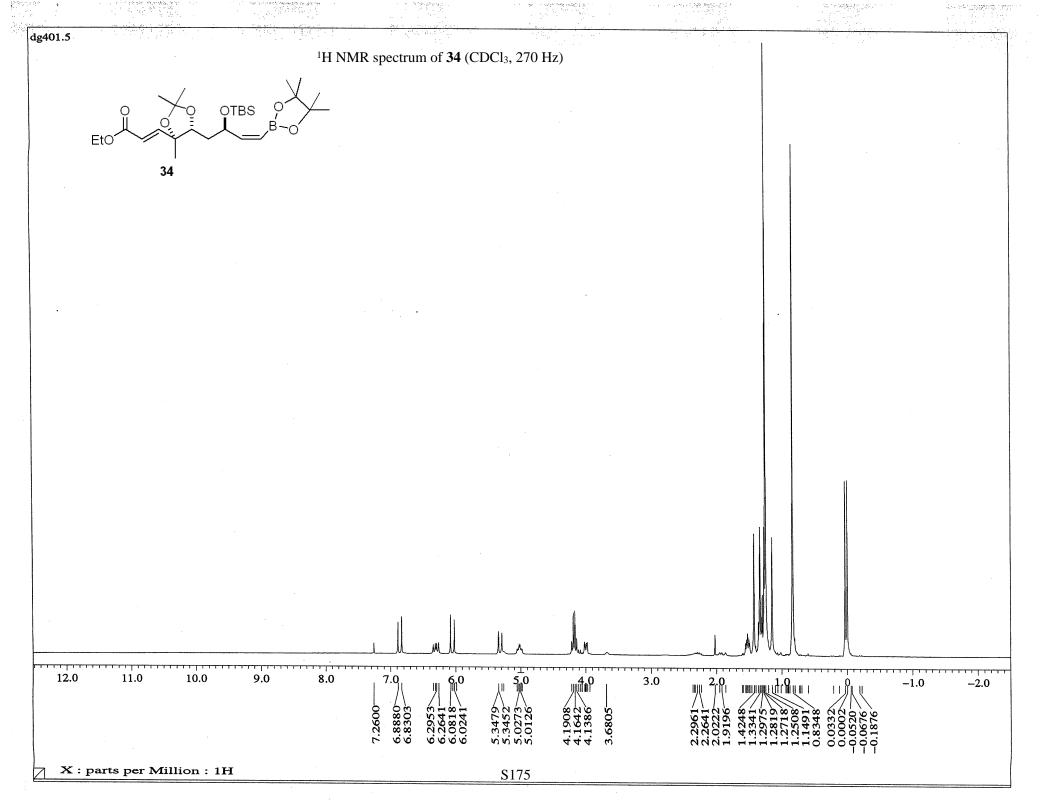
Archive directory: /export/home/odoherty/vnmrsys/data Sample directory: dg376_21Nov2005 File: PROTON

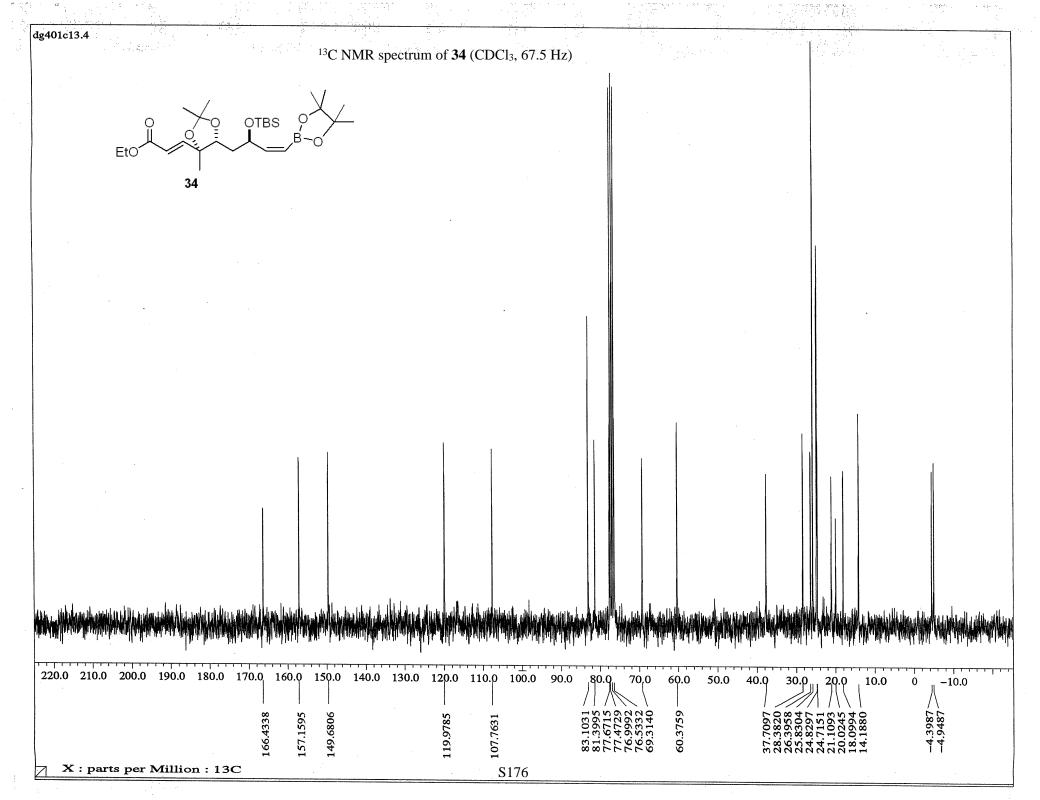

Pulse Sequence: s2pul

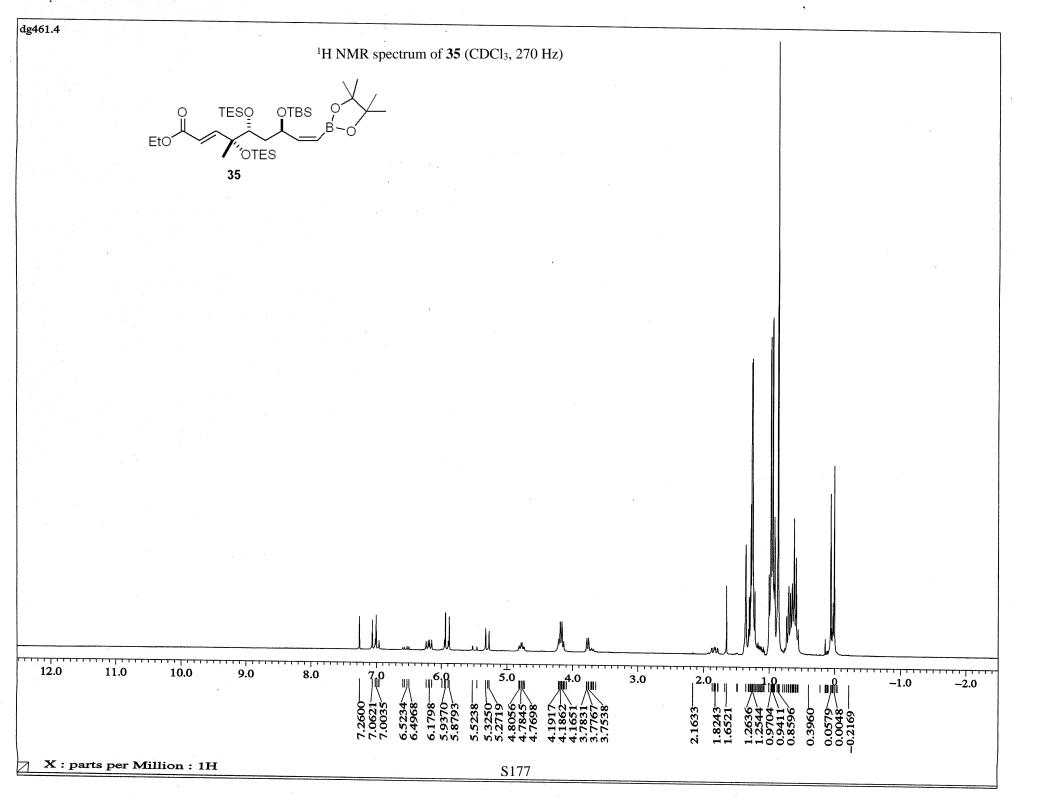
Solvent: CDC13 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

