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Supplementary Methods 
Methods Overview 

We consented 46 patients aged 18-60 years who were receiving treatment in an outpatient 

addiction treatment facility to participate in a gut microbiota and substance use study 

(Supplementary Fig. S1). We surveyed participants about the substances they used in the 30 days 

prior and reviewed participant medical records to characterize their opioid agonist and antagonist 

use. Participants submitted a stool sample and we sequenced the V4 hypervariable region of the 

16S ribosomal ribonucleic acid (rRNA) gene to characterize the gut microbiota. Each 

participant’s opioid agonist and antagonist use patterns from survey and medical record data 

were summarized as agonist only (Ag), combined agonist-antagonist (AgAt), antagonist only 

(At), or neither agonist nor antagonist (N). We compared gut microbiota diversity, enterotypes, 

and genera relative abundance between participants in these four opioid agonist and antagonist 

groups. The study was approved by the Institutional Review Board at the University of Michigan 

(HUM00113964). 

 

Participant Recruitment 

Substance Use Assessment for Microbiota Study Eligibility 

We used an abbreviated version of the Alcohol, Smoking, and Substance Involvement 

Screening Test (ASSIST) to assess past 30-day substance use. ASSIST is a 12-item questionnaire 

that asks about use of street opioids, opioid pain medications (with or without a prescription), 

methadone or buprenorphine-naloxone (with or without a prescription), tobacco, alcohol, 

cannabis, cocaine (including crack), amphetamines, inhalants, sedatives or sleeping pills, and 

hallucinogens1,2. Participants who only endorsed tobacco were not eligible for the microbiota 

study without concurrent reported use of another substance. Participants reporting past 30-day 
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use (nonmedical or as prescribed) of medications for opioid use disorder (buprenorphine-

naloxone or methadone) were eligible, regardless of past 30-day use of other substances. We 

used a modified version of the Current Opioid Misuse Measure (COMM) to capture self-reported 

misuse of prescribed opioids3. The COMM is an eight-item scale that assesses self-reported 

opioid misuse not captured by ASSIST3. Participants with a score >0 for questions 4 and 6-8 

were eligible based on self-reported prescription opioid misuse regardless of their past 30-day 

substance use from the ASSIST3. 

 

Measures: Participant Characteristics 

Opioid Agonist and Antagonist Use 

We used a combination of the ASSIST and medical record review to identify any opioid 

agonist use. We defined opioid agonist use as a binary indicator for either of the following: 1) 

self-reported opioid use (heroin, methadone, buprenorphine, or prescription opioids used as 

prescribed or not as prescribed) in the 30 days before study enrollment on the modified ASSIST, 

or 2) buprenorphine-naloxone use during the day of sample collection in the medical record. We 

supplemented the ASSIST data on buprenorphine use with data from the medical record because 

survey questions about medications for opioid use disorder were added to the modified ASSIST 

during January 2017 and were not available prior. Of note, one participant who was prescribed 

opioids to manage pain was included in the group of participants who used opioid agonists. 

We also assessed opioid antagonist use. For the purpose of this study, we defined opioid 

antagonist use as either of the following according to the medical record: 1) buprenorphine-

naloxone use during the day of sample collection, or 2) naltrexone use during the day of sample 

collection. We included any formulation of either opioid antagonist. Finally, we created a 
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categorical variable describing the overlap in opioid agonist and antagonist use (i.e., agonist 

only, combined agonist-antagonist, antagonist only, and neither agonist nor antagonist). 

 

Depression, Anxiety, and Cravings to Use 

We summarized scores from the Patient Health Questionnaire-9 (PHQ-9), a reliable and 

valid depression severity screening tool (Cronbach’s a: 0.86-0.89, Test-retest correlation: 0.84, 

range: 0-27)4. We also summarized scores from the Generalized Anxiety Disorder 7-Item Scale 

(Cronbach’s a: 0.92, Test-retest correlation: 0.83, range: 0-21)5. For reference, a sum ³10 

indicated possible GAD5. Finally, cravings to use drugs or alcohol were reported using summed 

scores from a modified version of the Penn Alcohol Craving Scale adapted to capture cravings to 

use drugs (range: 0-30)6–8. 

