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Supplemental Material (SM) 

Supplemental Figures, Tables, Model Descriptions, and other materials 

 

Supplementary Material TOC: 

1. Setting data and original elicitation 

2. Submission checklist 

3. Anonymized results from round 2 (SM Figs 1 - 8) 

4. Video showing ranking of round 2 results across models (SM Video 1) 

5. Resolution of linguistic uncertainty in structured discussion between rounds 1 and 2 (SM Figs 
9 - 12) 

6. Comparison with U.S. county data (SM Figs 13 - 14) 

7. Checklist data, including contributed model descriptions and funding acknowledgments (SM 
Tables 1-2, SM Figs 15 - 17) 

8. MMODS code   
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Supplementary Material: Anonymized results from round 2 (Figs. S1 to S8 and Video 1). 

 

SM Fig. 1: Model results for each target objective and intervention scenario pair organized 
by model. Median, 50% prediction interval (PI), and 90% PI are indicated as points, thick lines, 
and thin lines, respectively. Colors denote ranking of each intervention by model for a single 
objective, where dark blue signifies the lowest value (best performance) and dark red signifies 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.03.20225409doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225409
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 
 

the highest value (worst performance). Ties in ranks are colored as intermediate values. A tie 
between ranks 1 and 2 and ranks 3 and 4 are shown as an intermediate blue and red, respectively; 
yellow indicates a tie in ranks across all interventions. Each group is assigned a random, unique 
identification letter that is specified on the vertical axis. 

 

SM Fig. 2: Cumulative infections. Medians (points) and 50% PIs (lines) displayed pairwise by 
intervention scenario. Each point represents one model.  
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SM Fig. 3: Cumulative deaths. Medians (points) and 50% PIs (lines) displayed pairwise by 
intervention scenario. Each point represents one model.  
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SM Fig. 4: Days closed for non-essential workplaces. Medians (points) and 50% PIs (lines) 
displayed pairwise by intervention scenario. Each point represents one model. 
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SM Fig. 5: Peak number of hospitalized cases. Medians (points) and 50% PIs (lines) displayed 
pairwise by intervention scenario. Each point represents one model. 
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SM Fig. 6: Probability of outbreak. Median (points) and 50% PI (lines) displayed pairwise by 
intervention scenario. Each point represents one model. 
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SM Fig. 7: Cumulative distribution functions (CDFs) across models and for the aggregate. 
Each colored line shows the quantile distribution for a single model. The aggregate CDF is 
shown in black with median, 50% PI, and 90% PI indicated as red points, thick lines, and thin 
lines respectively.  
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SM Fig. 8: Scatter plots of intervention ranks for a given pair of objectives. Rank ties are 
shown as intermediate numerical values (e.g. a tie between 1 and 2 is shown as 1.5). For visual 
clarity, shaded points are jittered around the discrete rank values.  
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Supplementary Material: Resolution of linguistic uncertainty in structured discussion 
between rounds 1 and 2. 

The group discussion between modeling rounds is an efficient method to reduce linguistic 
uncertainty resulting from differing interpretations of the problem setting. As well as allowing a 
common definition of “peak” and other terms, as described in the main text, other sources of 
unanticipated uncertainty were resolved. For example, one modeling group asked for 
clarification on the definition of ‘death.’ There was a thorough discussion of the options that 
different groups had considered or used (reported only; reported plus probable; reported, 
probable and co-morbidities; or, also indirect deaths, such as those from unrelated causes in 
patients choosing not to go to the ER during a pandemic). We agreed as a group to use all deaths 
due to COVID-19 disease-induced mortality, regardless of reporting. This way of counting 
deaths is based on infection status, not testing status, and can include comorbidities but not 
indirect deaths, as we are only focusing on people who have been infected with SARS-CoV-2 
and died from their infection. 

The first round also provided some important checks and balances on the consistency of 
objective and intervention interpretations across groups, i.e., were the same definitions of 
workplace closures used?  In the first round, some groups used the May 15 to Nov 15 timeframe, 
others based start dates on declarations of a State of Emergency or stay-at-home orders, and one 
group implemented a weighting for essential and non-essential business closures and associated 
compliance issues explicitly (SM Fig. 9). Including a metric that should be consistent across 
models allowed us to check for and remove linguistic uncertainty in round 2 submissions that 
would have limited our ability to compare the rankings of interventions between models and 
objectives. 