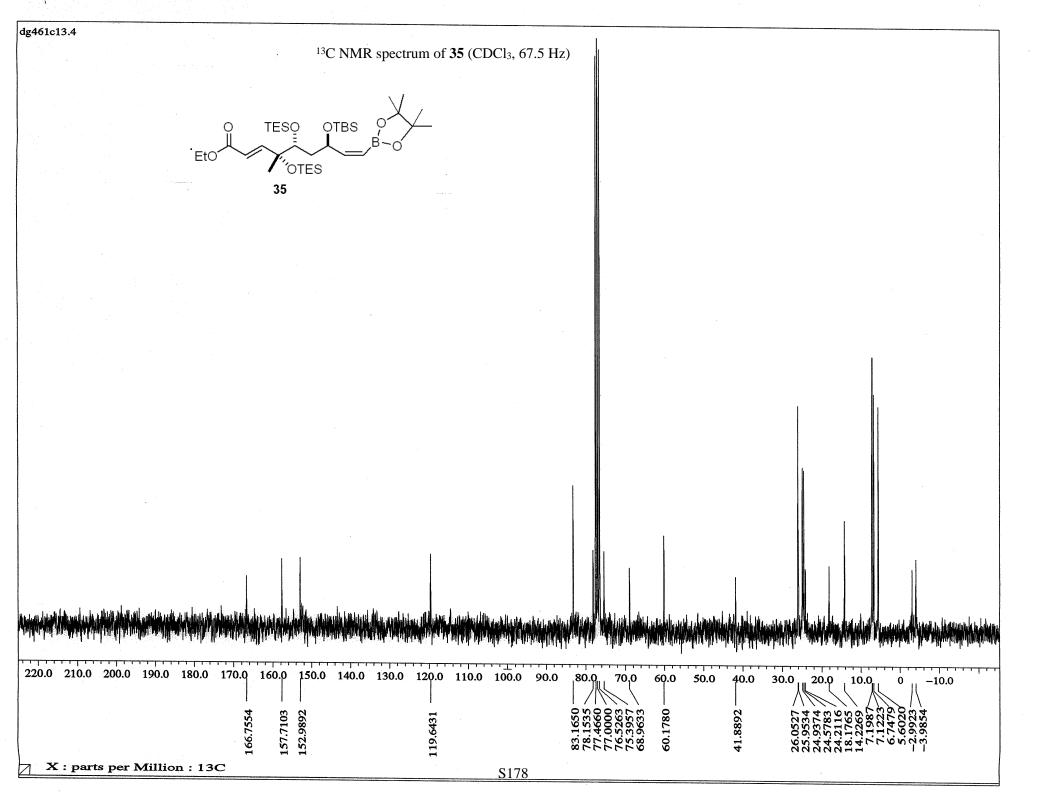
Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6670039 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 65536 Total time 0 min, 46 sec


33

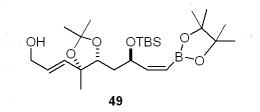



S173


dg376_21Nov2005

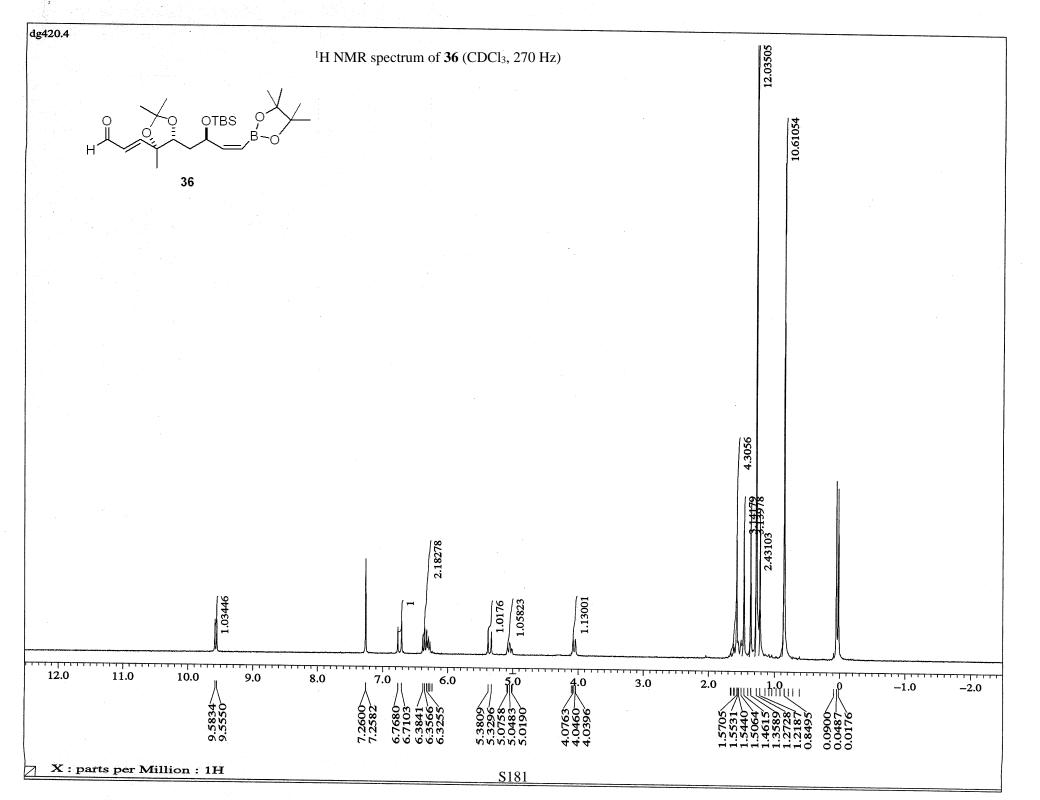

Archive directory: /export/home/odoherty/vnmrsys/data, Sample directory: dg376_21Nov2005

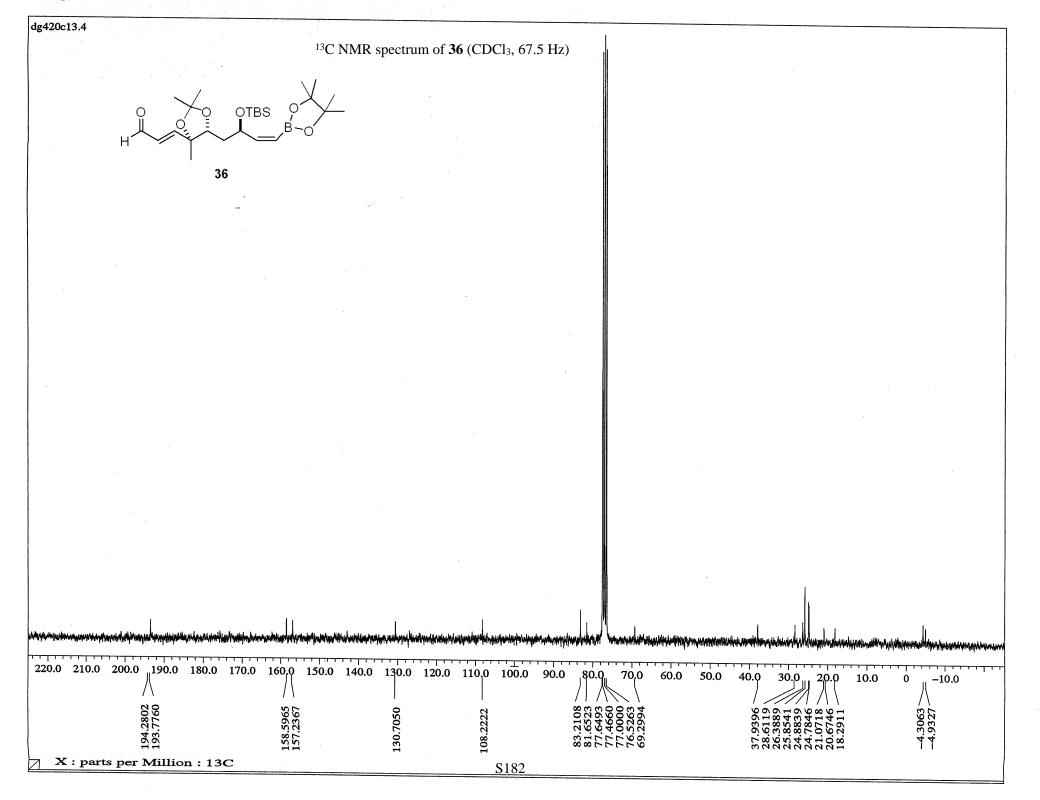




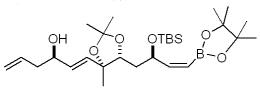
¹H NMR spectrum of **49** (CDCl₃, 600 Hz)