 

Microbiota Study Population Characteristics 

We summarized average age, self-identified gender (female, male, and other), race 

(black, white, other, or multiple races), ethnicity (Hispanic vs. non-Hispanic), and self-reported 

days in SUD treatment at the study site. We used the ASSIST to describe alcohol use during the 

30 days before completing the substance use survey1. Finally, we summarized self-reported 

antibiotic use during the week of sample collection. 

 
Dietary Fiber Intake Estimation 

Dietary fiber intake has previously been associated with the gut microbiota, transit time, 

and stool water content9–12. We therefore calculated predicted past-month dietary fiber intake 

(grams per day) from food frequency questions completed at enrollment in the microbiota study 

using validated predictive models developed from the National Health and Nutrition 
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Examination Survey (NHANES)13. Upon enrollment in the microbiota study, participants 

completed a validated food frequency questionnaire about general past month intake of 25 food 

and drink items14. Due to a skipped question on the survey, participants did not report their 

cheese intake. We therefore assigned participants the survey weighted mean values of cheese 

intake using age and race-specific values from the 2009-2010 cycle of the NHANES, which 

included the food frequency questionnaire used in our study. We did not use sex-specific values 

as cheese intake did not differ by sex in NHANES. We calculated predicted past month dietary 

fiber intake (predicted grams per day) from reported dietary item intake and validated predictive 

models developed from the National Health and Nutrition Examination Survey13. 

 

Stool Sample Collection and Sequencing 

Stool Sample Collection 

We based our stool collection protocols on those from Feigelson et al., Flores et al., and 

Fu et al.15–17. Participants self-collected stool samples by placing two dime-sized scoops of stool 

into a sterile Sarstedt tube with a spoon lid (Sarstedt, Nümbrecht, Germany) containing a 

cryopreservant, RNAlaterTM (Ambion, Austin, TX), and 5-10 glass beads (Walter Stern, 

Washington, NY). Participants then secured the lid, homogenized the sample in RNAlaterTM by 

shaking, and stored the sample at room temperature for up to two days before returning the 

sample to a research assistant. Previous research supported that RNAlaterTM preserved the 

composition of the stool bacterial community at room temperature for up to three days after 

collection16,17. Stool samples were then frozen in 1 mL aliquots at -80C.  
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DNA Extraction and Illumina MiSeq Sequencing 

After all participants were enrolled, we thawed a 1 mL aliquot of each stool sample, 

centrifuged at 10,000xg, and resuspended in 1 mL 1X phosphate buffered saline (Gibco, Thermo 

Fisher Scientific, Waltham, MA, pH 7.4). We added 250 uL resuspended stool to each of two 

wells of bead beating plates and provided samples to the Microbial Systems Molecular Biology 

Laboratory at the University of Michigan. They used standard protocols for deoxyribonucleic 

acid (DNA) extraction and Illumina MiSeq sequencing of the V4 hypervariable region of the 

bacterial 16S ribosomal ribonucleic acid (rRNA) gene18–20.  

 First, DNA was extracted using the Qiagen MagAttract PowerMicrobiome kit (Qiagen, 

Hilden, Germany). DNA libraries for the V4 region of the 16S rRNA gene were generated and 

16S DNA was amplified using polymerase chain reaction (PCR) and barcoded dual-index 

primers for the V4 hypervariable region20. Reactions included 5 uL of 4 uM equimolar primer 

set, 0.15 uL AccuPrime Taq DNA High Fidelity Polymerase, 2 uL 10X AccuPrime PCR Buffer 

II (Thermo Fisher Scientific), 11.85 uL PCR-grade water, and 1 uL DNA and used the following 

cycling conditions: 2 min at 95°C, 30 cycles of 95°C for 20 s, 55°C for 15 s, and 72°C for 5 min, 

and finally 72°C for 10 min. PCR reactions were normalized, pooled, and quantified. The pooled 

amplicon library was sequenced using Illumina MiSeq with the 500 cycle MiSeq V2 Reagent kit 

(Illumina, San Diego, CA) with modifications to the primer set (custom read 1/read 2 and index 

primers were added to the reagent cartridge). Two types of mock communities were included 

with samples to assess sequencing error rates. Mocks included a community of 10 species (added 

as bacterial DNA, Zymo Research, Irvine CA, catalog no. D6300) and a mock community of two 

species added as suspended overnight cell culture in brain heart infusion broth (equal ratios of 
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Escherichia coli and Staphylococcus aureus). All samples were sequenced in duplicate and 

mocks were sequenced on each of four DNA extraction plates. 