In addition to resolving linguistic uncertainty, the first round provided information on the 
utility of the interventions themselves. We initially requested results for reopening after 
declining to 1% of peak – round 1 results suggested this condition would rarely, if ever, be met, 
and thus we altered the intervention to trigger at 5% of peak, instead.  Typically, such changes in 
interventions would be made in consultation with decision makers (as part of Fig. 1, loop A). 

Deliberately, consensus on scientific uncertainty was not required. In fact, model results were 
presented anonymously to reduce the pressure to conform to other groups’ expectations and 
hence to avoid ‘groupthink,’ and other cognitive biases, engendering a more comprehensive 
expression of legitimate scientific uncertainty. We thus encouraged modeling groups to adjust 
their models to reflect unknown aspects of the transmission and intervention implementation 
process to more fully express genuine scientific and logistical uncertainty.  

Due to the opposing effects of decreasing linguistic uncertainty and maintaining or increasing 
expression of scientific uncertainty, it was difficult to draw conclusions about the source of 
model-level changes in expressions of uncertainty between rounds 1 and 2. To begin to assess 
model-level changes, we compared the lengths of inter-quartile ranges (IQRs) (SM Figs 10-12) 
within groups by round as well as the ratio of IQR length between each model and the 
corresponding aggregate distribution. The clearest examples of model incorporation of additional 
scientific uncertainty in round 2 were the models that provided point estimates in round 1 (length 
of IQR = 0) that subsequently expanded these estimates to distributions in round 2. Requiring 
distributions rather than point estimates necessarily increased the degree of expressed 
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uncertainty. However, even in these models, we observed decreases in uncertainty (presumably 
in linguistic uncertainty) as the point estimates account for the majority of outliers in round 1 
(SM Fig. 10). 

For each objective-intervention pair considered in both rounds, the length of the aggregate 
IQR was greater than the median length of the corresponding model IQRs (SM Fig. 11).  The 
degree of uncertainty (as measured by IQR lengths) for the majority of models increased towards 
that of the corresponding objective-intervention aggregate distribution from round 1 to round 2 
(see the clustering of points near the orange dashed line in SM Fig. 11 round 2). 

Implementation of the open and closed interventions did not rely on a definition of “peak”. In 
SM Fig. 12, we observed that the ratio of IQRs (IQR(model)/IQR(aggregate)) between rounds 
tended to be closer to one than the 2-week intervention, which required a definition of peak (SM 
Fig. 12). We also note that decreases in the IQR length for the aggregate distribution were 
observed for all objectives in the 2-week scenario (i.e. aggregate ratio of IQRR2/IQRR1 <1). 
Changes observed in the open scenario (cumulative infections, cumulative deaths, and peak 
hospitalization ratios observed are 1.20, 1.02, and 0.949 respectively) were moderate compared 
to those in the closed scenario (cumulative infections, cumulative deaths, and peak 
hospitalization ratios observed are 1.93, 1.92, and 1.54 respectively). Note that an analogous 
comparison for the alternative peak intervention was not possible, given the change from 1-
percent of the peak to 5-percent of the peak between rounds.    
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SM Fig. 9: Resolution of linguistic uncertainty about the number of days non-essential 
workplaces are closed in the discussion following round 1 of modeling (note that model IDs 
changed between rounds); figure is of a slide from the group discussion after round 1.  See main 
text Fig. 3 column 5 for days of non-essential workplace closure results from round 2.  Ovals 
highlight points of discussion about different ways of capturing uncertainty for days workplaces 
are closed and unusual results about intermediate interventions.  
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SM Fig. 10: Team and aggregate values for each intervention and objective pair. Round 1 
and round 2 results displayed in red and blue respectively. Since the 1-percent intervention from 
round 1 was updated to a 5-percent intervention in round 2, results for these interventions have been 
omitted from this comparison. Also note that two models were excluded from this analysis, as they 
submitted incomplete results in round 1. After the discussion between rounds 1 and 2, these groups were 
able to provide complete and comparable results. Additionally, in at least one case, some of the 
differences can be attributed to model error fixes between rounds.  
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SM Fig. 11: Comparison between model-specific IQR lengths and the length of the IQR for the 
aggregate distribution (i.e. length(IQR_team)/length(IQR_aggregate)) shown on a logarithmic 
scale. Results are grouped by round, intervention, and objective. Round is indicated on the left 
axis.  Columns indicate the objective and rows indicate the intervention. The dashed orange line 
highlights the point at which there is no difference between the model-specific IQR lengths 
between rounds 1 and 2 (points to the left indicate a model IQR less than that of the 
corresponding aggregate and vice versa for points to the right).  
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SM Fig. 12: Round comparison of IQR length by team, calculated as the ratio of the length of 
IQRs between rounds 1 and 2 (i.e. length(IQRR2) / length(IQRR1)) shown on a logarithmic scale. 
Note that in the first round, two models (G.1 and G.2) submitted point estimates for each 
intervention and metric. Since point estimates are such that length(IQR) = 0, the relative IQR 
(compared to round 1) is infinity and thus not shown here. Similarly, there is not a point 
representing cumulative deaths in the closed scenario for group K since the corresponding 
length(IQR) = 0. Because the 1-percent intervention from round 1 was changed to a 5-percent 
intervention in round 2, the corresponding results have been omitted from this comparison. The 
dashed orange line highlights the point at which there is no difference between the model-
specific IQR lengths between rounds 1 and 2 (points to the left indicate a lower R2 IQR than that 
of the corresponding group’s R1 submission, and vice versa for points to the right). 
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Supplementary Material: Comparison of county data with aggregate model results 

