GigaScience

Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion and loss --Manuscript Draft--

Manuscript Number:	GIGA-D-20-00135R2	
Full Title:	Adaptive venom evolution and toxicity in or formation, expansion and loss	topods is driven by extensive novel gene
Article Type:	Research	
Funding Information:	Australian Biological Resources Study (ref:RF211-41)	Assoc Prof Jan M. Strugnell
	Austrian Science Fund (FWF) grant (P30686-B29)	Prof Oleg Simakov
Abstract:	 Background Cephalopods represent a rich system for in organismal novelties. This diverse group of adaptations including proteinaceous venom octopus genus (Hapalochlaena), which a quantities of the potent neurotoxin, tetrodot Findings To reveal genomic correlates of organisma study of three octopod genomes, including Hapalochlaena maculosa). We present the dynamic evolutionary patterns at both non-Gene family expansions previously reporter finger and cadherins, both associated with novel gene families, dominate the genomic tissue-specific genes in the posterior saliva was dominated by serine proteases in nonfamily was a minor component in H. macul channels in H. maculosa contain a resista snakes, which is exclusive to the genus. Ar diverse array of bacterial species, including suggestive of a possible production source Conclusions We present the first tetrodotoxin-bearing or displays lineage-specific adaptations to tetr with other recently published cephalopod g from which future work could advance our on ovelty in this family. 	specialised predators has evolved many b. Of particular interest is the blue-ringed- ire the only octopods known to store large oxin, within their tissues and venom gland. I novelties, we conducted a comparative the Southern blue-ringed octopus (e genome of this species and reveal highly coding and coding organizational levels. d in Octopus bimaculoides (e.g., zinc neural functions), as well as formation of landscape in all octopods. Examination of ry gland (PSG) revealed that expression tetrodotoxin bearing octopods, while this osa . Moreover, voltage-gated sodium nce mutation found in pufferfish and garter halysis of the PSG microbiome revealed a genera that can produce tetrodotoxin, tetrodotoxin acquisition. This genome, along enomes, represents a valuable resource understanding of the evolution of genomic
Corresponding Author:	Brooke Lauren Whitelaw, Bachelor with Ho James Cook University College of Science Townsville, QLD AUSTRALIA	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	James Cook University College of Science	and Engineering
Corresponding Author's Secondary Institution:		
First Author:	Brooke Lauren Whitelaw	
First Author Secondary Information:		
Order of Authors:	Brooke Lauren Whitelaw	

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Experimental design and statistics	Yes
Are you submitting this manuscript to a special series or article collection?	No
Question	Response
Additional Information:	
	Revised sentence: (pg. 17, lines : 396-398) "While it has yet to be assessed for TTX resistance, the replacement of Asp in B. candida with a neutral amino acid has been predicted to disrupt TTX binding by preventing formation of a salt bridge or hydrogen bond89,91"
	Original sentence: "While it has yet to be assessed for TTX resistance, the replacement of Asp in B. candida with a neutral amino acid has been predicted to disrupt TTX binding by
	We agree that this sentence required clarification, specifically that both hydrogen and salt bridges could be disrupted. This information has been added to the modified sentence as well as the suggested reference.
	2) In lines 372-374, the authors comment on the interactions between aspartic acid and TTX, "While it has yet to be assessed for TTX resistance, the replacement of Asp in B. candida with a neutral amino acid has been predicted to disrupt TTX binding by preventing formation of a hydrogen bond." A better reference for this statement is Shen et al. (2018). In addition, the cryo-EM structure data from this paper suggest that either a hydrogen bond or a salt bridge could form between TTX and that aspartic acid at this position of the protein.
	We have chosen to use the British spelling and corrected the one American spelling at pg. 1, line 24.
	1) The authors should choose one convention for spelling the word specialized either specialised (British) or specialized (American).
	Reviewer #2: The authors have adequately revised their manuscript in response to my review and addressed the comments in my review with their letter. I have just two minor suggestions after reading the revised manuscript.
	Reviewer reports: Reviewer #1: The authors have made the changes that I requested. I confess that I did not carefully read through the revision to verify that all of the minor grammatical edits I proposed were made, but I "spot checked" several and they look pretty good.
Response to Reviewers:	We would like to thank the reviewers for their helpful comments, which have been addressed below and the editor for considering our manuscript for publication.
Order of Authors Secondary Information:	
	Jan M. Strugnell
	Oleg Simakov
	Elena A. Ritschard M. T P. Gilbert
	Rute R. da Fonseca
	Julian Finn

Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our <u>Minimum</u> Standards Reporting Checklist?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	

1	Adaptive venom evolution and toxicity in octopods is driven by
2	extensive novel gene formation, expansion and loss
3	Brooke L. Whitelaw ^{1,2,*} , Ira R. Cooke ^{3,4} , Julian Finn ² , Rute R. da Fonseca ⁵ , Elena A.
4	Ritschard ^{6,7} , M. T P. Gilbert ⁸ Oleg Simakov ⁶ , Jan M. Strugnell ^{1,9}
5	
6	¹ Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University,
7	Townsville, Queensland, 4811, Australia
8	² Sciences, Museum Victoria, Carlton, Victoria 3053, Australia
9	³ College of Public Health, Medical and Vet Sciences, James Cook University,
10	Townsville, Queensland, 4811, Australia
11	⁴ La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria
12	3086, Australia
13	⁵ Center for Macroecology, Evolution and Climate (CMEC), GLOBE Institute, University
14	of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;
15	⁶ Department of Neurosciences and Developmental Biology, University of Vienna,
16	Austria

17	⁷ Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton
18	Dohrn, Italy
19	⁸ Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen,
20	Øster Voldgade 5-7, 1350 Copenhagen, Denmark;
21	⁹ Department of Ecology, Environment and Evolution, La Trobe University, Melbourne,
22	Victoria, 3086 Australia
23	
24	*Brooke Whitelaw,Email: 1blwhitelaw8@gmail.com,Phone number: 0424642621
25	
26	ORCIDs:
27	Brooke L. Whitelaw, 0000-0002-5555-4612;
28	Ira R. Cooke, 0000-0001-6520-1397;
29	Julian Finn, 0000-0003-1820-512X;
30	Rute R. da Fonseca, 0000-0002-2805-4698;
31	Elena A. Ritschard, 0000-0002-4956-9703;
32	M. T P. Gilbert, 0000-0002-5805-7195;
33	Oleg Simakov, 0000-0002-3585-4511;

34 Jan M. Strugnell, 0000-0003-2994-637X.

35

36 Abstract

37 Background

38	Cephalopods represent a rich system for investigating the genetic basis underlying
39	organismal novelties. This diverse group of specialised predators has evolved many
40	adaptations including proteinaceous venom. Of particular interest is the blue-ringed-
41	octopus genus (Hapalochlaena), which are the only octopods known to store large
42	quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland.
43	Findings
44	To reveal genomic correlates of organismal novelties, we conducted a comparative
45	aturda of three externed company including the Couthern blue vinced externe
	study of three octopod genomes, including the Southern blue-ringed octopus
46	(Hapalochlaena maculosa). We present the genome of this species and reveal highly
46 47	
	(Hapalochlaena maculosa). We present the genome of this species and reveal highly

50	gene families, dominate the genomic landscape in all octopods. Examination of tissue-
51	specific genes in the posterior salivary gland (PSG) revealed that expression was
52	dominated by serine proteases in non- tetrodotoxin bearing octopods, while this family
53	was a minor component in <i>H. maculosa</i> . Moreover, voltage-gated sodium channels in <i>H</i> .
54	maculosa contain a resistance mutation found in pufferfish and garter snakes, which is
55	exclusive to the genus. Analysis of the PSG microbiome revealed a diverse array of
56	bacterial species, including genera that can produce tetrodotoxin, suggestive of a
57	possible production source.
	possible production source.
58	Conclusions
58	Conclusions
58 59	Conclusions We present the first tetrodotoxin-bearing octopod genome <i>H. maculosa</i> , which displays
58 59 60	<i>Conclusions</i> We present the first tetrodotoxin-bearing octopod genome <i>H. maculosa,</i> which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other

65 Background

66	Reconstructing the evolution of novelties at the genomic level is becoming an
67	increasingly viable approach to understand their origin. The recent publication of
68	octopod genomes provides an opportunity to investigate the link between genomic and
69	organismal evolution in this unique lineage for which genomic resources have been
70	lacking[1]. From their emergence 275 mya[2], octopods have diversified into > 300
71	species, inhabiting tropical to polar regions, from the deep sea to shallow intertidal
72	zones[3]. As a highly diverse group, octopods show remarkable variation in body form
73	and function. They are specialised soft-bodied predators that are well adapted to their
74	environment with prehensile limbs lined with chemosensory suckers[4], the ability to
75	manipulate skin texture and colour using specialised chromatophores[5], the largest
76	invertebrate nervous systems (excluding those of other cephalopods)[6], and a
77	relatively large circumesophageal brain allowing for complex problem solving and
78	retention of information[7]. Furthermore, the cephalopods have independently evolved
79	proteinaceous venom, which is produced and stored within a specialised gland in
80	known as the posterior salivary gland (PSG). All octopods are believed to possess a
81	form of proteinaceous venom used to subdue prey[8–10]. Serine proteases are a
82	common component of cephalopod venoms and have been observed in the PSG of