We processed sequencing reads using mothur (v1.39.5) and the MiSeq standard operating 

procedure (https://www.mothur.org/wiki/MiSeq_SOP, accessed November 8, 2017) to perform 

quality filtering and align sequences to the V4 region of the 16S rRNA gene20. We converted 

sequences to the format required for oligotyping and clustered samples into oligotypes using the 

procedures and default parameters described by Eren et al.21,22. Oligotyping uses minimum 

entropy decomposition methods to identify highly variable nucleotide positions and clusters 

sequences based on Shannon entropy21. Compared with operational taxonomic units, an 

alternative way to cluster sequences based on distance-based metrics, oligotyping improves 

identification of taxa at the species or strain level21.  

Two samples with fewer than 1,000 reads were removed from further analysis; however, 

we were able to retain these two participants for analysis using their duplicate sequenced sample. 

We verified that all mock communities resembled their known compositions (data not shown) 

and summed duplicate sequenced samples. For this analysis, we examined the first sample 

submitted per participant, amounting to 46 samples with 2,207,827 sequence reads (21,796 – 

77,013 reads per participant) and 354 oligotypes. The full analytic dataset, which was used in 

sensitivity analyses comparing results from the first collected sample to those collected at study 

visits 2 and 3, comprised 129 samples (total reads: 5,745,902, range: 7,043 – 87,403 per 

participant). We assigned oligotype taxonomy using the Ribosomal Database Project (RDP, 

release 11, update 5)23. We chose to focus main analyses on the samples from the first study visit 

per participant as this time point represented the most proximal stool microbiota data to the 
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ASSIST substance use inventory. Sensitivity analyses examined whether data from second and 

third study visits corroborated main findings from analyses of the first submitted study sample. 

 

Microbiota Measures and Analyses 

Genus Relative Abundance and Diversity Metrics 

We calculated the relative abundance of genera in each sample (i.e., the number of 

sequencing reads from each genus divided by the total number of sequencing reads per sample). 

For alpha diversity analyses, we normalized sequencing depth across samples using 

rarefaction24,25. Briefly, the oligotype table was sampled without replacement to 90% of the 

minimum sequencing depth across all 129 samples sequenced as part of the study (i.e., sampled 

to a sequencing depth of 6,338 reads). Rarefaction was repeated 100 times, and alpha diversity 

metrics were averaged across the 100 replicates. Because the application of rarefaction in 

microbiome research is the subject of some debate26, we also analyzed alpha diversity metrics on 

the non-rarefied oligotype table as a sensitivity analysis. Alpha diversity metrics included 

Shannon diversity and the Chao1 Index, which summarized within-sample oligotype diversity 

(number and evenness of oligotypes) and richness (number of oligotypes), respectively. Further, 

we visualized between-sample (beta diversity) differences using principal component analysis of 

the Aitchison Distance metric, which visualizes Euclidean distance using a centered log ratio 

transformation of the oligotype table, an approach consistent with the compositional nature of the 

data (described further below)27. 

Microbiota sequencing data are compositional; the total number of sequences from each 

sample is bound by an arbitrary depth of sequencing coverage that does not reflect the true 

abundance of bacteria in the participant’s gut28. Thus, taxa comparisons between samples must 
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be analyzed on the relative (not absolute) scale28. Failure to analyze these data as compositional 

results in spurious correlations between taxa and biases associations of taxa abundance with 

other taxa and covariates28. We therefore applied three analytic approaches to compare taxa 

distributions by covariates of interest that accounted for the compositional nature of the data: the 

Aitchison Distance described above, and Dirichlet multinomial mixture modeling and ALDEx2, 

described further below29–31. 

 

De Novo and Reference-Based Enterotyping 

Enterotyping distills highly dimensional microbiota taxa data into clusters (i.e., groups of 

samples exhibiting similar taxa distributions) by leveraging the information from the covariance 

structure of taxa9,30,32. The high dimensionality of microbiome data (number of taxa) poses a 

challenge during analysis, as testing for associations of single taxa with metadata requires many 

tests and results can be difficult to interpret without acknowledging co-occurring changes in 

other taxa. Enterotyping addresses these challenges through data reduction and summary by 

clustering samples with similar bacterial profiles into groups based on the distribution of taxa in 

samples9. 

