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SUPPLEMENTARY INFORMATION

I. Variation in optical response of training samples

Fig. 1 depicts randomly selected data samples from the dataset used for training DL models.

The optical responses corresponding to each data sample include sharply varying features

such as dips / peak (red arrow), oscillations (orange arrow), and flat (blue arrow) reflections.

The appearance in every optical response of a combination of these features induces difficulty

in mapping structural design to optical response. The dataset with fewer data samples with

these variations could result in deviation in predicting optical response when a NN is being

trained on this dataset. Those data samples may act as outliers with spectral response

variation. The MSE loss function penalizes outliers in dataset while cosine similarity ensures

precise feature prediction.
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Figure 1 : Data samples of optical response from EM simulation generated

training dataset
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II. Loss and accuracy of DL models : SNN and cGAN

SNN Training: The SNN training is completed after 500 epochs, when on test data samples

the average MSE and cosine similarity for predicting optical responses stabilizes at 0.026 and

0.954 respectively. The SNN training took 4 hours (see our machine specifications on page

8) before MSE and cosine similarity were not improving further for later epochs. During

SNN training the loss and similarity were reported (see Figure 2). During training, the over-

fitting occurred is minimized with batch normalization, ReLU and drop-out. Using these

regularizations, the over-fitting has been reduced such that the MSE is minimum and the

cosine similarity is maximum on the test samples, indicating that the SNN has converged

and the training can be terminated.
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Figure 2 : Training and test curves of MSE loss and cosine similarity for SNN.
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cGAN Training : The discriminator and generator loss for cGAN is shown in Figure 4

until the training was terminated at 2000 epochs. We demonstrate the generating ability

of cGAN through it’s probabilistic representation learning after certain epochs as shown

in Figure 3. The evolution of generation ability for structural designs after certain epochs

shows that the generator produces designs which are closely similar to real designs from

training data. Once the training is over, we test the cGAN network on test samples and

evaluate the optical response of structural design produced by means of EM simulation and

SNN. In main text Figure 5, we show such test samples to evaluate the performance of

cGAN. We observe that the structural designs generated have optical response in agreement

with EM simulation and SNN predictions.

Figure 3 : Evolution of generated structural designs by cGAN after certain

epochs. After 2000 epochs, the generated design patterns are very similar to

real designs.
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Figure 4 : cGAN: Loss curves for generator and discriminator network.
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TABLE I: Detailed information of simulation neural network(SNN) model

architecture and parameters

Convolutional Layers

Layer type Block 1 Block 2 Block 3

Conv2d [1, 32, 3, 1] [64, 128, 3, 1] [128, 256, 3, 1]

Batch Norm2d 32 128 256

ReLU

Conv2d [32, 64, 3, 1] [128, 128, 3, 1 ] [256, 256, 3, 1]

Batch Norm2d 64 128 256

ReLU

Maxpool2d (2,2) (2,2) (2,2)

Dropout2d p = 0.5 p = 0.5 p = 0.5

Fully connected Layers

Layer type FC 1 FC 2 FC 3 FC4

Linear 4096 2048 1024 512

Dropout - p = 0.5 p = 0.5 p = 0.5

ReLU -

Note: In the tables above, Conv2d, Batch Norm2d, ReLU, Maxpool2d, Dropout2d,

and FC represent convolutional, batch normalization, rectified linear, max pooling, dropout,

and fully connected layers, respectively, while the square brackets capture [input channels,

output channels, kernel size, padding] of convolutional layers, and parentheses capture (ker-

nel size, stride) of the max pool layer.
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TABLE II: Network structure and parameters for cGAN model

Layer type Generator Layer type Discriminator

ConvTranspose2d [512, 512, 4, 1, 0] Conv2d [1, 64, 4, 2, 1]

Batch Norm2d 512 Batch Norm2d 64

ReLU LeakyReLU(0.2)

ConvTranspose2d [512, 256, 4, 2, 1] Conv2d [64, 128, 4, 2, 1]

Batch Norm2d 256 Batch Norm2d 128

ReLU LeakyReLU(0.2)

ConvTranspose2d [256, 128, 4, 2, 1] Conv2d [128, 256, 4, 2, 1]

Batch Norm2d 128 Batch Norm2d 256

ReLU LeakyReLU(0.2)

ConvTranspose2d [128, 64, 4, 2, 1] Conv2d [256, 512, 4, 2, 1]

Batch Norm2d 64 Batch Norm2d 512

ReLU LeakyReLU(0.2)

ConvTranspose2d [64, 1, 4, 2, 1] Conv2d [512, 100, 4, 2, 1]