83	squids, cuttlefish and octopods[10–13]. Convergent recruitment of serine proteases has
84	been observed between many vertebrate (Squamata[14–16] and Monotremata[17])
85	and invertebrate (Hymenoptera[18], Arachnida[19], Gastropoda[20], Remipedia[21]
86	and Cnidarian[22]) venomous lineages.
87	In addition to these proteinaceous venoms, the blue-ringed octopus (genus
88	Hapalochlaena) is the only group that also contains the potent non-proteinaceous
89	neurotoxin, tetrodotoxin (TTX)[12,23]. The mechanism of TTX resistance, which allows
90	for safe sequestration of TTX, has been attributed to several substitutions in the p-loop
91	regions of voltage-gated sodium channels(Na _v) in <i>H. lunulata</i> [24]. However, these
92	channels have yet to be examined in <i>H. maculosa</i> and <i>H. fasciata</i> . TTX resistance has
93	also been studied in a range of other genera including, pufferfish[25], newts[26,27]
94	arachnids[28], snakes[29] and gastropods[30].
95	The blue-ringed octopus is easily identified by iridescent blue rings, which
96	advertise its toxicity in an aposematic display[31–33]. Sequestration of the TTX within
97	bodily tissues is unique to this genus among cephalopods[32,34]. While other
98	unrelated TTX-bearing species primarily use TTX for defense, Hapalochlaena is the only
99	known taxa to utilise TTX in venom[23,35]. The impact of TTX inclusion on venom

100	composition and function has been previously investigated in the southern blue-ringed
101	octopus (H. maculosa)[9]. Relative to the non-TTX bearing species Octopus kaurna, H.
102	maculosa exhibited greater expression of putative dispersal factors such as
103	hyaluronidase, which serve to aid in the dispersal of toxic venom components[9].
104	Conversely, tachykinins- neurotoxins known from other octopods[36,37] were absent
105	from the <i>H. maculosa</i> PSG[9]. Further investigation into the broader impact of TTX on
106	the evolutionary trajectory of the species has yet to be addressed due to the absence of
107	a genome.
108	This study presents the genome of the southern blue-ringed octopus (H.
109	maculosa, NCBI:txid61716; marinespecies.org:taxname:342334), the first from the
110	genus Hapalochlaena. By using a comparative genomic approach we are able to
111	examine the emergence of octopod novelties, at a molecular level between H. maculosa
112	and the two non-TTX bearing octopods: the California two-spot octopus (O.
113	bimaculoides) and the long-armed octopus (Callistoctopus minor). We also address unique
114	features of venom evolution in octopods while also addressing the species-specific
115	evolution of tetrodotoxin acquisition and resistance in <i>H. maculosa</i> .
116	

117	Keywords: cephalopod genome, comparative genomics, gene family expansions,
118	transposable elements, venom evolution
119	
120	
121	Data Description
122	Genome assembly and annotation
123	The southern blue-ringed octopus genome was sequenced using Illumina paired

125 Boat Shed, Beaumaris, Port Phillip Bay, Victoria, Australia. The assembly was

126 composed of 48,285 scaffolds with an N50 of 0.93 Mb and total size of 4.08 GB. A total

end and Dovetail sequencing from a single female collected at Beaumaris Sea Scout

127 of 29,328 inferred protein coding genes were predicted using a PASA[38] and an

128 Augustus[39] pipeline and supplemented with zinc finger and cadherin genes obtained

129 from aligning *H. maculosa* transcripts to *O. bimaculoides* gene models(Supplementary

130 notes 1.1-1.4). Completeness of the genome was estimated using BUSCO[40], which

131 identified 87.7% complete and 7.5% fragmented genes against the metazoan database

132 of 978 groups (Supplementary notes 3.2).