We applied two clustering approaches that classified each stool sample’s genus-level read 

counts into enterotypes9,30. First, we used Dirichlet multinomial mixture (DMM) models, an 

extension of latent profile analysis adapted for microbiota data by Holmes et al.30. Like 

traditional latent profile analysis, this technique recovers unobserved (i.e., latent) subgroups 

based on joint distributions of bacterial genera. DMM-based enterotypes were assigned de novo 

(i.e., based on the data and participants included in our study) using data from all 129 samples 

collected during the study to standardize DMM assignments across all samples. We compared 
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model fit using the Laplace approximation of negative log models for DMM models with one to 

five enterotypes and chose the number of enterotypes that optimized model fit (i.e., minimized 

the Laplace approximation)30. We then assigned each sample to its most likely enterotype based 

on posterior probabilities of enterotype assignment. All 46 samples used in the main analysis had 

posterior probabilities ³90% and were therefore all assigned to an enterotype (minimum 

posterior probability: 95.3%). We examined the average relative abundance of all genera and the 

top 20 taxa that were most influential in distinguishing between enterotypes to summarize taxa 

distributions representative of each enterotype.  

Costea et al. recently reviewed the enterotyping literature and suggested the existence of 

three enterotypes in healthy human populations based on their dominant bacterial taxa: 

Bacteroides, Firmicutes, and Prevotella and created an online reference-based enterotyping tool 

that assigns uploaded samples to one of these three enterotypes9.This tool compares genera 

relative abundance in uploaded samples to relative abundance from two studies of the healthy 

human gut microbiota, the Human Microbiome Project (HMP) and the Metagenomics of the 

Human Intestinal Tract (MetaHIT) study. It also applies enterotyping methods described by 

Arumugam et al. (i.e., partitioning around medoid clustering) to assign an enterotype based those 

observed in HMP and MetaHIT9,32.  

We uploaded genus relative abundance data from our study to http://enterotypes.org and 

obtained enterotype assignments and a binary variable indicating whether each sample had 

similar genera to the observed patterns in reference samples from HMP and MetaHIT. Two of 46 

samples in the main analysis were not comparable to reference samples based on this indicator 

and were therefore assigned as “missing” for their assignment.  
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Genus Differential Abundance by Opioid Agonist and Antagonist Use 

We compared abundance of specific genera by opioid use status and other covariates of 

interest using ALDEx2, an analysis of variance-like tool for compositional data31. For each 

genus, ALDEx2 inferred absolute abundance given the observed abundance matrix over 1,000 

Monte-Carlo simulations from a Dirichlet distribution. To account for the compositional 

structure of the data, genera abundances for each sample and simulation were transformed to 

centered log ratios (i.e., log of the ratio of taxai abundance for sample j divided by the geometric 

mean for the abundance of all taxa [i=1:K ] in sample j). ALDEx2 then calculated each genus’ 

median centered log ratio by group (e.g., opioid agonist use vs. no use) for each simulation. 

Within-group variability in each taxa’s log ratios reflected sampling variation whereas between-

group differences represented the biological variation of interest (e.g., by opioid agonist-

antagonist use status). These were used to calculate an effect size for each genus as the median 

difference in centered log ratios between groups across all simulations divided by the median of 

the largest detected difference within groups for each condition (e.g., the median of two items: 1) 

the largest difference in centered log ratios for taxai among opioid agonist use group across 1,000 

simulations and 2) the largest difference in centered log ratios for taxai among people not using 

opioid agonists across 1,000 simulations). Statistical significance for each effect size was 

summarized as a p-value corrected for the false discovery rate (FDR) using the Benjamini-

Hochberg procedure. We summarized genera centered log ratios and relative abundance for all 

samples as heat maps (Fig. 3) for taxa with FDR corrected p-values<0.05 identified from the 

ALDEx2 Wilcoxon rank sum test. 
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Supplementary Fig. S1 Inclusion Criteria and Opioid Use among 46 Participants Enrolled from 
an Outpatient Addiction Treatment Facility into a Study of the Gut Microbiota and Opioid Use, 
2016-2017 

 

We included 46 participants who were eligible and provided informed consent for both study 
stages and provided stool samples in the present analysis. Among the 9 using opioids, 5 used 
only agonists (prescription opioids or heroin) and 4 used an agonist-antagonist combination 
during the time their sample was provided. Among the 37 not using opioids, 6 used an opioid 
antagonist (naltrexone) and 31 were not exposed to neither opioid agonists nor antagonists 
during the time they provided their stool sample. 

