
A Appendices493

A.1 Appendix 1 - Bayesian Statistics494

This brief section aims to convey the basic principles of Bayesian statistics, and familiarise the reader with the terminology that495

is be used throughout the manuscript. For an in-depth explanation, I recommend the text by Kruschke (2014)37.496

497

Bayesian statistics is derived wholly from the relationship defined by Bayes’ theorem,498

P(θ |D) =
P(D|θ)P(θ)

P(D)
. (11)

If we consider θ as some statistical parameter we wish to infer, and D as some data informing the parameter, then equation499

(1) expresses that the probability distribution for our value of θ , given our dataset (P(θ |D)), is proportional to the likelihood of500

such data (P(D|θ)) multiplied by the probability distribution of θ free of any data (P(θ)).501

502

Spoken plainly, one starts with a prior probabilistic understanding of the values θ , often informed by expert opinion, and by503

utilising relevant data, D, we update our belief in the values θ may take, producing a new posterior distribution. Mnemonically,504

if we wished to calculate the probability that a flipped coin will land heads up, we may have a prior belief that the coin is fair.505

However, upon observing a data set of 5 coin flips, all of which produced heads, we may update our posterior belief to reflect506

that the coin may be biased.507

508

The analytical difficulty in this calculation lies in computing P(D) =
∫

P(D|θ)P(θ)dθ , which is often near impossible509

for realistically complex models. Fortunately modern computing power enables us to efficiently estimate our posterior distribu-510

tions through algorithms such as Gibbs sampling and other Metropolis-Hastings schemes.511

512

Hierarchical systems represent multi-variable models where some parameters depend on other parameters. Returning to513

the example of a coin flip, say the probability of heads (θ ) is dependent on the factory in which the coin was minted. The514

probability that a coin was from a certain factory (ω) will then inform our value of (θ ). Expressed mathematically, equation (1)515

now becomes:516

P(θ ,ω|D) =
P(D|θ ,ω)P(θ ,ω)

P(D)

=
P(D|θ ,ω)P(θ |ω)P(ω)

P(D)
. (12)
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This means that a prior distribution is only required for ω , as this distribution will directly inform our conditional prior of517

θ , via our model formulation. As such, when provided with data on coin flips from multiple coins from different factories, we518

obtain a posterior probability distribution of which factory a coin has come from, and the resulting probability of a coin flip519

resulting in heads. This structure of conditional independence means that data relating specifically to one parameter can still520

help inform the posterior of all other dependent variables, a key advantage of Bayesian inference.521
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A.2 Appendix 2 - Model Simulations of flock health522

After confirming from model 5 the existence of variation in bird transition probabilities, we asked what the impact of this523

variation could be on the proliferation of Campylobacter STs. Using a previously published stochastic differential equation524

model of Campylobacter population dynamics within a broiler flock19 we simulated two variant scenarios. Figure A1 displays525

a case study of the spread of five demographically identical strains of Campylobacter within a flock of 400 demographically526

identical broilers. Figure A1 shows that, as expected, all strains perform equally well and are equally represented in the527

amount being shed into the environment. Figure A2 instead shows the same model of five demographically identical strains of528

Campylobacter within a flock of 400 birds whose strength of immune response is drawn from a normal distributed centred529

around the value used for Figure 8. Figure A2E shows how five demographically equal strains can be sustained at broadly530

different levels across the flock due only to variation in bird immune response. This is caused by random chance, in that531

whichever strain is initially picked up by a super-shedder, such as the one shown in Figure A2D then sheds large amounts of532

that strain of Campylobacter into the environment, increasing the likelihood of then infecting other birds in the flock. This533

result greatly implies that the results shown in the data, whereby some STs seem to persist at higher levels than others in the534

flock, is likely due to the variation in bird transition probabilities, as opposed to phenotypic differences between STs.535
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Figure A1. Dynamic behaviour of five identical strains of Campylobacter in a flock of identical broilers. (A) - (D) shows the
population within the gut of individual broilers, while (E) displays the amount of Campylobacter in the environment, an
expression of the average amount throughout the flock.
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Figure A2. Dynamic behaviour of five identical strains of Campylobacter in a flock of broilers of varying susceptibility to
infection. (A) - (D) shows the population within the gut of individual broilers, while (E) displays the amount of Campylobacter
in the environment, an expression of the average amount throughout the flock.
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