133	H. maculosa has a highly heterozygous genome (0.95%), similar to O. vulgaris
134	(1.1%)[41] but far higher than <i>O. bimaculoides</i> (0.08%)[42]. While the low
135	heterozygosity of O. bimaculoides is surprising, other molluscs also have highly
136	heterozygous genomes in accordance with H. maculosa, including the gastropods (1-
137	3.66%)[43,44] and bivalves (0.51-3%)[45–51](Supplementary table 5).
138	
139	PSMC (Pairwise Sequentially Markovian Coalescent) and mutation rate
140	The mutation rate for <i>H. maculosa</i> was estimated to be 2.4 x 10^{-9} per site per
141	generation based on analysis of synonymous differences with O. bimaculoides
142	(Supplementary note 1.5). The mutation rate is comparable to the average mammalian
143	mutation rate of 2.2 x 10^{-9} per site per generation, and <i>Drosophila</i> , 2.8 x 10^{-9} [52,53].
144	Due to the unavailability of a suitable closely related and comprehensive genome until
145	the publication of <i>O. bimaculoides</i> in 2015[42], this is the first genome-wide mutation
146	rate estimated for any cephalopod genome.
147	The historic effective population size (Ne) of <i>H. maculosa</i> was estimated using
148	the pairwise sequentially Markovian coalescent (PSMC) model (Supplementary Fig 2).
149	Population size was found to initially increase during the early Pleistocene, followed by

150	a steady decline which slows slightly around 100kya. Note that PSMC estimates are not
151	reliable at very recent times due to a scarcity of genomic blocks that share a recent
152	common ancestor in this highly heterozygous genome. A decline in population size
153	started during the mid-Pleistocene approximately 1mya, a time of unstable
154	environmental conditions with fluctuations in both temperature and glaciation
155	events[54–56]. Corals in the genus Acropora show a similar pattern of expansion and
156	contraction attributed to niche availability post mass extinction of shallow-water
157	marine organisms 2-3 mya, followed by the unstable mid-Pleistocene climate[57,58]. A
158	similar pattern of expansion and decline in effective population size has also been
159	observed in the Antarctic ice fish among other marine organisms distributed in the
160	Southern Hemisphere[59].
161	
162	Phylogenomics
163	A total of 2,108 (single copy/ 1-to-1) orthologous clusters were identified
164	between the molluscan genomes and transcriptomes of 11 species and used to construct
165	a time-calibrated maximum likelihood tree(Fig 1a). The phylogenetic reconstruction

166 estimated the divergence time between *H. maculosa* and its nearest relative, *O.*

167	<i>bimaculoides</i> , to be \sim 59 mya. <i>C. minor</i> diverged from this clade much earlier \sim 183
168	mya. Previous phylogenies using a combination of a small number of mitochondrial
169	and nuclear genes[60–62] and orthologs derived from transcriptomes[63] support this
170	topology. Likewise, estimates by Tanner et al. ² , using a concatenated alignment of 197
171	genes with a Bayesian approach, placed divergence of H. maculosa from Abdopus
172	aculeatus at ~59 mya[2].
173	Inference of "shared" phenotypic traits can be difficult to resolve with the
174	current literature. For example, false eye spots/ocelli observed in both O. bimaculoides
175	and H. maculosa are structurally very different. Each ocellus in H. maculosa is composed
176	of a continuous single blue ring[33], while O. bimaculoides has a blue ring composed of
177	multiple small rings. Morphological variations of ocelli structure and colour, in
178	conjunction with the taxonomically sporadic occurrence of this trait across species
179	within Octopus and Amphioctopus, limits our interpretation as to the evolutionary
180	history of this trait in octopods[3] . Large gaps remain in the literature between
181	phenotypic traits in cephalopods and their genomic source[1]. This study aims to
182	provide a genomic framework to enable resolution of these features by profiling

183 changes in several genomic characters: (i) gene duplications, (ii) novel gene formation,
184 and (iii) non-coding element evolution.