The modeling exercise was motivated by a U.S. county representative of mid-sized counties with 
populations of approximately 100,000 people, with limited mobility and stay at home orders in 
place until at least May 15, 2020. Here, we compare aggregate model results with reported data 
from counties meeting the target county description. 

We first selected the 99 U.S. counties with population sizes between 90,000 and 110,000 using 
data from the Johns Hopkins University COVID-19 dashboard (Dong, Du, and Gardner 2020). 
From this subset, we then selected counties with stay at home orders in place until at least May 
15, 2020 (data from Killeen et al. (2020), Keystone Strategy (2020), and NACO county 
emergency declarations (2020)), and changes in mobility in line with stay at home orders, i.e., 
less than 50% increase from baseline retail mobility, less than 25% increase in baseline work 
mobility, and less than 5% decline from baseline residential mobility (data from Google COVID-
19 Community Mobility Reports). This resulted in a subset of 84 counties. Finally, from this 
subset, we determined the set of counties implementing a fully ‘closed’ intervention (with stay at 
home orders in place from May 15, 2020 to present day (October 15, 2020 as of submission) and 
mobility patterns suggesting those orders were followed). We found 66 counties that met these 
criteria. No counties were found to be fully open during this period, and it was not possible to 
determine if any counties implemented the ‘2-week’ or ‘5-percent’ interventions. We compared 
aggregate cumulative deaths (reported deaths only) with modeled cumulative deaths (all 
COVID-19 deaths) under the closed intervention for the 66 counties following the ‘closed’ 
intervention. Cumulative reported deaths for the 66 counties under the closed intervention were 
summarized in 100 quantiles, the same format requested from model groups (See SM Figs 13 - 
14, below).  

Note that model results were for the entire period May 15, 2020 to November 15, 2020 and data 
were only available through the present day (October 15, 2020 as of submission). Further, we are 
comparing reported deaths (from data) with all COVID-19 deaths, not just reported deaths (from 
model results).  We did not assume a reporting rate, but expect a higher number of model 
predicted cumulative deaths. Crucially, our results represent the realization of one pandemic 
across 66 counties in comparison to multiple model realizations across a wide range of 
uncertainty. Thus, the model uncertainty will necessarily be higher than the observed 
uncertainty.  The model mean will likely also be higher, as the right-skewed uncertainty will 
increase the mean. 

County comparison results provided in the SM will be updated once data are available for the 
entire period May 15, 2020 to November 15, 2020, for counties that remain closed. 
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SM Fig. 13: Summary of cumulative reported deaths for counties similar to the model 
context and following the closed intervention. Median reported cumulative deaths (solid line), 
50% IQR (darker shaded area), and 90% IQR (lighter shaded area) for the subset of 66 counties 
following the closed intervention from May 15 to October 15. 
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SM Fig. 14: Comparison of aggregate reported county data to model results for the closed 
intervention. Boxplot of cumulative reported deaths from 66 U.S. counties from May 15 to 
October 15 (median: 31; 50% IQR: 16, 56; 90% IQR: 3, 59) and model results for cumulative 
deaths from May 15 to November 15 (median: 73; 50% IQR: 12, 228; 90% IQR: 2, 1568). Inset 
shows overlap of box area for the two plots. 
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Supplementary Material: Checklist Data 

SM Table 1: Contributed model descriptions. Name, description (including links to model code where available), diagram, 
calibration method, other non-pharmaceutical interventions (NPIs) included in the model, additional data sources used, previous use 
cases for the model (both for COVID-19 in other settings and other disease systems) and references for each of the 17 models. 
Categories which were not relevant were excluded. 