• 5 lost to follow-up or declined to participate after consent

• 4 did not attend Part II enrollment appointment
• 2 stopped treatment
• 3 were unable to return for study enrollment
• 5 declined to participate

• 27 participants ineligible (aged >60 years 
and/or no past 30-day substance use)

• 32 did not complete survey

• Receiving outpatient addiction treatment
• Aged ≥18 years
• Provided informed consent

Completed Substance Use Survey 
(n=92)

Eligible for Microbiota Study 
(n=65)

Provided stool sample 
(n=46)

Consented for Substance Use 
Survey (n=124)

Consented for Microbiota Study
(n=51)

Opioid Use
(n=9)

No Opioid Use
(n=37)

Agonist Only 
(Ag, n=5)

• 3 prescription opioids
• 2 heroin

Agonist + Antagonist 
(AgAt, n=4)

• 3 buprenorphine + 
naloxone

• 1 prescription opioids + 
naltrexone

Antagonist Only 
(At, n=6)

• 6 naltrexone

No Agonists or Antagonists
(N, n=31)
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Supplementary Fig. S2 Alpha Diversity was Relatively Stable Over a One Month Follow-Up Period (Across up to 3 Sample Time 

Points) for Most Participants Enrolled from an Outpatient Addiction Treatment Facility, 2016-2017 

 
Participants submitted up to three samples during a month-long study period. The plot shows participant-level alpha diversity metrics 

(1 participant per x-axis tick mark and plot-area vertical line, with points indicating study visit alpha diversity metrics on the y-axis). 

We found little difference in alpha diversity (Shannon Diversity [top] and richness [bottom, Chao1]) over time for most participants. 
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Supplementary Fig. S3 Gut Microbiota Beta Diversity among 46 Participants Enrolled from an Outpatient Addiction Treatment 

Facility by Opioid Agonist and Antagonist Use, 2016-2017 

 

We summarized beta diversity using Aitchison Distance and a principal component analysis. Strong clustering was not observed by 

opioid agonist-antagonist groups. For this reason, we avoided further statistical testing. 

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−20

−10

0

10

20

−20 0 20
Axis.1   [13.8%]

Ax
is.

2 
  [

5.
5%

]

Opioid Type
●●
●●

●●
●●

Agonist Only (Ag, n=5)
Agonist+Antagonist (AgAt, n=4)

Antagonist Only (At, n=6)
Neither (N, n=31)

Buprenorphine+Naloxone ●●●Yes No



Gicquelais et al.  Supplementary Material 

 16 

Supplementary Fig. S4 Beta Diversity during Up to Three Study Visits Demonstrated 
Clustering By Participant 

 

Participants submitted up to three samples during the month-long microbiota study period. 
Samples from different time points clustered strongly by participant using the Aitchison distance 
metric and principal component analysis. 
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Supplementary Fig. S5 Dirichlet Multinomial Mixture Model Fit (Laplace Approximation) for 
Models with 1-5 Enterotypes 

 

We fit Dirichlet multinomial mixture models with one to five enterotypes. Model fit was 
optimized by a three enterotype model, which minimized the Laplace approximation. 
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Supplementary Fig. S6a Enterotypes Recovered from De Novo Clustering of Gut Microbiota Samples among 46 Participants 
Enrolled from an Outpatient Addiction Treatment Facility, 2016-2017 

 

We identified two Bacteroides enterotypes, one with increased Faecalibacterium and a second with increased Clostridium cluster 

XIVa. The third enterotype was dominated by Prevotella. As such, Prevotella and Bacteroides were the first and second-most 
influential genera in assigning enterotypes, respecitively. Twenty-four participants assigned to the Bacteroides: Faec. enterotype had 

higher Faecalibacterium (mean Faecalibacterium relative abundance of 8.9% in Bacteroides: Faec., 2.1% in Bacteroides: Clost., 
7.2% in Prevotella). Faecalibacterium was the third most influential genera in assigning enterotypes. Eleven participants assigned to 

the Bacteroides: Clost. enterotype had higher Clostridium cluster XIVa (mean Clostridium cluster XIVa relative abundance of 4.0% in 
Bacteroides: Clost., 0.86% in Bacteroides: Faec., and 0.63% in Prevotella enterotype). Clostridium cluster XIVa was the fifth most 