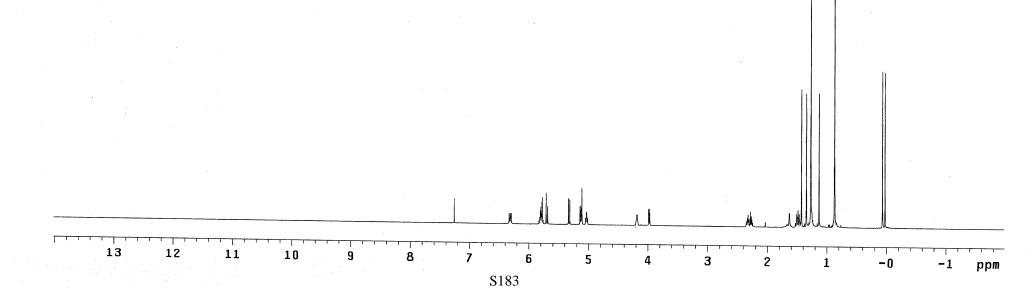
S179

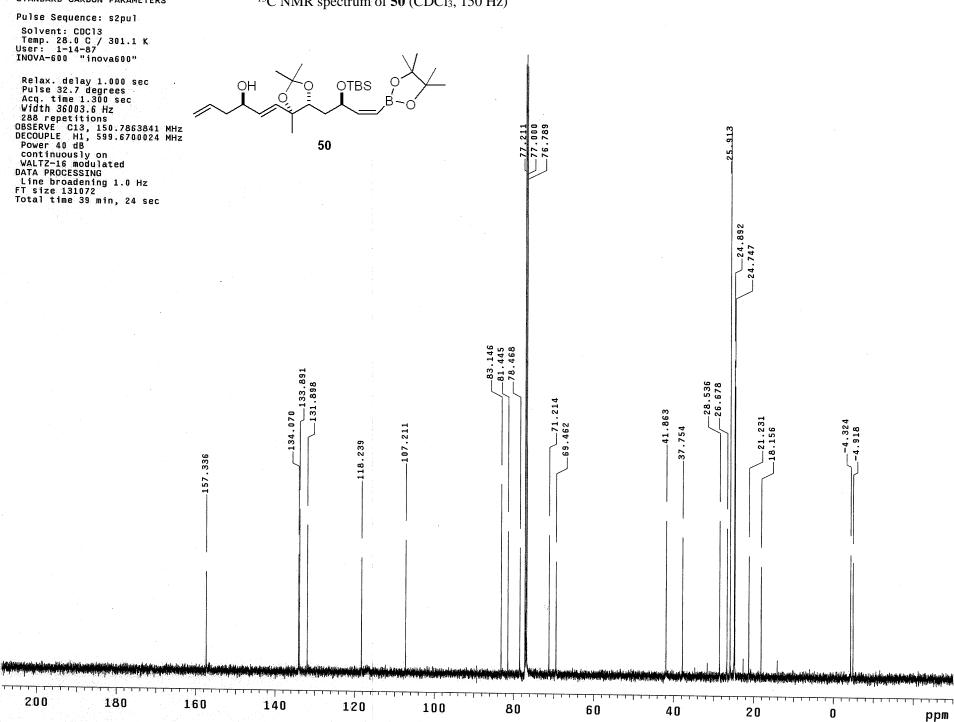

¹³C NMR spectrum of **49** (CDCl₃, 150 Hz)



S180

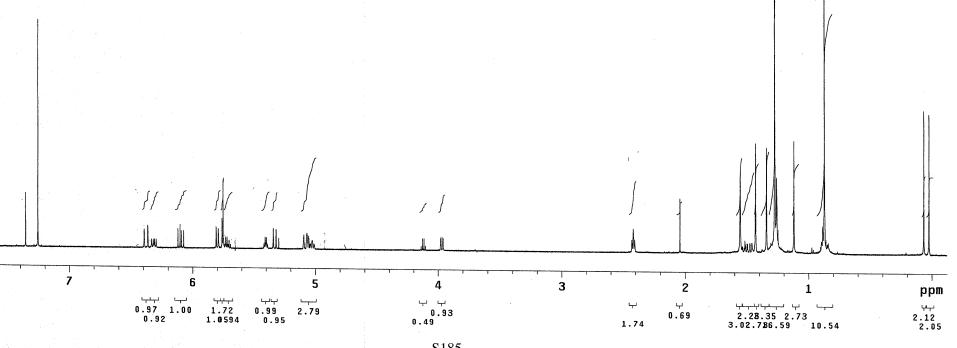

¹H NMR spectrum of **50** (CDCl₃, 600 Hz)

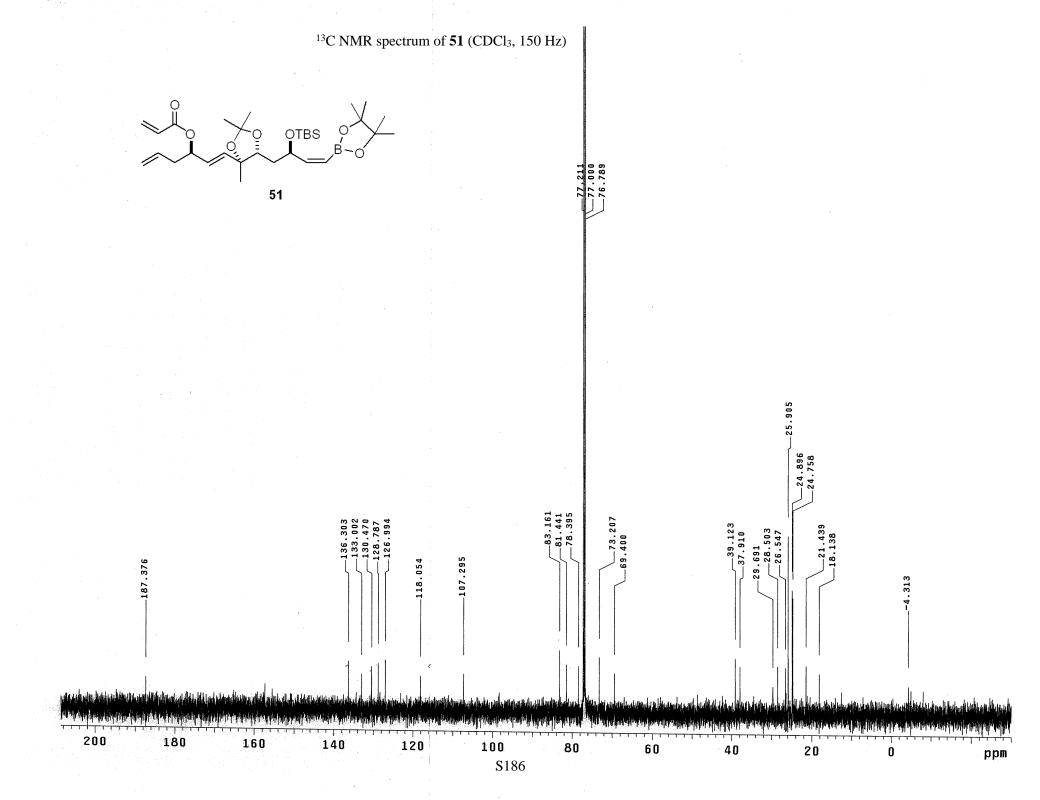

Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON


Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6669958 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 131072 Total time 1 min, 20 sec


¹³C NMR spectrum of **50** (CDCl₃, 150 Hz)


STANDARD CARBON PARAMETERS

¹H NMR spectrum of **51** (CDCl₃, 600 Hz)

 \cap OTBS 51

¹H NMR spectrum of **36** (CDCl₃, 600 Hz)

Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON

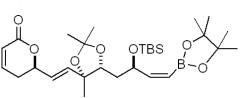
Pulse Sequence: s2pul

Solvent: CDC13 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz 4 repetitions OBSERVE H1, 599.6669945 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 131072 Total time 0 min, 20 sec

Г

13


12

11

10

9

8

37

6

ليهالها ليهاليها

1.01 1.88

Г

7

÷

1.00

Sr

5

لہا لہا

1.01

0.94 1.100.90

4

÷

0.98

3

ų

للم الم

1.85

ΨŸ

0.02

0.03 0.02

2

1

الهلي المطبقة المستحم المصتحم المستحم المستحم المستحم المستحم المستحم المستحم المصتحم المستحم المستحم المحم المحمم المحم المحمم المحم ا