CoMo Collaborative COVID-19 Model 

Description Age-structured, SEIR compartmental model with infected compartments stratified by symptoms, severity and treatment seeking 
and access. Code available: https://github.com/ocelhay/como   

Additional NPIs included Social distancing, Isolation (post infection), Stay-at-home (voluntary), Handwashing, Travel ban 

Additional data sources 
used 

National data on hospital, ICU, and ventilator availability; Data on U.S. household size from the American Community Survey; Data 
from China and New York City for healthcare parameterization; Age-structure mixing matrices for Work, School, and Home from 
Prem, Cook, and Jit (2017); Vital surveillances from The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team 
(2020); NYS Governor Cuomo Daily presentation (April 23, 2020); List of countries by hospital beds (Wikipedia) 

Previous use cases RSV in Thailand 
References Covid-19 International Modelling Consortium 2020 
Co-authors Ricardo Agus, Lisa White, Nathaniel Hupert (PI) 

Acknowledgements Wirichida Pan-Ngun, PhD, Olivier Celhay, Vruj Patel, Lior Shtayer 
Covasim 

Description 

Stochastic agent-based model, including age-structured mixing, susceptibility to infection and health outcomes; transmission 
networks in different social layers; variable intrahost viral dynamics; presymptomatic, symptomatic, and asymptomatic 
transmission; hospitalizations (regular and intensive care); and multiple non-pharmaceutical and testing interventions. Code 
available: https://github.com/institutefordiseasemodeling/covasim 

Diagram See Kerr et al. 2020, Fig. 1 

Calibration Parameters were calibrated by optimizing the L1 relative error norm of positive diagnoses, number of deaths, and number of tests 
using global optimization package, Optuna 

Additional NPIs 
included 

Social distancing, Isolation (post infection), and school, workplace, and community closures based on stay-at-home and state-of-
emergency orders. 

Previous use cases COVID-19 in Africa, Europe, Oceania, and North America 
References Kerr et al. 2020 
Co-authors Rafael C. Nez, Katherine Rosenfeld, Gregory R. Hart, Daniel Klein, Cliff C. Kerr (PI) 

Acknowledgements Dina Mistry, Prashanth Selvaraj, Jamie A. Cohen, Michael Famulare, Robyn M. Stuart, Romesh Abeysuriya 
EvoNet SARS2 

Description Stochastic, place-based model in which agents travel to different locations within the community.  Agents can infect others within 
homes, schools, workplaces and other regular gathering spots, as well as during random walks within the community.  
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Calibration 
Created ~1000 parameter sets each with 52 uniformly distributed parameters.  For each parameter set, we considered a range of 
transmission probabilities.  Interventions were simulated for parameter sets for which case and death counts came within range 
of the county data up to May 15th. 

Additional NPIs 
included 

Social distancing, Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Age-specific interventions (e.g., 
isolation of elderly) 

Previous use cases HIV 
Co-authors John Mittler (PI) 

Acknowledgements Joshua Herbeck, James Murphy, Neil Abernethy, Sarah Stansfield, Molly Reid, Steven Goodreau 
Funding NIH grants R01AI108490 and R01 GM125440 

JHU-CDDEP Bayesian Three-stage ODE Model 

Description 
Bayesian, mechanistic ODE-based compartmental model composed of three transmission stages with varied force of infection 
pre-lockdown, lockdown, post-lockdown. Each stage corresponds with lockdown phases and social distancing measures that 
might be imposed by public health policymakers. 