influential genera in assigning enterotypes. The fourth most influential genera in assigning enterotypes was Blautia, which 
distinguished the Prevotella and two Bacteroides enterotypes (mean Blautia relative abundance of 8.5% in Bacteroides: Faec., 8.6% 

in Bacteroides: Clost, and 4.7% in Prevotella).
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Supplementary Fig. S6b Heatmap of Top 20 Oligotypes that Differentiated Three Enterotypes Recovered from De Novo Clustering 
of Gut Microbiota Samples among 46 Participants Enrolled from an Outpatient Addiction Treatment Facility, 2016-2017 
 

Heatmap of the relative abundance of the top 20 oligotypes that determined assignment of de novo enterotypes using Dirichlet 

Multinomial Mixture modeling. Plotted as participant samples on the x-axis (1 column per participant). 
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Supplementary Fig. S7 Alpha Diversity in De Novo Assigned Gut Microbiota Enterotypes among 46 Participants Enrolled from an 
Outpatient Addiction Treatment Facility by Opioid Agonist and Antagonist Use, 2016-2017 

 

We used Dirichlet multinomial mixture modeling to identify three enterotypes. A hallmark feature of the Bacteroides: Clost. group 

was reduced alpha diversity, here summarized by Shannon diversity (Kruskal Wallis p-value<0.00001) and Chao1 (Kruskal Wallis p-
value<0.0001) metrics. 

●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

2.5

3.0

3.5

4.0

Bacteroides: Faec. (n=24) Bacteroides: Clost. (n=11) Prevotella (n=11)

Sh
an

no
n 

Di
ve

rs
ity

Shannon Diversity

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●100

150

200

Bacteroides: Faec. (n=24) Bacteroides: Clost. (n=11) Prevotella (n=11)

Ch
ao

1 
In

de
x

Richness

Opioid Type ● ● ● ●Agonist Only (Ag) Agonist+Antagonist (AgAt) Antagonist Only (At) Neither (N)

Buprenorphine+Naloxone ● No Yes



Gicquelais et al.  Supplementary Material 

 21 

Supplementary Fig. S8 Gut Microbiota Alpha Diversity by Alcohol Use and Fiber Intake 

among 46 Participants Enrolled from an Outpatient Addiction Treatment Facility, 2016-2017 

 

We compared alpha diversity using the Shannon diversity and Chao1 metrics by past 30-day 

alcohol use (top) and dietary fiber (bottom). Shannon diversity was marginally lower among 

participants who did not use alcohol in the past 30 days (Wilcoxon rank sum p=0.052). Gut 

microbiota richness was positively associated with fiber intake and the Pearson correlation 

(r=0.35) between richness and fiber intake reached statistical significance (p=0.02). Other 

comparisons  by alcohol use and fiber intake, including Spearman correlation coefficients for 

fiber and alpha diversity metrics, did not reach statistical significance. 
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Supplementary Fig. S9 De Novo Assigned Enterotypes by Alcohol Use and Dietary Fiber 

Intake among 46 Participants Enrolled from an Outpatient Addiction Treatment Facility, 2016-

2017 

 

We examined whether enterotype prevalence differed by past 30-day alcohol use (top) or dietary 

fiber consumption (bottom). The Bacteroides: Faec enterotype was marginally more common in 

people who used alcohol in the past 30 days (Fisher exact p-value=0.11). Participants assigned to 

Bacteroides: Clost had marginally lower fiber intake (Kruskal Wallis p-value=0.12).  
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Supplementary Table S1 Comparison of Results for Association of Agonist-Antagonist Exposure with Microbiota Features Across 
Samples Submitted Across 3 Study Visits from 46 Participants Enrolled from an Outpatient Addiction Treatment Facility, 2016-2017 
 Study Visit 1 Study Visit 2 Study Visit 3 
No. Samples (same as No. 
participants per visit) 

46 44 39 

Agonist-Antagonist Groups 
(No. Participants) 

   