4.11.33.26

4.246.28622

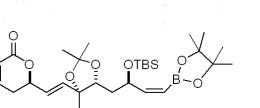
-0

ليتهينا

5.11

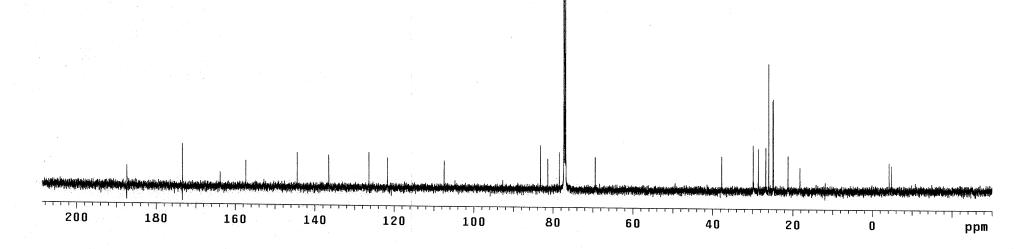
-1

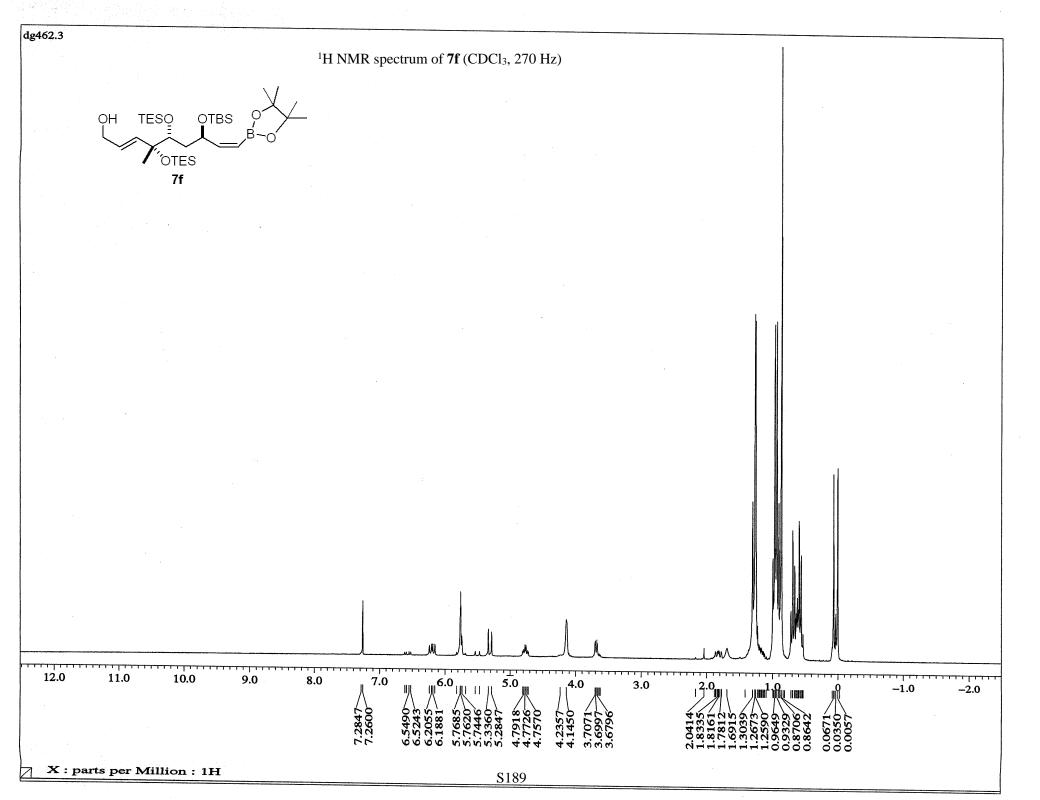
ppm

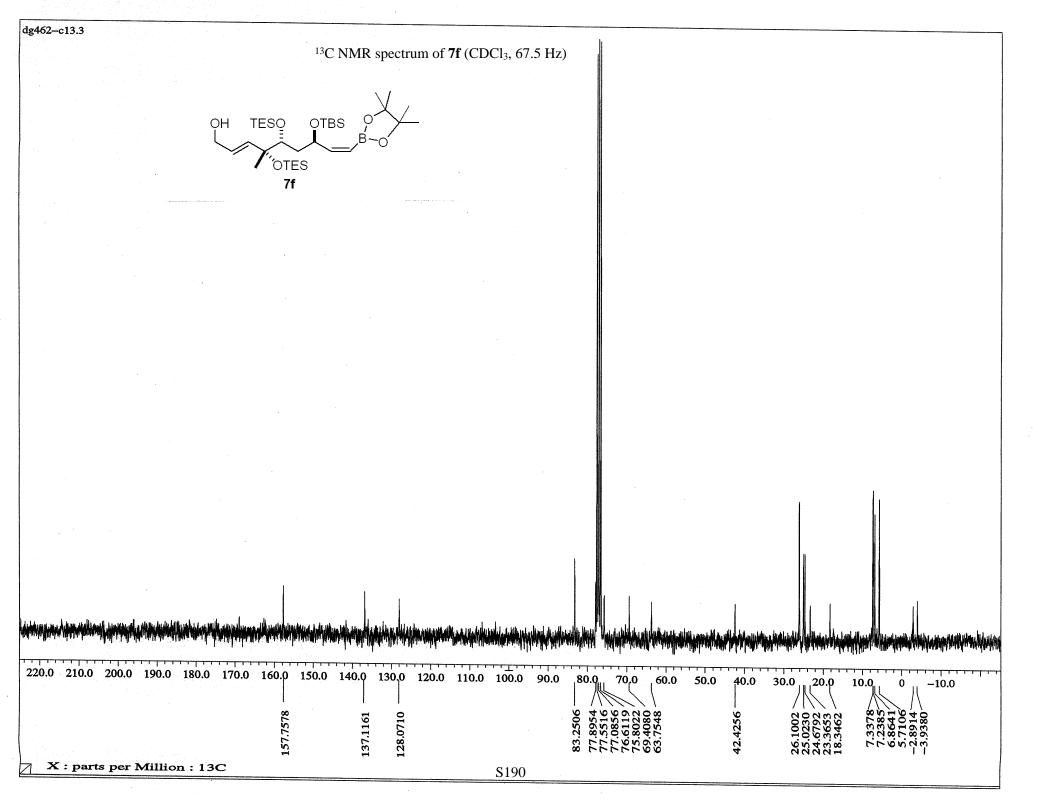

¹³C NMR spectrum of **37** (CDCl₃, 150 Hz)

