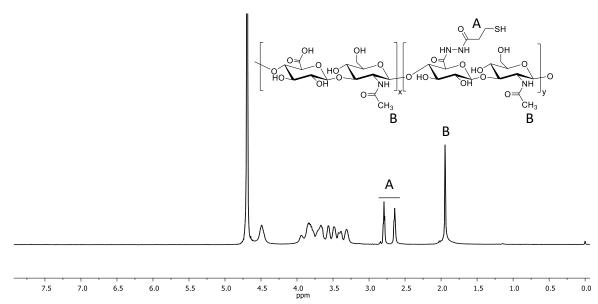
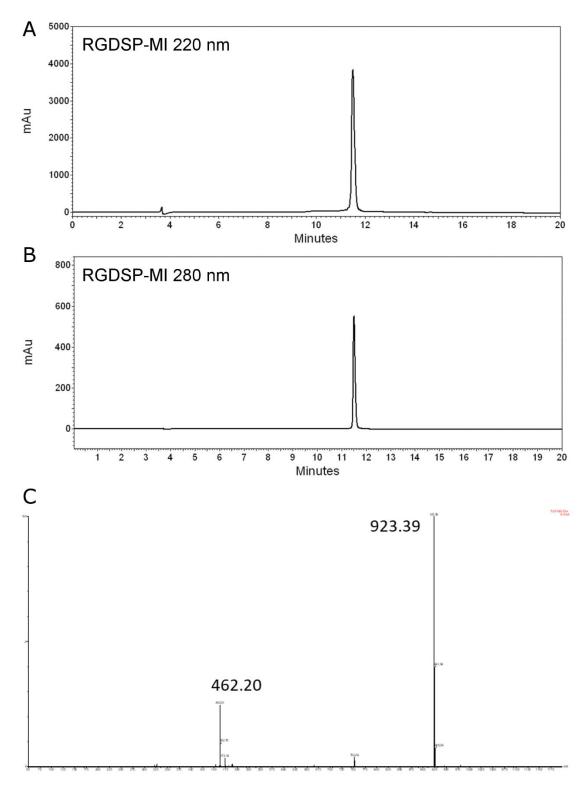
Supporting Information

Induction of Fibrogenic Phenotype in Human Mesenchymal Stem Cells by Connective Tissue Growth Factor in a Hydrogel Model of Soft Connective Tissue

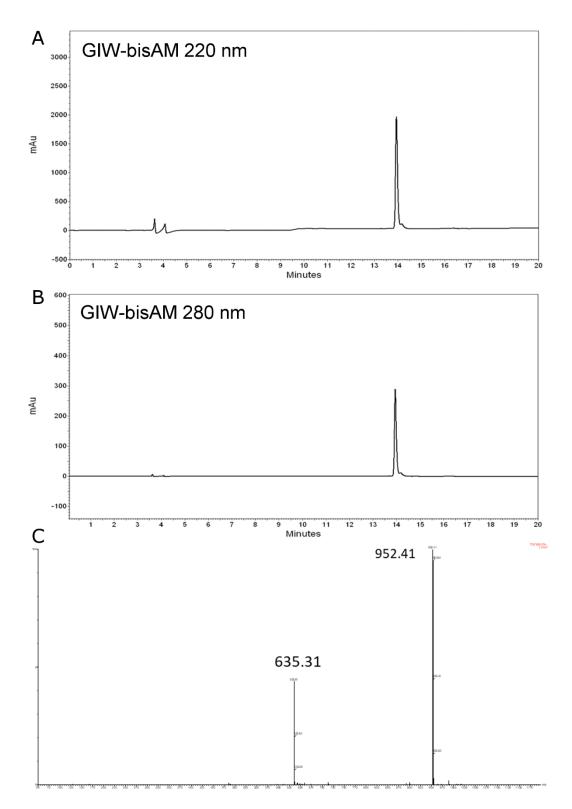
Aidan B. Zerdoum, ^{1±} Eric W. Fowler, ^{2±} and Xinqiao Jia ^{1,2,3}*

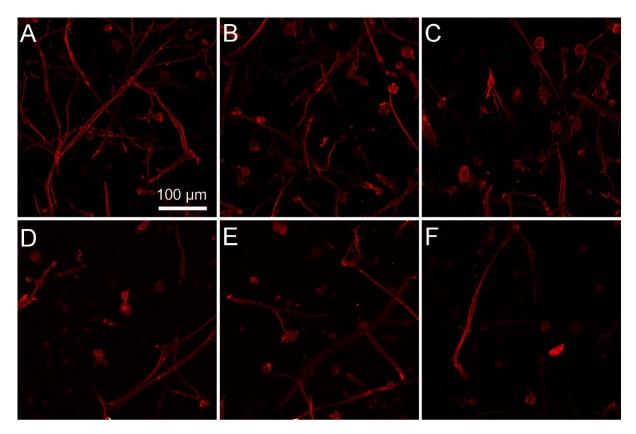

¹Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA ²Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA ³Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA

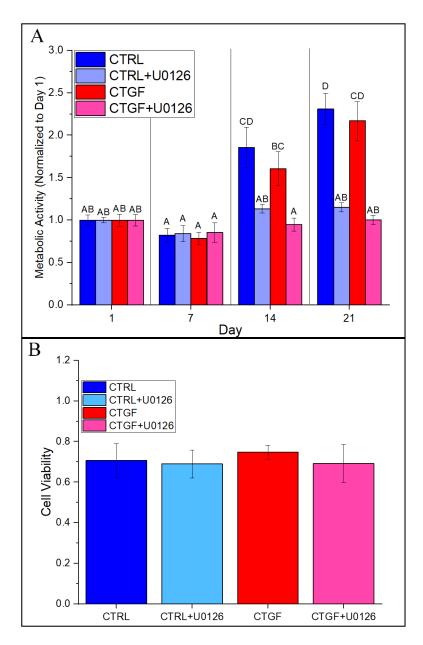
> Supporting information: Eight supplementary pages Six supplementary figures One supplementary table


Supporting Information

Synthesis of HA-SH.


HA (430 kDa, 1.25 mmol), dissolved in deionized (DI) water at 10 mg/mL, was reacted with 3,3'-dithiobis-propanoic dihydrazide (DTP, 2.5 mmol), utilizing 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC, 1.88 mmol) activation. The reaction was allowed to proceed at pH 4.75 for 1 h under mechanical stirring. Upon adjusting the solution pH to 8.0, dithiothreitol (DTT, 16.21 mmol) was added to reduce disulfide bonds. After 48-h dialysis (MWCO: 10 kDa) against 0.1 M NaCl at pH 3.5, followed by 24-h dialysis against DI water at pH 3.5, the solution was sterilized by filtration through a 0.22 μ m filter and lyophilized to yield the dry product.


Figure S1. ¹H-NMR spectrum of HA-SH in D₂O. The degree of modification was determined by comparing the integrations for methylene protons from DTP (A) and the acetamide group (B) in HA.


Figure S2. Characterization of RGDSP-MI. (A-B): Analytical HPLC trace of RGDSP-MI at 200 nm (A) and 280 nm (B). (C): ESI-MS spectrum confirming the mass of the peptide with a sequence MI-GGGRGDSPG. Exact Mass= 922.4; Observed: $[M+H]^+ = 923.39$, $[M+2H]^{2+} = 462.20$

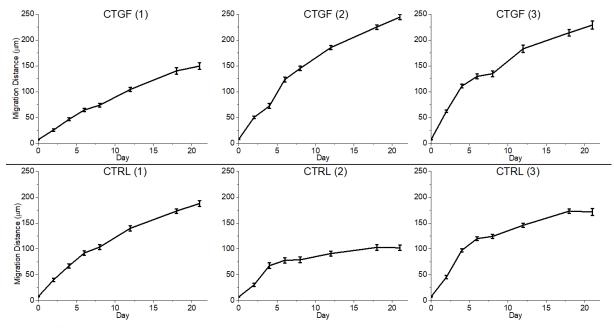

Figure S3. Characterization of GIW-bisAM. (A-B): Analytical HPLC trace of GIW-bisAM at 200 nm (A) and 280 nm (B). (C): ESI-MS spectrum confirming the mass of the peptide with a sequence of GK'RDGPQGIWGQDRK'G (K': acrylamide functionalized lysine). Exact Mass= 1902.94; Observed: $[M+2H]^+ = 952.41$, $[M+3H]^{3+} = 635.31$

Figure S4. Representative confocal images of hMSCs cultured in HA gels for 21 days with (A-C) and without (D-F) CTGF. F-actin was staining by phalloidin-Alexa Fluor 568.

Figure S5. Effects of U0126 (20 mM) on cell metabolic activity (A) and viability (B). Metabolic activity was analyzed via PrestoBlue assay on day 1, 7, 14, and 21. Groups without matching letters are considered significant. Cell viability was determined via ImageJ quantification of confocal images after live/dead staining.

Figure S6. Individual cell outgrowth distance per aggregate. The average measured distance and standard error of the mean (SEM) were plotted at each timepoint for 3 CTGF-treated (top) and 3 CTRL samples (bottom).