185

186	Fig 1. Comparisons of molluscan genomes and gene families a) Time-calibrated maximum likelihood
187	phylogeny of seven molluscan genomes (Aplysia californica, Lottia gigantea, Crassostrea gigas, Euprymna
188	scolopes, Octopus bimaculoides, Callistoctopus minor and Hapalochlaena maculosa) and four transcriptomes
189	(Octopus kaurna, Octopus vulgaris, Sepia officinalis and Idiosepius notoides) using 2,108 single copy
190	orthologous sequence clusters. Node labels show divergence times in millions of years (mya), blue
191	(divergence to octopods) and orange bars (decopods) represent standard error within a 95% confidence
192	interval. Octopodiformes lineages are highlighted in blue and decapod orange. Scale bar represents
193	millions of year (mya). b) Expansions of octopod gene families relative to molluscan genomes Aplysia
194	californica (A. cali), Biomphalaria glabrata (B. glab), Crassostrea gigas (C. gig), Lottia gigantea (L. gig),
195	Euprymna scolopes (E. scol) c) Lineage-specific gene expansions in the octopod genomes Callistoctopus
196	minor (C. min), Octopus bimaculoides (O. bim) and Hapalochlaena maculosa (H. mac). Domains
197	abbreviated: Chondroitin N-acetylgalactosaminyltransferase (CHGN), C2H2(Cys2-His2) zinc finger and
198	Cornifin SPRR(small proline-rich proteins).
199	

200 Organismal impact of novel genes and gene family expansions

201	Gene family expansions between octopods (O. bimaculoides, C. minor and H.
202	maculosa) and three other molluscan genomes (Aplysia californica, Lottia gigantea and
203	Crassostrea gigas) were examined using Pfam annotations. A total of 5565 Pfam
204	domains were identified among six molluscan genomes. H. maculosa and C. minor
205	exhibit expansions in the cadherin gene family, characteristic of other octopod
206	genomes, including O. bimaculoides (Fig1b)[42,64]. C. minor, in particular, shows the
207	greatest expansion of this family within octopods. Expansions of protocadherins, a
208	subset of the cadherin family, have also occurred independently in squid[42], with the
209	octopod expansions occurring post divergence \sim 135 mya[42]. The shared ancestry of
210	octopod cadherins was also documented by Styfhals et al[64] using phylogenetic
211	inference between O. bimaculoides and O. vulgaris. Cadherins, specifically
212	protocadherins, play crucial roles in synapse formation, elimination and axon targeting
213	within mammals and are essential mediators of short-range neuronal connections[65–
214	68]. It should be noted that octopods lack a myelin sheath, as a result short-range
215	connections are integral to maintaining signal fidelity over distance[6]. The
216	independent expansions of protocadherins within chordate and cephalopod lineages are
217	believed to be associated with increased neuronal complexity[42,64]. Elevated

218	expression of protocadherins within neural tissues have been observed in O. vulgaris
219	and O. bimaculoides by both Styfhals et al[64] and Albertin et al[42] respectively. In
220	particular Styfhals et al[64] noted differential expression across neural tissues
221	including supra-esophageal mass, sub-esophageal mass, optic lobe and the stellate
222	ganglion[64]. However, functional implications of observed expression patterns remain
223	speculative without further study.
224	H. maculosa also shows expansions in the C2H2-type zinc finger family. Zinc
225	fingers form an ancient family of transcription factors, which among other roles serve
226	to regulate transposon splicing as well as embryonic and neural development[69,70].
227	Expansion of this type of zinc finger in O. bimaculoides has been associated with neural
228	tissues. It should be noted that due to the inherent difficulty in fully annotating the
229	zinc finger family, alternative methods were used to examine the number of exons in C.
230	minor with high similarity to annotated zinc finger genes in O. bimaculoides
231	(Supplementary notes 5.1). A total of 609 exons (not captured by published gene
232	models) from C. minor were found with high similarity to accepted zinc finger genes in
233	O. bimaculoides, suggesting this family is larger than that which the genome annotation
234	infers.

235	Examination of genes specifically expressed within neural tissues found that
236	cadherins were among the most highly expressed gene families of all octopod species.
237	Particularly in C. minor, relative to the other octopods, such a trend reflects the gene
238	family expansions found in this species (Fig2c). Zinc fingers were less pronounced,
239	representing 1.1% of overall expression in <i>C. minor</i> compared to cadherins at 11.3%.
240	Overall, neural tissues express a large diversity of Pfams with each species, exhibiting a
241	similar profile and proportion of orthologous to lineage-specific genes.
242	
243	Novel patterns of gene expression
244	High-level examination of gene dynamics (expression, loss of expression and
245	absence of expression) between octopods across different levels of orthology provides
246	insight into large-scale expression patterns and highlights lineage-specific loss of
247	expression.
248	The greatest proportion of genes in each species examined were not specific to
249	octopods or an octopus lineage (ancient genes) (Fig 2a). Expression of these genes were
250	enriched in neural tissues across all species, indicating the core conservation of neural
251	development and function. However, we also find that genes specific to each octopod