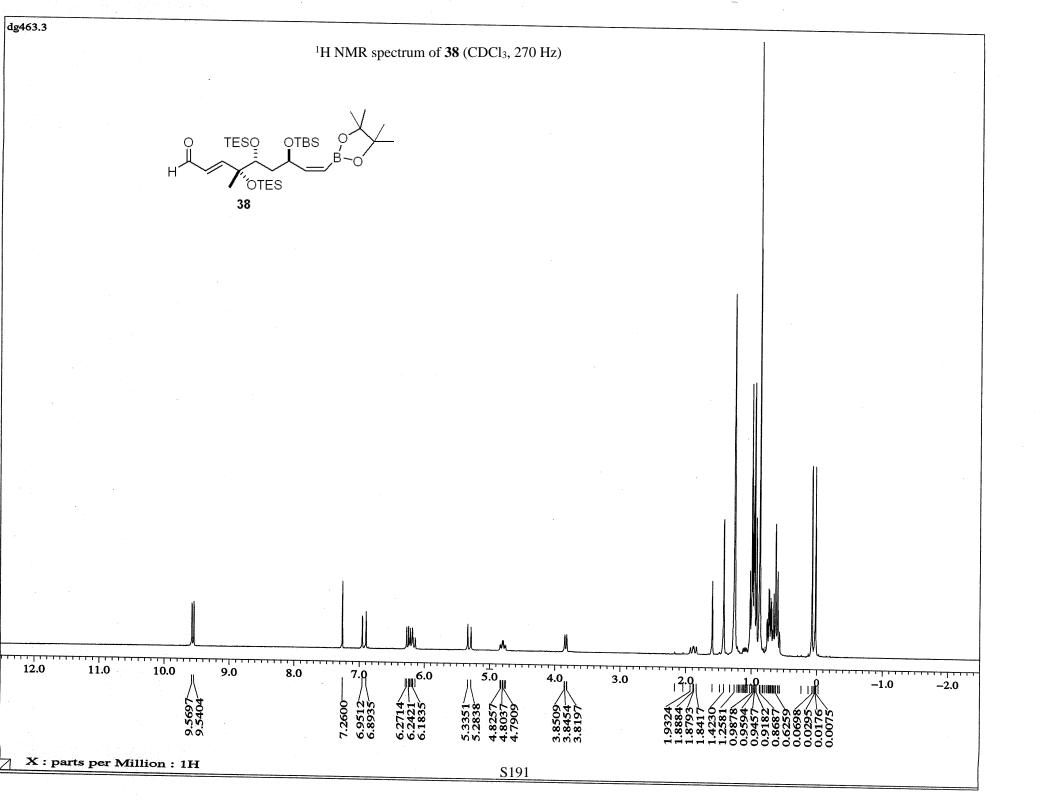
STANDARD CARBON PARAMETERS

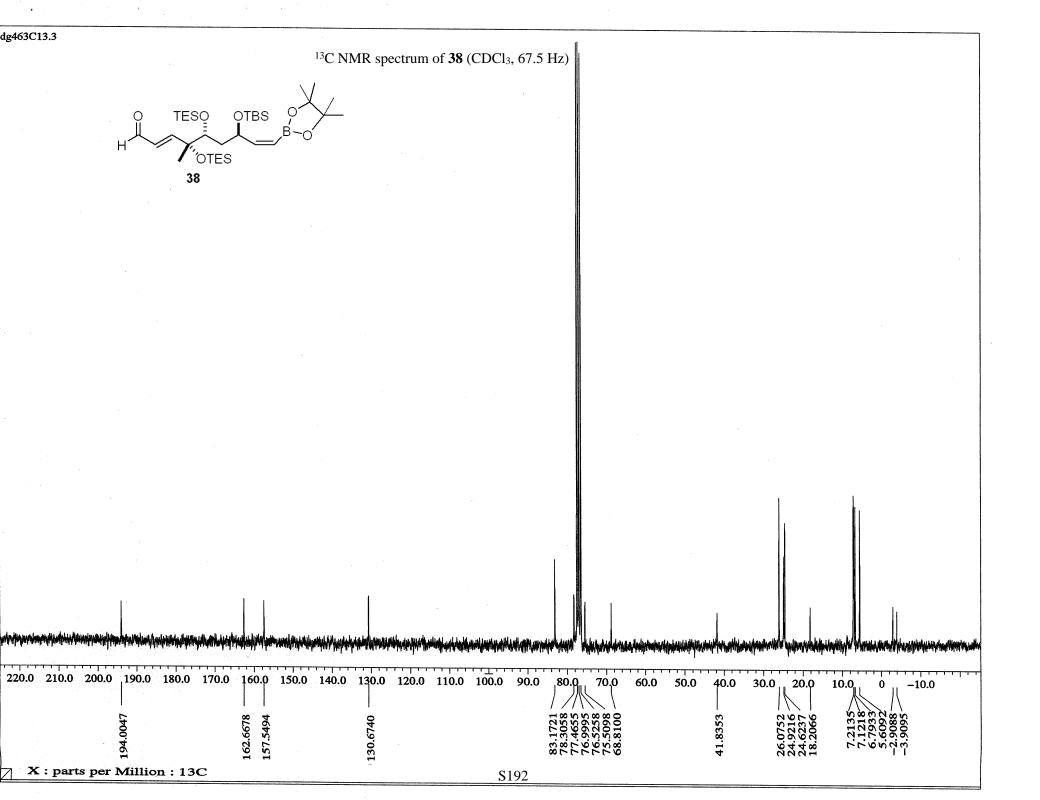
<u>1</u>3.

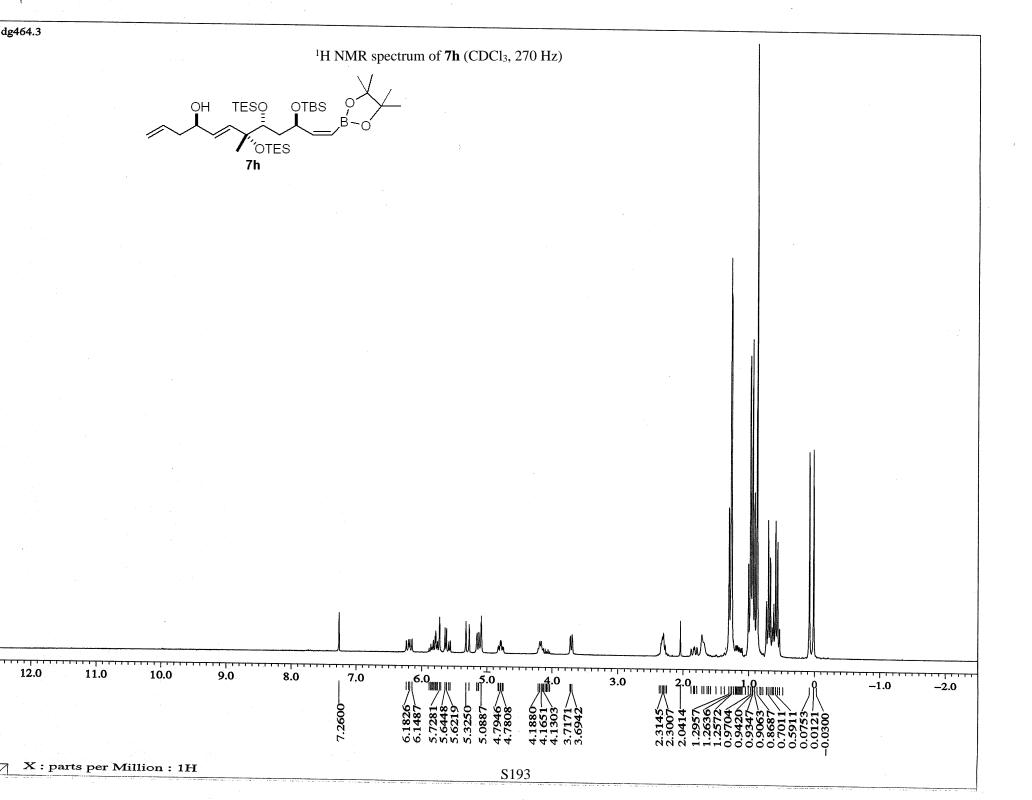

Pulse Sequence: s2pul Solvent: CDC13 Temp. 28.0 C / 301.1 K User: 1-14-87 INDVA-600 "inova600"

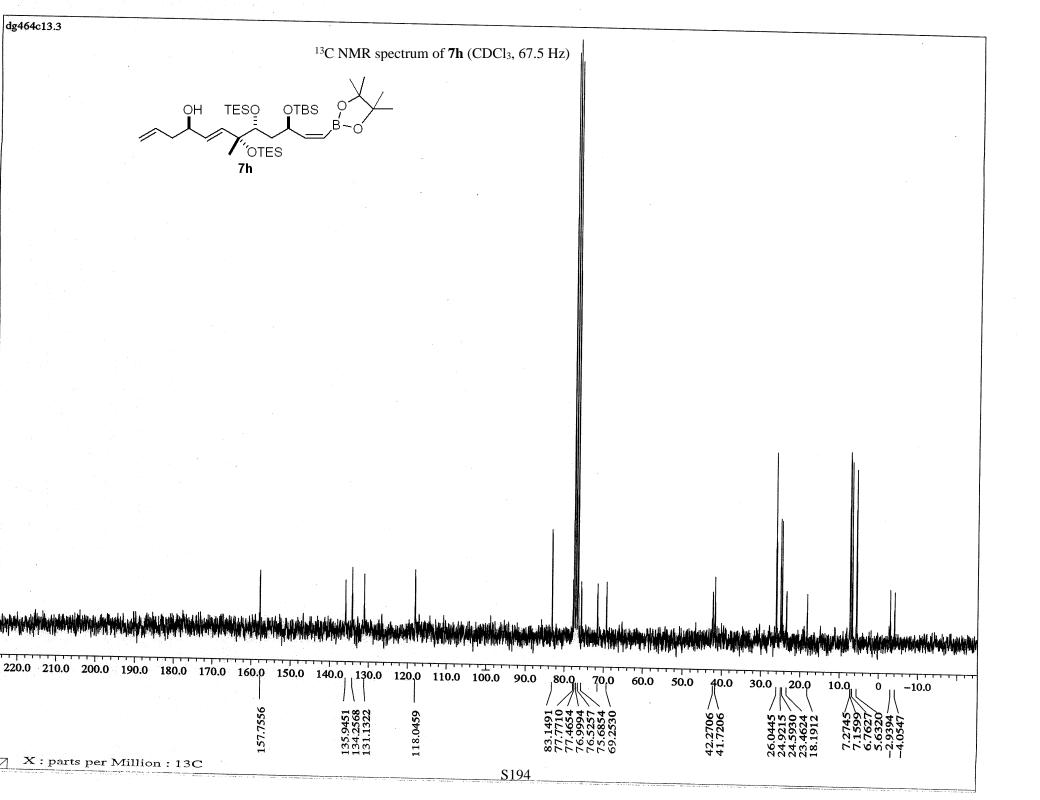

Relax. delay 1.000 sec Pulse 29.9 degrees Acq. time 1.300 sec Width 36003.6 Hz 1688 repetitions OBSERVE C13, 150.7863835 MHz DECOUPLE H1, 599.6700024 MHz Power 40 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 131072 Total time 641495 hr, 49 min, 7 sec