Tanh Flatten concatenate

101×1 spectrum

FC 512

Batch Norm1d 512

LeakyReLU(0.2)

FC 1

Sigmoid

TABLE III: Hyper-parameters for training of cGAN and SNN

Hyper-Parameters Generator Discriminator SNN

Batch Size 64 64 64

Learning Rate 2e-4 2e-4 3e-4

Optimizer Adam Adam Adam
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TABLE IV: Time comparison

Task Duration

Dataset generation 50 hours

Training of SNN 4 hours

Training of cGAN 8.5 hours

Optical response prediction (Forward design) SNN: 4.2ms, COMSOL: 1min 45s

Structural design generation (Inverse Design) cGAN: 5.5ms

Cyclical generation framework (1000 designs) 11s

Cyclical generation framework (single design) 11ms

III. Computing Efficiency : DL models and Cyclical Generation Framework vs EM

Simulation

We evaluated the computing efficiency of DL models and the cyclical generation framework

by documenting the time taken to carry out forward design and inverse design on test data

samples. For a fair comparison, the computation time was assessed using the same contem-

porary laptop computer. The laptop hardware consists of a single 4 GB Nvidia GeForce

GTX 1050 GPU, 8 GB RAM, and Intel i7 four core processor. We measured the time-

taken for all tasks performed using DL models and cyclical generation framework. All EM

simulations were performed using FEM-based electromagnetic simulation software: com-

sol multiphysics with Livelink for matlab. In Table IV, we observe that DL models

and framework once optimized are more efficient than conventional EM simulation method.

Importantly, the time taken for the simultaneous forward and inverse design with optimiza-

tion process using cyclical generation framework is very fast, indicating that the design and

optimization of metasurfaces is achieved on low computation cost within very small time

scales.
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IV. Cyclical Generation Framework : Example samples for user-defined optical

response as Gaussian mixture.

We show more examples (see Figure 5) of generated structural designs from the cyclical

generation framework for different desired optical response as Gaussian mixtures. In each

example, the inset figure is the corresponding generated structural design.

Figure 5 : Examples of structural designs generated for the desired optical

response as a Gaussian mixture.

9



V. Optimization of SNN with different loss functions.

In order to understand the choice of loss function for SNN optimization and accuracy calcu-

lation for optical response prediction, we implement SNN training with loss functions such as

MSE, MAE and cosine similarity, respectively. In Table V, we optimize SNN with different

loss functions and evaluate the optical response prediction with different accuracy measures.

Comparing results for different optimizations, we find that MSE as a loss function and cosine

similarity as an accuracy measure leads to a better evaluation for accurate optical response

prediction. Moreover, Figure 6 shows that when cosine similarity is used as a loss function

for SNN’s training and optimization, the SNN is able to learn the features of the optical

response. However, each spectral point has a high MSE leading to a large average MSE of

0.066 on the test samples.

10



TABLE V: Loss functions for optimization of SNN

Loss function Accuracy Measure

MSE: 0.026 Cosine Similarity: 0.954

MAE: 0.17 Cosine Similarity : 0.935

Cosine Similarity: 0.946 MSE: 0.066
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Figure 6 : Test sample examples of SNN predictions for cosine similarity as

loss function and MSE as accuracy measure.
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VI. Cyclical Generation Framework : Example samples for user-defined optical

response as step functions (band filters).

The cyclical generation framework is capable of generating authentic structural designs,

most likely from the learned design class, such that the optical response of the generated

structural designs mimics the features of the desired input optical response with minimal

deviations. In Figure 7, we show examples of generated structural designs patterns for

different user defined (band filter) optical response. The generated structural designs (inset)

closely capture the features of desired optical response.

Figure 7 : Examples of structural designs generated for the desired optical

response as step functions (band filters).
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TABLE VI: Training of cGAN with different dimension of noise vectors

Input Vector to G Noise Vector Performance

256 155 MSE : 0.010, Cosine Similarity : 0.991

512 411 MSE : 0.011, Cosine Similarity : 0.987

1024 923 MSE : 0.0115 , Cosine Similarity : 0.989

VII. Different noise vector dimension input to cGAN.

We perform the training of cGAN with different dimension of input noise vector to under-

stand the relation between the noise vector space and the dataset used for training. Table

VI shows the performance of the cGAN on test samples as a measure of MSE and cosine

similarity. We observe that for different dimension of input noise vectors, the performance

of cGAN remains fairly same in all the cases. The choice of noise vectors for generative

models [1–3] does not correlate with the data samples needed for the training, since the

cGAN model learns the same probabilistic distribution of EM simulation datasets for each

case listed in Table VI.
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