Agonist Only (Ag) 5 5 5 
Agonist+Antagonist (AgAt) 4 4 2 
Antagonist (At) 6 4 4 
Neither (N) 31 31 28 
Alpha Diversity    
Shannon Diversity: Ag vs. 
N (p-value) 

p=0.04 (Fig. 1) p=0.05 p=0.08 

Richness (Chao1): Ag vs. N 
(p-value) 

p=0.008 (Fig. 1) p=0.01 p=0.01 

Shannon Diversity: All 
Other Agonist-Antagonist 
Pairwise Comparisons (p-
value) 

p³0.05 (Fig. 1) p³0.05 p³0.05 

Chao1: All Other Agonist-
Antagonist Pairwise 
Comparisons (p-value) 

p³0.05 (Fig. 1) p³0.05 p³0.05 

Beta Diversity See Fig. S3 (including for 
legend to read plots at 

right);  
 

Conclusion: little visual 
clustering by agonist-

agonist group 

 
Conclusion: little visual clustering 

by agonist-agonist group 

 
Conclusion: little visual clustering 

by agonist-agonist group 
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De novo Enterotypes* See Fig. 2 
 

Enterotype distribution 
differed in Ag vs. N 
(p=0.006) 
 
Other groups: no 
difference (p³0.05) 
 
See Fig. S7: Shannon 
diversity and richness 
(Chao1) lowest in 
Bacteroides: Clost. (both 
p<0.0001) 

 
Enterotype distribution differed in 
Ag vs. N (p=0.02) 
 
Other groups: no difference 
(p>0.05) 
 
Shannon diversity and richness 
(Chao1) lowest in Bacteroides: 
Clost. (both p<0.0001) 

 
Enterotype distribution differed in 
Ag vs. N (p=0.01) 
 
Other groups: no difference 
(p>0.05) 
 
Shannon diversity and richness 
(Chao1) lowest in Bacteroides: 
Clost. (both p<0.0001) 

Reference-based 
Enterotypes 

42/44 same reference-
based and de novo 
assignment (Table 2) 
 
No Prevotella enterotype 
among Ag or AgAt 
 
2/46 unable to be assigned 
reference-based 
enterotype were assigned 
Bacteroides: Clost. de 
novo enterotype 

34/44 same reference-based and de 
novo assignment  
 
 
No Prevotella enterotype among 
Ag, AgAt, or At 
 
5/44 unable to be assigned 
reference-based enterotype were 
Bacteroides: Clost. (n=4) and 
Prevotella (n=1) de novo 
enterotype; 1/44 unable to be 
assigned de novo enterotype was 
assigned Prevotella reference-
based enterotype 

32/39 same reference-based and de 
novo assignment 
 
 
No Prevotella enterotype among 
Ag, AgAt, or At 
 
5/39 unable to be assigned 
reference-based were Bacteroides: 
Clost. de novo enterotype; 1 
Bacteroides: Faec. was assigned 
reference-based Prevotella 
enterotype; 1 Bacteroides: Clost. 
assigned Firmicutes reference-
based enterotype  
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Differentially Abundant 
Genera (ALDEx2) 

   

Ag vs. N (FDR p-value)† Higher in Ag vs. N 
• Unclassified 

Enterobacteriaceae (p 
= 0.026) 

• Lactobacillus (p = 
0.031) 

• Clostridium_XlVa 
(p=0.033) 

• Faecalicoccus 
(p=0.037) 

• Anaerostipes 
(p=0.040) 

• Streptococcus 
(p=0.045) 

 
Lower in Ag vs. N 

• Unclassified 
Firmicutes (p=0.031) 

• Bilophila (p=0.037) 
• Roseburia (p=0.043) 

 

Higher in Ag vs. N 
• Unclassified 

Enterobacteriaceae (p = 0.035) 
• Clostridium_XlVa (p=0.049) 
• Bacteroides (p=0.025) 
• Faecalibacterium (p=0.048) 

 
 
 
 
 
 
 
 
 

Lower in Ag vs. N 
• Roseburia (p=0.0018) 

Higher in Ag vs. N 
• None (all p³0.05) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Lower in Ag vs. N 
• Roseburia (p=0.031) 

AgAt vs. N (FDR p-value)† None (all p³0.05) None (all p³0.05) None (all p³0.05) 
At vs. N (FDR p-value)† None (all p³0.05) None (all p³0.05) None (all p³0.05) 

*1 sample from study visit 2 was unable to be assigned a de novo enterotype with as the posterior probability of enterotype assignment 
was <90%. 
†Wilcoxon Rank Sum test p-value with Bejamini-Hochberg correction for False Discovery Rate (FDR). 
Abbreviations: No.: Number. 
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