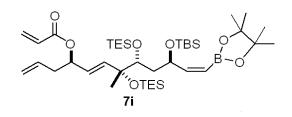


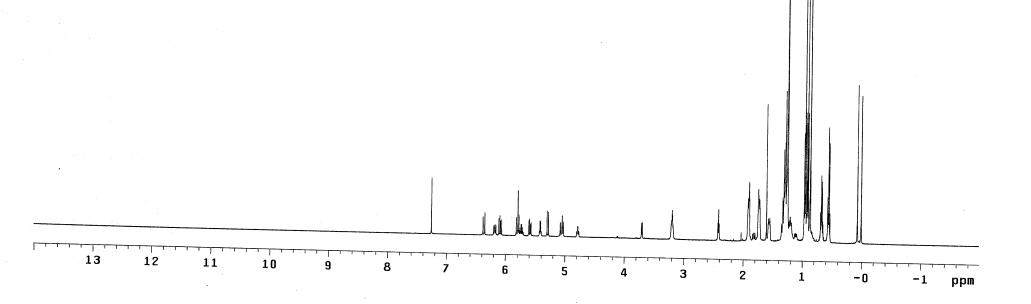

37


77.211 77.000 76.789





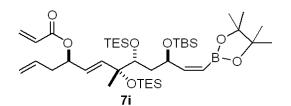

¹H NMR spectrum of **7i** (CDCl₃, 600 Hz)

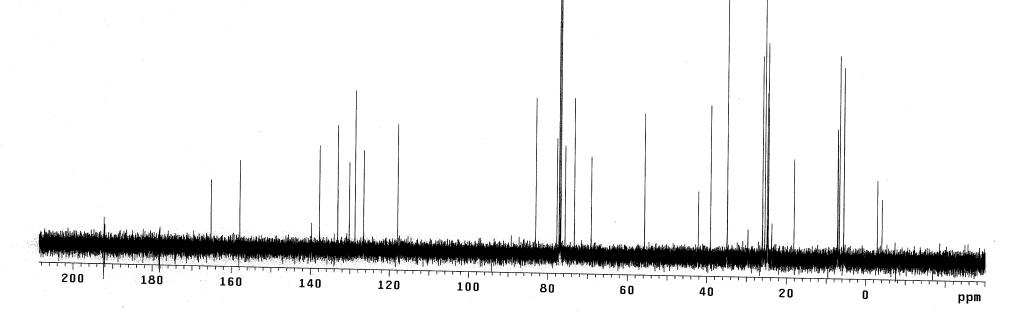

Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON

Pulse Sequence: s2pul

Solvent: CDC13 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz Single scan OBSERVE H1, 599.6663971 MHz DATA PROCESSING FT size 131072 Total time 0 min, 5 sec




STANDARD CARBON PARAMETERS

¹³C NMR spectrum of **7i** (CDCl₃, 150 Hz)

Pulse Sequence: s2pul Solvent: CDC13 Temp. 28.0 C / 301.1 K User: 1-14-87 INOVA-600 "inova600"

Relax. delay 0.500 sec Pulse 29.9 degrees Acq. time 1.400 sec Width 36003.6 Hz 416 repetitions OBSERVE C13, 150.7863846 MHz DECOUPLE H1, 599.6700024 MHz Power 40 dB continuously on WALTZ-16 modulated DATA PROCESSING FT size 131072 Total time 32 min, 34 sec

¹H NMR spectrum of **22** (CDCl₃, 600 Hz)

Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON

Pulse Sequence: s2pul

-8-

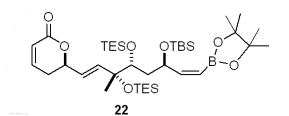
111

13

12

11

10


9

8

7

Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6669967 MHz DATA PROCESSING FT size 131072 Total time 1 min, 20 sec

6

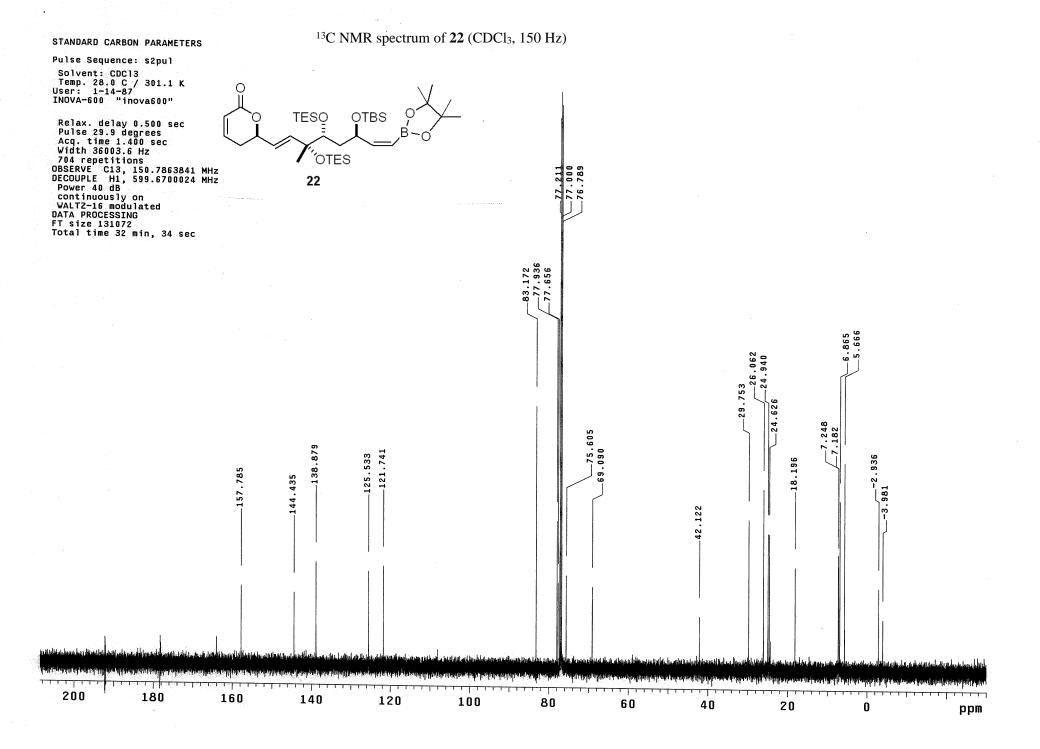
5

4

3

2

1


Т

-0

1

ppm

-1

S198

Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON

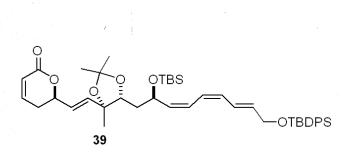
Pulse Sequence: s2pul

Г

13

12

11


10

9

8

Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "'inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz Single scan OBSERVE H1, 599.6669951 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 131072 Total time 0 min, 5 sec