Calibration Bayesian inference was conducted using MCMC-based method was used to fit the model to confirmed cases and deaths. 
Parameter ranges were estimated form the posterior distribution. Prior distribution was assumed to be uniformly distributed 

References Lin et al. 2020 
Co-authors Gary Lin, Yupeng Yang, Eili Klein 

Acknowledgements Anindya Bhaduri, Max Pinz, and the U.S. Centers for Disease Control and Prevention (CDC) Modeling in Infectious Diseases 
Network 

LANL1-EpiCast 
Description Agent based model with communities, households, and workplaces 

Calibration 

Transmission rates were varied in burn in period (March to May) to try to model actual county statistics. Burn in transmission 
rates calculated by parameter testing the model were much higher than previous experience fitting covid-19 (0.43), and were 
thus scaled down to an assumptive 0.2. This is potentially due to very low testing rates in initial stages and the existence of many 
more cases than were validated, thus explaining apparent excessively rapid growth in case numbers.  

Additional NPIs 
included 

Social distancing, Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., 
government-ordered) 

Additional data sources 
used 

CDC disease statistics; past model calibration experience for COVID 

Previous use cases Flu and smallpox in the U.S. 
References Germann et al. 2006; Halloran et al. 2008; Germann et al. 2019 
Co-authors Chrysm Watson Ross, Tim Germann, Geoffrey Fairchild, Sara Del Valle (PI) 

Funding 

The LANL team was partially funded by the Laboratory Directed Research Development Program at Los Alamos National 
Laboratory (20200698ER and 20200697ER) and was supported by the DOE Office of Science through the National Virtual 
Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by 
the Coronavirus CARES Act. Los Alamos National Laboratory is operated by Triad National Security, LLC under Contract No. 
89233218CNA000001 with the U.S. Department of Energy. The content is solely the responsibility of the authors and does not 
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necessarily represent the official views of the sponsors. The funders had no role in study design, data collection, analysis, decision 
to publish, or preparation of manuscript. 

LANL2-Age Structured ODE 

Description Age-structured compartmental ODE model. Stochasticity is incorporated by selecting parameters randomly from uniform 
distributions for each run, where the parameter ranges are determined from literature. 

Diagram See Spencer 2020 
Previous use cases COVID-19 in New Mexico 

References Spencer 2020; Spencer et al. 2020 
Co-authors Rosalyn Cherie Rael, Julie Spencer, Isabel Crooker, Carrie Manore (PI) 

Funding 

The LANL team was partially funded by the Laboratory Directed Research Development Program at Los Alamos National 
Laboratory (20200698ER and 20200697ER) and was supported by the DOE Office of Science through the National Virtual 
Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by 
the Coronavirus CARES Act. Los Alamos National Laboratory is operated by Triad National Security, LLC under Contract No. 
89233218CNA000001 with the U.S. Department of Energy. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the sponsors. The funders had no role in study design, data collection, analysis, decision 
to publish, or preparation of manuscript. The publication is approved for release LA-UR-20-27777. 

MESALab-FOSP 
Description Integer order generalized SEIR compartmental models with power law infection rates and age structure 
References Guo et al. 2020 
Co-authors Lihong Guo, Yanting Zhao, YangQuan Chen (PI) 

MESALab-FOSP2 
Description Fractional order generalized SEIR compartmental models with power law infection rates 
References Guo et al. 2020 
Co-authors Lihong Guo, Yanting Zhao, YangQuan Chen (PI) 

NEU-MOBS 

Description Stochastic, age-structured, compartmental model, including symptomatic and asymptomatic transmissions, as well as 
hospitalizations. 

Calibration Calibration of R0 and initial date performed using reported deaths 
Additional NPIs 

included 
Social distancing, Stay-at-home (mandatory, e.g., government-ordered) 

Additional data sources 
used 

Age structure contact patterns from highly detailed macro (census) and micro (survey) data on key socio-demographic features 

References Mistry et al. 2020 
Co-authors Kunpeng Mu, Ana Pastore y Piontti, Alessandro Vespignani (PI) 

Acknowledgements Matteo Chinazzi, Jessica T. Davis, Xinyue Xiong 
Funding AV, APyP, KM acknowledge the support of the McGovern Foundation,  Google Cloud and Google Cloud Research Credits program. 
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Description 

Compartmental model with compartments for Susceptible, Infected, Case (C), case Recovered (R), and case Dead (D). The mean 
dynamics of the compartments are governed by an ODE system. The likelihood for the rate of appearance of C, R, and D are given 
by a negative binomial distribution where the dispersion parameter is a fitted parameter. Code available: 
https://github.com/ccc1685/covid-19 

Diagram See Fig. 1 in Chow et al. (2020) 
Calibration Priors were obtained from posteriors of fits to New York and Maryland 