252	species also show this expression pattern. The overall elevated expression of genes
253	within neural tissues could be reflective of the extensive neural network present in
254	cephalopods, which comprises around 520 million nerve cells[71], rivalling
255	vertebrates/mammals in size[6]. Expression of many novel genes in the nervous system
256	may also indicate contribution of those genes to lineage-specific neural network
257	evolution. In contrast, genes that date back to the shared octopod ancestor show
258	highest expression in male reproductive tissues in all species.
259	Loss of expression between octopod genomes is exhibited most clearly in H. maculosa
260	with 11% (1993 genes) of all ancient genes having no expression, compared to 1% in
261	both O. bimaculoides and C. minor. Absence of gene expression for genes whose
262	orthologs have retained expression in one or more other species suggests a unique
263	evolutionary trajectory from other octopods. It should be noted that differences in
264	tissue sampling may in part influence these values and due to the limited sampling of
265	species, loss of expression cannot be inferred at a species level and may have occurred
266	at any point in the lineage. In order to fully understand the implications of the gene
267	family contractions and loss of expression in <i>H. maculosa</i> , relative to other octopods,
268	further investigation is required.

270 Fig2. Dynamics of gene expression in octopod genomes. Proportion of gene expression across levels 271 of specificity from not specific to octopods or an octopus species (left) to octopod-specific (middle) and 272 lineage-specific (right). Donut plots show gene expression as some expression in any tissue (purple), no 273 expression (blue) or expression that has been lost (dark blue). Loss of expression requires an ortholog of 274 the gene to be expressed in one or more species and not expressed in the other species. Heatmaps at each 275 specificity level show average expression of genes within their respective tissues, low expression (cream) 276 to high expression (dark red). 277 278 Fig3. Dynamics of gene expression in neural and venom producing tissues of octopods. a) Tissue 279 specific expression of genes within the brain of H. maculosa, O. bimaculoides and C. minor (red). Venn 280 diagram shows numbers of shared and exclusive genes between species (Left). Bar chart of the top 5 281 Pfams and their contribution to overall expression in the brain (right). b) Tissue specific expression of 282 genes within the posterior salivary gland (PSG) of H. maculosa, O. bimaculoides and C. minor (Blue). Venn 283 diagram shows numbers of shared and exclusive genes between species (left). Bar chart of the top 5 284 Pfams and their contribution to overall expression in the PSG (right). 285

286 Evolution of the octopod non-coding genome

287	Similar to other cephalopod genomes, the <i>H. maculosa</i> genome has a high repeat
288	content of 37.09% (bases masked). O bimaculoides and C. minor are also highly
289	repetitive with 46.39% and 44% of their genomes composed of transposable elements
290	(TE) respectively. Of the repetitive elements, LINEs dominate the decapodiform
291	Euprymna scolopes genome accounting for its larger genome size[72], while SINEs are
292	expanded in all four octopod genomes. SINEs have been previously documented in O.
293	bimaculoides (7.86%)[42], comparable with H. maculosa (7.53%), while fewer SINEs
294	were previously reported for <i>C. minor</i> (4.7%)[73]. SINE elements also dominate the <i>O</i> .
295	vulgaris genome with an expansion occurring post divergence from O. bimaculoides[41].
296	Rolling circle (RC) elements are a prominent minor component in octopods,
297	particularly in <i>H. maculosa</i> . RC transposons have been isolated from plant (Zea mays)
298	and mammalian genomes. They depend greatly on proteins used in host DNA
299	replication and are the only known class of eukaryotic mobile element (transposon) to
300	have this dependence[74]. TE elements in cephalopod lineages show differing
301	expansions between most of the genomes currently available, suggesting they are
302	highly active and play a strong role in cephalopod evolution.