1

6

5

4

3

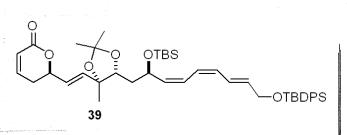
2

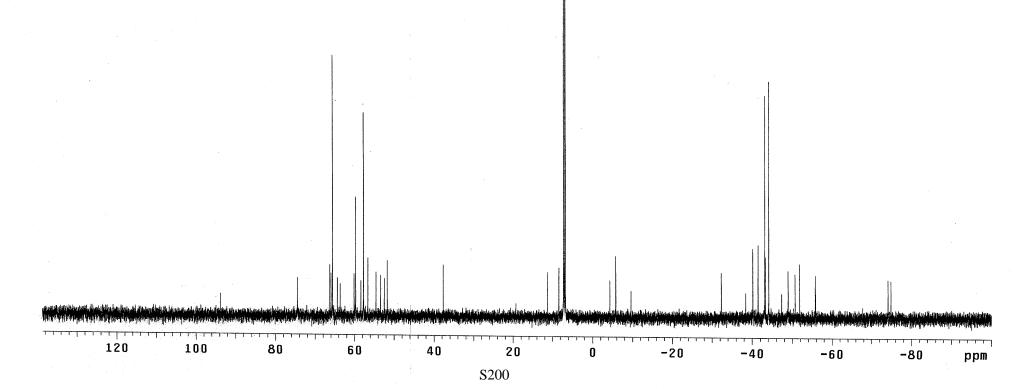
1

-0

-1

ppm

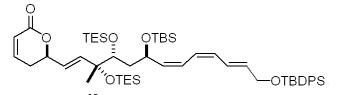

7


 13 C NMR spectrum of **39** (CDCl₃, 150 Hz)

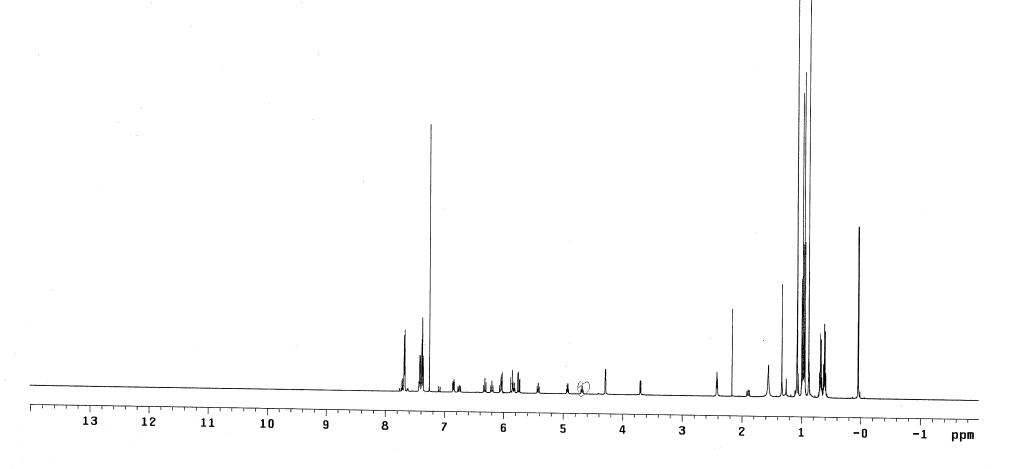
STANDARD CARBON PARAMETERS

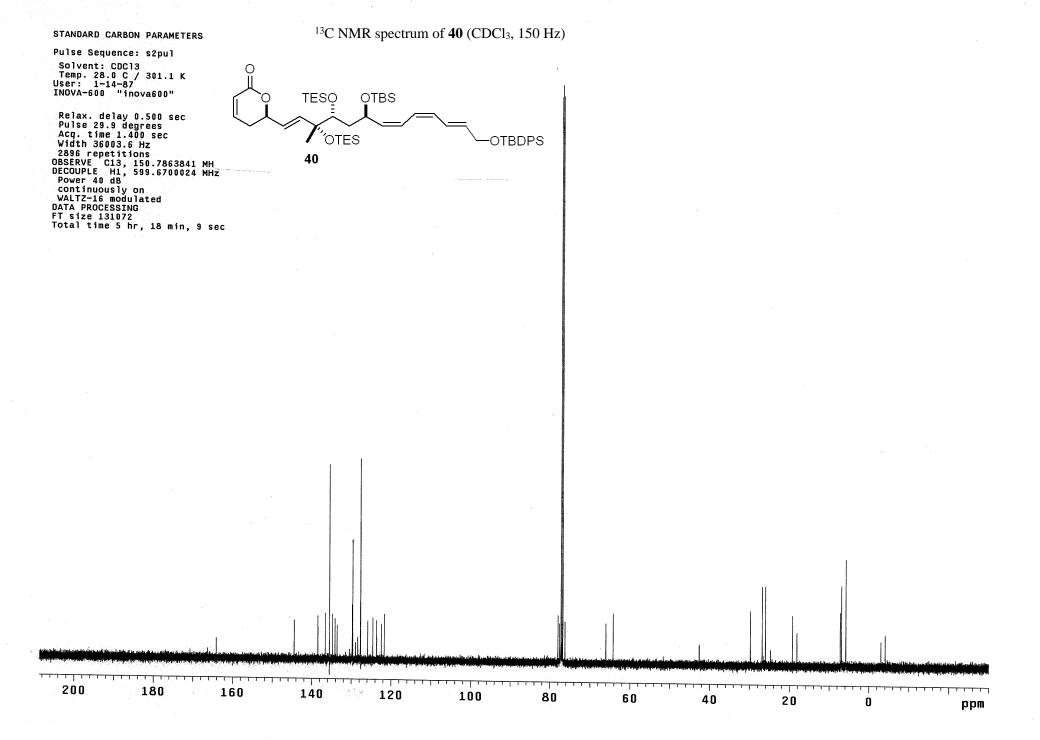
Pulse Sequence: s2pul Solvent: CDCl3 Temp. 28.0 C / 301.1 K User: 1-14-87 INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 29.9 degrees Acq. time 1.300 sec Width 36003.6 Hz 288 repetitions OBSERVE C13, 150.7969390 M DECOUPLE H1, 599.6700024 M_ Power 40 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 131072 Total time 39 min, 24 sec


¹H NMR spectrum of **40** (CDCl₃, 600 Hz)

Archive directory: /export/home/vnmr1/\ Sample directory: File: PROTON

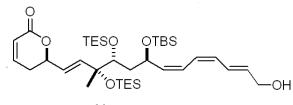

Pulse Sequence: s2pul


Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz 20 repetitions OBSERVE H1, 599.6669957 MHz DATA PROCESSING FT size 131072 Total time 1 min, 40 sec

40

7.260


873

Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON

Pulse Sequence: s2pul Solvent: CDC13

Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz 20 repetitions OBSERVE H1, 599.6669943 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 131072 Total time 1 min, 40 sec