Previous use cases COVID-19 globally, data permitting 
References Chow et al. 2020 
Co-authors Joshua C Chang, Richard C Gerkin, Shashaank Vattikuti, Artur Belov, Osman Yogurtcu, Carson C Chow (PI) 

Acknowledgements Hong Yang 

Funding CCC and SV were supported by the Intramural Program of the NIH, NIDDK. RCG was supported by NIDCD, NINDS, and NSF. This 
work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

Notre Dame-FRED 

Description 

Agent-based model, FRED (Framework for Reconstructing Epidemic Dynamics), with updated epidemiological parameters based 
on studies to date. FRED explicitly models transmission dynamics of a pathogen in a realistic population, and allows for the 
impacts of NPIs to be modeled explicitly (e.g., school closure results in agents representing children staying home). Code 
available: https://github.com/confunguido/covid19_ND_forecasting 

Calibration 

Disease specific parameters were calibrated to the number of daily deaths in PA. Adams County was then simulated to estimate 
the rate of importations from the state incidence and a scaling factor to google mobility trends. Parameters were uniformly 
sampled for each step of the calibration using a sobol design sequence (pomp package in R). Then, the likelihood based on the 
daily number of deaths was calculated. 

Additional NPIs 
included 

Isolation (post infection) 

Additional data sources 
used 

NY times data to match the daily deaths of the state of PA as a pre-fitting step (https://github.com/nytimes/covid-19-data); 
Google mobility trends 

Previous use cases Several diseases; originally developed by University of Pittsburgh to model the 2009 influenza pandemic 
References Grefenstette et al. 2013 
Co-authors Guido España, Sean Cavany, Rachel Oidtman, T. Alex Perkins (PI) 

Acknowledgements Alan Costello, Annaliese Wieler, Anita Lerch, Carly Barbera, Marya Poterek, Quan Tran 

Funding 
This work was supported by an NSF RAPID grant to TAP (DEB 2027718), an Arthur J. Schmitt Fellowship and Eck Institute for 
Global Health Fellowship to RJO. We thank the University of Notre Dame Center for Research Computing for computing 
resources. 

UCLA-SuEIR 

Description 
New epidemic compartmental model (SuEIR) based on the standard SEIR model that also takes into account untested/unreported 
cases. The model is trained by machine learning algorithms based on reported historical data. Project website: 
https://covid19.uclaml.org/ 

Diagram See Fig. 1 in Zou et al. (2020) 
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Additional NPIs included Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., government-
ordered), Age-specific interventions (e.g., isolation of elderly) 

References Zou et al. 2020 
Co-authors Difan Zou, Weitong Zhang, Lingxiao Wang, Pan Xu, Jinghui Chen, Quanquan Gu (PI) 

UF COVID-ABM 

Description 

Spatially explicit, agent-based model simulating a community of individuals based on census, workplace, and school data. The 
movement of each person during a simulated day takes place among a set of pre-assigned local places. Pathogen exposure events 
occur probabilistically when a susceptible person co-localizes with an infectious person and exposures can be resisted, or result in 
asymptomatic, mild, severe and/or critical infection 

Additional NPIs included Social distancing, Stay-at-home (voluntary), School closures 

Additional data sources 
used 

The American Community Survey 5-year dataset; geographical coordinates and the business type from the National Corporation 
Directory;  North American Industry Classification System to identify essential vs non-essential businesses; University of Florida 
GeoPlan Center shapefile and data from the National Center for Education Statistics to locate schools 

Previous use cases Dengue in Yucatan, Mexico 
References Hladish et al. 2020; Hladish et al. 2018; Hladish et al. 2016; Flasche et al. 2016 
Co-authors Kok Ben Toh, Arlin Stoltzfus, Carl Pearson, Dianela Perdomo, Alexander Pillai, Sanjana Bhargava, Thomas Hladish (PI) 

UNCC LSTM 

Description 
Data-driven, stochastic SI model utilizing a deep learning recurrent neural network with multivariate LSTM architecture. The 
model was calibrated using COVID-19 epidemic data in another region with ending of the epidemic to guide the model to learn 
how the epidemic could eventually phase out. 

Calibration Transfer learning was used to let the LSTM learn how the epidemic would eventually end from another region, explore the RNN 
structure and hyperparameters, and apply them to tune the model for the modeled region 

Additional data sources 
used 

COVID-19 data from another region where the epidemic has (presumably) ended. 