303	Enrichment of transposable elements associated with genes (flanking regions
304	10kb up- and downstream) was not observed compared to the whole genome for any
305	species examined. More notable were differences between species, in particular C.
306	minor shows a greater proportion of LINE to SINE elements relative to both O.
307	bimaculoides and H. maculosa.
308	Together, this highlights a very dynamic evolutionary composition of repeats in
309	cephalopods, that requires further study to test for any potential association with
310	changes in gene expression or genome evolution.
311	
312	Dynamics of gene expression in the posterior salivary gland (PSG)
313	The posterior salivary gland is the primary venom-producing gland in octopods.
314	Venom composition in the majority of octopods is primarily composed of proteinaceous
315	toxins. Hapalochlaena is an exception containing an additional non-proteinaceous
316	neurotoxin, TTX, within their venom. We hypothesize that the Hapalochlaena PSG will
317	exhibit a loss of redundant proteinaceous toxins due to the presence of TTX.
318	Examination of all PSG-specific genes from the three octopods revealed a
319	disproportionate number of genes exclusive to <i>H. maculosa</i> (Fig 3a). A total of 623

320	genes were exclusive to <i>H. maculosa</i> PSG compared to only 230 and 164 exclusive to <i>O</i> .
321	bimaculoides and C. minor PSGs, respectively. Additionally, we predict that the H.
322	maculosa PSG is functionally more diverse based on the number of Pfam families
323	detected, 532 in total. Comparatively, the PSG genes in O. bimaculoides and C. minor
324	are fewer and more specialised. Gene family expansions of serine proteases dominate
325	expression comprising over 30% of total PSG-specific expression in C. minor and 17-
326	20% in O. bimaculoides (Fig 3b). Serine proteases were also among genes whose
327	expression appears to have shifted between octopod species. Several serine proteases
328	show specific expression to the PSG of O. bimaculoides and C. minor while being
329	expressed in a non-specific pattern among brain, skin, muscle and anterior salivary
330	gland tissues in <i>H. maculosa</i> (Fig 4b). Most notable is the absence of many paralogs in
331	both H. maculosa and O. bimaculoides suggesting a lineage-specific expansion of this
332	cluster in C. minor. Fewer serine protease genes can also be observed in H. maculosa
333	(Fig 4c). Similarly, reprolysin (M12B) exhibits shifting expression in <i>H. maculosa</i> ,
334	presumably from the PSG to the branchial heart, and a complete loss of paralogs from
335	the genome. While the function of this protein has not been assessed in octopus,

336 members of this protein family exhibit anticoagulant properties in snake venom[75–337 78].

338	Serine proteases have been previously documented in cephalopod venom and
339	are prime candidates for conserved toxins in octopods. Cephalopod-specific expansions
340	have been identified with strong association to the PSG in 11 cephalopods (seven
341	octopus, two squid and two cuttlefish)[8,13]. All serine proteases identified from the
342	PSG of these species were found to belong to the cephalopod-specific clade.
343	Functionally, cephalopod venom serine proteases have yet to be assessed. However,
344	octopod venom has been observed to have strong digestive and hemolytic properties,
345	which may be in part due to this crucial protein family[79–81]. The reduced number
346	and expression of serine proteases in <i>H. maculosa</i> suggests a change in function of the
347	PSG for this species. These results support the hypothesis of toxin redundancy in the <i>H</i> .
348	maculosa PSG due to the incorporation of tetrodotoxin. Previous proteomic analysis of
349	the H. maculosa PSG revealed high expression of hyaluronidase, which often serves as a
350	dispersal factor within snake venom, facilitating the spread of toxin while not being
351	directly toxic to their prey[9,82]. While further investigation is required, the
352	incorporation of TTX within <i>H. maculosa</i> venom may have contributed to a shift in

function, with proteins present acting to support the spread of venom and digestion oftissues.

355

356	Fig 4. Examination of posterior salivary gland (PSG) gene expression between three octopod
357	genomes. a) Heatmap of genes expressed specifically in the PSG of <i>H. maculosa</i> (tau > 0.8) and their
358	orthologs in O. bimaculoides and C. minor lacking specific expression to the PSG (tau < 0.8). Genes with
359	an ortholog lacking expression are coloured in grey while the absence of an ortholog is white. b)
360	Heatmap of genes expressed specifically in the (PSG) of both O. bimaculoides and C. minor (tau >0.8)
361	and their orthologs in <i>H. maculosa</i> lacking specific expression to the PSG.
362	
363	TTX resistance of the Na, channels
264	To identify the machanism of TTV resistance in II members the voltage estad

To identify the mechanism of TTX resistance in *H. maculosa*, the voltage gated sodium channel (Na_v) sequences were compared between susceptible (human) and resistant (pufferfish, salamanders and garter snakes) species. TTX binds to the p-loop regions of sodium channels, inhibiting the flow of sodium ions in neurons, resulting in paralysis[83,84]. Inhibition of TTX binding has been observed in species which either

369	ingest TTX via prey, such as garter snakes[85], and in those which retain TTX within
370	their tissues like pufferfish[86].