41a

13

1.5

12

11

10

9

8

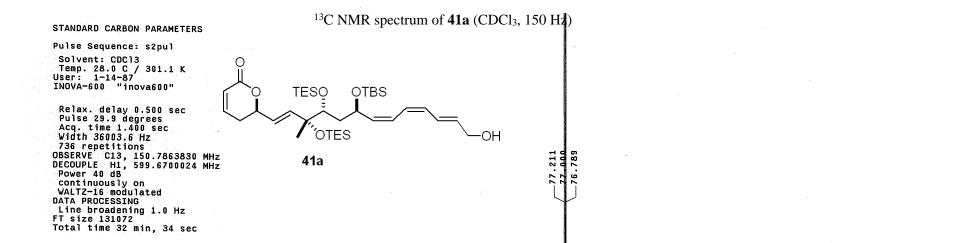
7

6

5

4

3

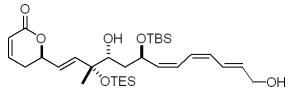

2

1

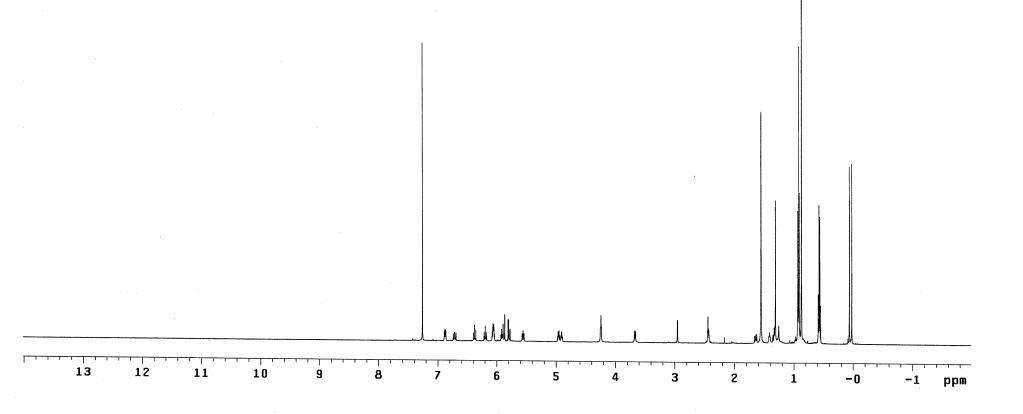
-0

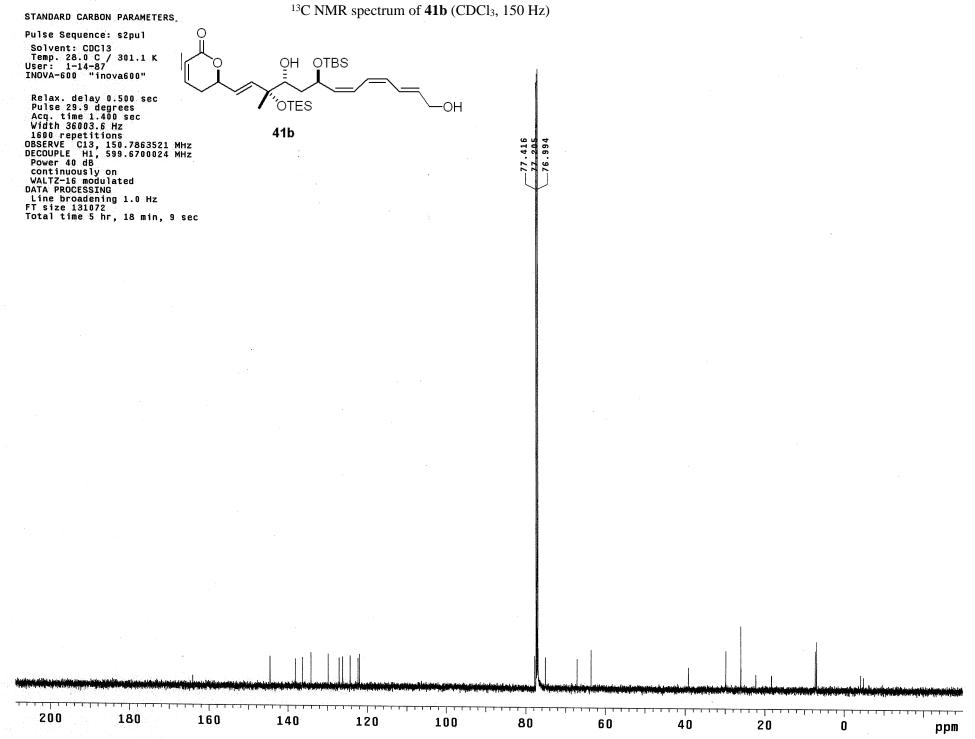
-1

ppm


¹H NMR spectrum of **41b** (CDCl₃, 600 Hz)

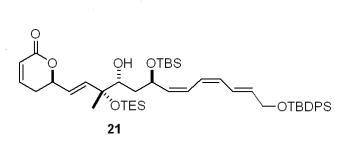
Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON

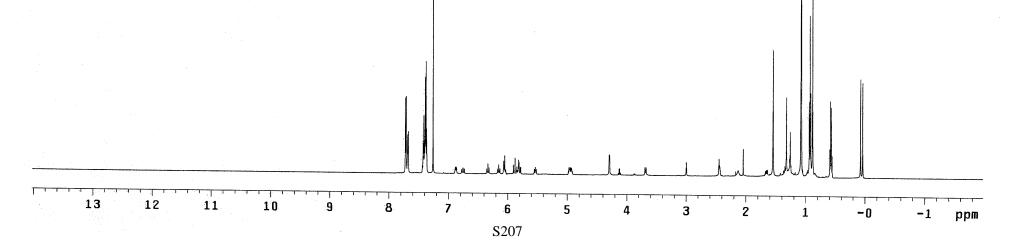

Pulse Sequence: s2pul

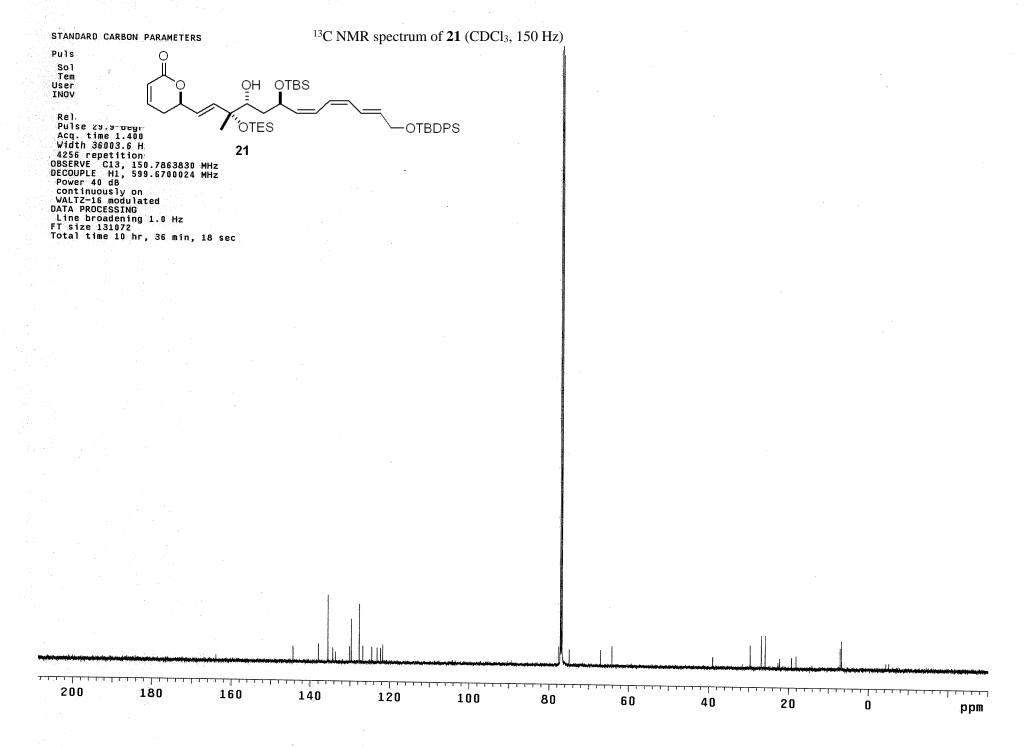

Solvent: CDCl3 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"

Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz 16 repetitions OBSERVE H1, 599.6669942 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 131072 Total time 1 min, 20 sec

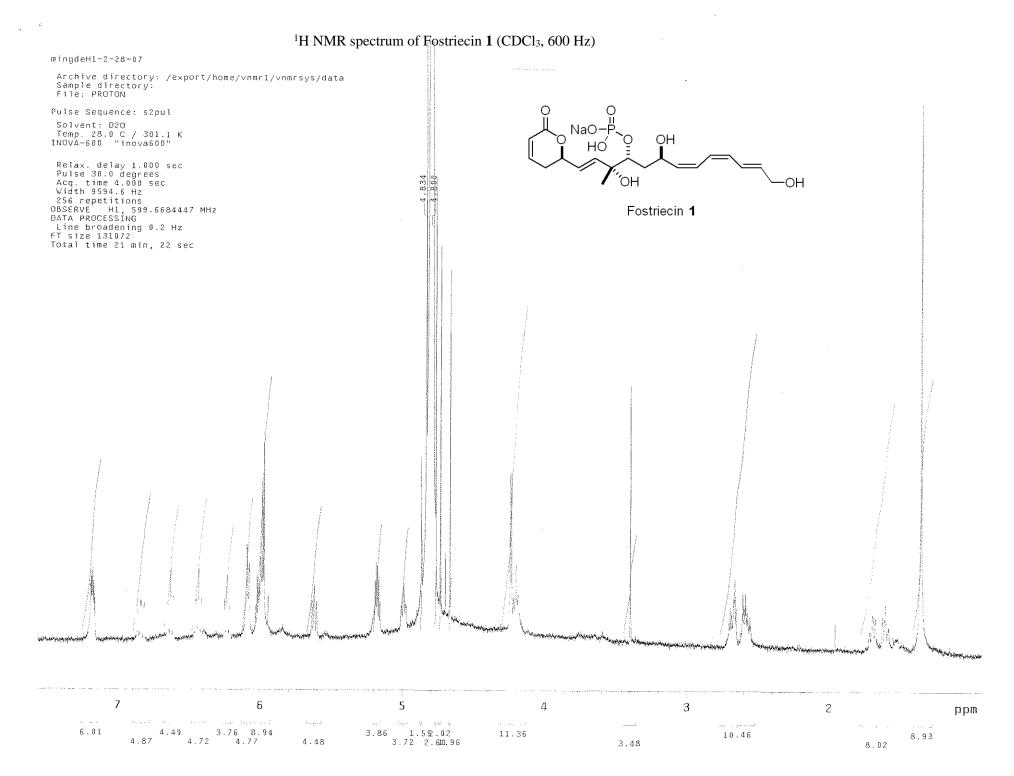
41b




Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: PROTON


Pulse Sequence: s2pul

Solvent: CDC13 Temp. 28.0 C / 301.1 K INOVA-600 "inova600"


Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 4.000 sec Width 9594.6 Hz 20 repetitions OBSERVE H1, 599.6669945 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 131072 Total time 1 min, 40 sec

S208