Co-authors Daniel Janies, Rajib Paul, Shi Chen (PI) 
Acknowledgements Tinghao Feng 

UT-SEPAYHR 

Description 
Stochastic, age- and risk-structured compartmental model that includes susceptible, exposed, presymptomatic, asymptomatic, 
symptomatic, hospitalized, and recovered states (SEPAYHR). The model is simulated using a hybrid approach with a deterministic 
initial phase (up to 20 total symptomatic cases) followed by a stochastic phase.  

Diagram See Fig. A1 in Duque et al. (2020) 

Calibration 

Basic reproductive number (Rt) was estimated using provided and transmission probability was estimated using a next-generation 
matrix approach based on the model structure and Rt. Epidemic start date was based on the time to first death implied by the 
estimated Rt and transmission probability. Transmission reduction due to social distancing was estimated with a nonlinear least 
squares fitting procedure in the SciPy/Python package. Detection rate was estimated using the provided data and published 
estimates of age-structured infection fatality ratios. 
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Additional NPIs 
included 

Social distancing, Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., government-ordered) 

References Duque et al. 2020 
Co-authors Kelly Pierce, Remy Pasco, Lauren Ancel Meyers (PI) 

Acknowledgements Spencer Fox, Zhanwei Du, Ethan Ho, Greg Zynda, Jawon Song 
Funding CDC contract 75D-301-19-C-05930, and NIH grant 3R01AI151176-01S1 

UW-THINKLAB-SEIQRD 

Description 
Compartmental model, consisting of 6 compartments: Susceptible (S), Exposed (E), Infectious (I), Quarantined (Q), Recovered (R) 
and Dead (D). Transitions between compartments are formulated using deterministic functions in discrete time steps and 
parameters governing transitions are assumed to change stochastically on a daily basis (except for predetermined parameters). 

Calibration Particle filtering is used to update the distribution of parameter estimates on a daily basis while case and death data is available 
(i.e. by May 15). 

Additional data sources 
used 

National average hospital beds per capita from World Health Organization 
(https://www.who.int/data/gho/data/indicators/indicator-details/GHO/hospital-beds-(per-10-000-population) 

Co-authors Xiangyang Guan, Cynthia Chen (PI) 
VT Childs Lab 

Description Deterministic, compartmental ODE system. Parameter sets are chosen using Latin Hypercube Sampling and refined based on 
comparison to data. 

Calibration Parameters were chosen from given ranges via Latin Hypercube Sampling (LHS) 
Additional NPIs included Social distancing, Isolation (post hospitalization) 

Co-authors Lauren M Childs (PI) 
Acknowledgements Kate Langwig, Leah Johnson, Eyvindur Ari Palsson, Julie Blackwood 

Funding LMC acknowledges support from National Science Foundation grant No. 2029262. 
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SM Table 2: Importation rate. Most models did not include an importation rate after any initial 
seeding. Models that did maintained a relatively small importation rate, per the elicitation setting. 

Model ID Importation rate (or None) 
A None 
B None 
C None 
D None 
E 0.14 cases / day 
F 1 exposure / day (with a probability of resistance) 
G.1 None 
G.2 None 
H None 
I None (after initial seeding) 
J None (after initial seeding) 
K None 
L 0 – 0.5 cases / day 
M None 
N None 
O Varied 
P None 
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SM Fig. 15: Description of model components and structure by model. Participants were 
asked to indicate which model components were included in their model (from a given set) and 
whether any component was structured by age and/or gender and/or sex as part of the submission 
checklist. No model included any components structure by gender and/or sex. Twelve of the 17 
included at least one component structured by age.  
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SM Fig. 16: Data sources used for each model.  Participants were asked to indicate which of 
the provided datasets were used for any part of the model (e.g., for calibration, training, fitting 
etc.) as part of the submission checklist. All but one model used at least two of the provided data. 
Model F used only external data sources (provided data was used solely to better understand the 
intent of the exercise). 
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SM Fig. 17: Projected number of deaths, people who are susceptible, and new infections 
under each scenario for the final day of the forecast. Participants reported the 5th, 25th, 50th, 
75th, and 95th quantiles for the number of deaths, susceptibles, and new infections on the final 
day (November 15, 2020) under each scenario. All models started with similar initial 
susceptibles. 
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