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	GeneBank#	Efficiency	Product Size (bp)
	GAAATCCCATCACCAT	GAGCCCCAGCCTTCTC			
GAPDH	CTTCCAGG	CATG	NM_001289746	2.08	120
	ACCTACGGATGACTCG	CAAAGCCTAAGCACTG			
FN	TGCTTTGA	GCACAACA	NM_001306132	2.10	116
	CTACCAACACGCCCTT	ATGTGAATGCCAAAGC			
ITGβ1	CATT	GAAG	XM_005252448	2.03	105
	GGGAGATCATCGGGA	GGGCCTGGTTGAAAAG			
MMP1	CAACTC	CAT	NM_001145938	2.03	72
	GCCAATGGAGACTGT	TTCTAAGGCAGCCAGC			
MMP2	CTCAAGA	AGTGAA	NM_001302510	1.87	122
	TTTCTTGGTTCCCCAG	CAGAGCTGCAGAGCAA			
TIMP1	AATG	CAAG	NG_012533	1.90	99
	TGGTGCCCCTGGTCC	TACGGGGCAAAACCGC			
COL3α1	TTGCT	CAGC	NM_000090	2.03	87
	AATGGTGCTCCTGGTA	ACCAGTGTCTCCTTTG			
COL1α1	TTGCTGGT	CTGCCA	XM_005257058	2.10	141
	GTGAGTGGCTGTACAA	AGAGGGACGTAGTTAG			0.55
HAS1	CGCG	CGGC	NM_001523	1.91	355
0705	AGGAGTGGGTGTGTG	CCAGGCAGTTGGCTCT		4.00	447
CTGF	ACGA	AATC	NM_001901	1.90	117
	TCCAGAGGTACGCTAC	CCCATTGCAGGTCATG CAT		4.05	70
HGF	GAAGTCT GCAGAAGTTGGCATG	CCCTGGACACCAACTA	NM_001010932	1.95	70
TGFβ1	GCAGAAGTIGGCATG	TTGC	XM_011527242	1.99	131
төгрт	GACAAGAAAATCCCTG	AACGCGAGTCTGTGTT	XIM_011527242	1.99	131
VEGFA	TGGGC	TTTGC	NM_001287044	1.91	102
VLOIA	GGGCTGGTTGTATTGA	AGGGACCACTGGGTGA	NIM_001207044	1.91	102
TNC	TGCTTT	GAGA	XM_005251975	2.00	76
1110	100111	Gright	XM_000201070	2.00	10
	CCAAGCACTGTCAGG	AGGCAGTGCTGTCCTC			
αSMA	AAT	Π	NM_001613	1.99	60
	GGTGGATGGTCGAGG	TCCTCCATAGGACCAG			
FAP	AACAGC	CCCCA	XM_011510796	2.01	169
	CCCTAAAGGACTGGC	CATCCTCAGGGCTCGA			
FNEDA	ATTCA	GTAG	XM_017003692	1.99	113
	CCGCTAAGGCAGCCA	AGCTCCAACCCCGTAA			
ELN1	AGTATGGA	GTAGGAAT	XM_017011814	2.04	275
	AGCTTCTTGGGGAAAA	CCCCAACCACAT			
FSP1	GGAC	CAGAGG	NM_019554	1.98	200
	GGGTACCCCATTCCTC	CAGTCTGGGACGACTG			
MCAM	AAGT	AATG	NM_006500	1.88	91
	AGTTGAAGGATGCGG	GGATGCAAAATAGAGC			
VCAM	GAGTAT	ACGAG	NM_001078	1.99	143

Table S1. Summary of qPCR primers.

Gene abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; FN, fibronectin; ITG β 1: integrin beta 1; MMP1, matrix metalloproteinase 1; MMP2, matrix metalloproteinase 2; TIMP1, tissue inhibitor of metalloproteinase 1; COL3 α 1, collagen type III alpha-1; COL1 α 1, collagen type I alpha-1; HAS1, hyaluronic acid synthase 1; CTGF, connective tissue growth factor; HGF, hepatocyte growth factor; TGF β 1, transforming growth factor beta-1; VEGFA, vascular endothelial growth factor-A; TNC, tenascin C; α SMA, alpha-smooth muscle actin; FAP, fibroblast activation protein; FNEDA, fibronectin extra domain-A; ELN, elastin; FSP1, fibroblast specific protein-1; MCAM, melanoma cell adhesion molecule; VCAM, vascular cell adhesion molecule.