371	Two Na _v genes were identified in the <i>H. maculosa</i> genome (Na _v 1 and Na _v 2), this
372	is congruent with the recent identification of two Na_v isoforms in <i>H</i> .
373	<i>lunulata</i> [24](Supplementary Fig 8 & 9). Among cephalopods with sequenced $Na_v 1$
374	channels, p-loop regions are highly conserved with both DI and DII shared between all
375	species. The regions DIII and DIV closer to the C-terminal end of the protein in
376	Hapalochlaena sp. contain mutations, which may impact TTX binding and differ
377	between families and species as follows. Similar to the pufferfish (Arothron,
378	Canthigaster, Takifugu and Tetraodon)[87] and garter snake Thamnophis couchii[88], H.
379	maculosa Nav1 has a mutation within the third p-loop at site (DIII) from M1406T,
380	while all other cephalopods have an Ile(I) at this position (Fig 5a). The dumbo octopus
381	(Grimpoteuthis) is the only exception retaining the susceptible M at this site similar to
382	humans and other non-resistant mammals[83]. Additionally, the fourth p-loop (DIV) in
383	H. maculosa exhibits two substitutions at known TTX binding sites: D1669H and
384	H1670S. In a previous study a Met to Thr substitution into a TTX sensitive Nav1.4
385	channel decreased binding affinity to TTX by 15-fold[87]. Likewise, a 10-fold increase

386	in sensitivity was observed from a T1674M substitution in a mite (Varroa destructor)
387	channel VdNav1[28]. However, resistance is often a result of multiple substitutions and
388	when I1674T/D1967S occur together in VdNav1, resistance is multiplicative resulting
389	in "super resistant" channels with binding inhibition of 1000-fold. The combination of
390	M1406T/ D1669H in <i>H. maculosa</i> also occurs in the turbellarian flatworm <i>Bdelloura</i>
391	candida(BcNav1)[87,89]. While it has yet to be assessed for TTX resistance, the
392	replacement of Asp in B. candida with a neutral amino acid has been predicted to
393	disrupt TTX binding by preventing formation of a salt bridge or hydrogen bond[89,90].
394	These three substitutions (M1406T, D1669H and H1670S) in <i>H. maculosa</i> , with the
395	potential to inhibit TTX binding, have also been identified by Geffeney et al[24] in <i>H</i> .
396	lunulata. It has yet to be established if these mutations are derived from a shared
397	ancestor or have occurred independently.
398	While Hapalochlaena remains the best documented example of TTX resistance
399	among cephalopods, other species may contain some level of TTX resistance (e.g.
400	Octopus vulgaris)[91,92]. Saxitoxin (STX) is a similar toxin in structure and function,
401	and mutations resistant to TTX are often also STX inhibiting[93] O. vulgaris has been
402	observed consuming STX-contaminated bivalves with no negative impacts and as such

403	is believed to be resistant[92]. However, no mutations known to reduce TTX/STX
404	binding affinity occur in its Nav1[92,94]. The selective pressure facilitating the
405	evolution of STX/TTX resistance in these shallow water benthic octopods may be toxic
406	prey, similar to garter snakes. STX is also known as a paralytic shellfish poison (PSP).
407	Produced by photosynthetic dinoflagellates and bioaccumulated in bivalves[95], this
408	toxin contaminates a common octopus food source. Pelagic squids such as the
409	Humboldt (D. gigas) and longfin inshore squid (D. pealeii) do not appear to be TTX/STX
410	resistant; mass strandings of Humboldt squid have been associated with ingestion of
411	STX-contaminated fish[96]. Likewise, no evidence of resistance was found in the
412	sodium channel of the dumbo octopus (Grimpoteuthis). This species typically inhabits
413	depths of 2000-5000m and is unlikely to encounter STX-contaminated food
414	sources[97].

416 Fig 5. Mechanism of tetrodotoxin resistance within the posterior salivary gland of *H. maculosa*417 (PSG) a) Alignment of voltage gated sodium channel alpha subunits (DI, DII,DIII & DIV) p-loop regions. 418 Mutations conferring resistance are coloured in green (pufferfish), orange (salamander), purple (clam) 419 and blue (octopus). Susceptible mutations at the same site are Black and bolded. Sites which may be

420	involved with resistance are in bold. b) Schematic of voltage-gated sodium channel (Na $_v$) alpha subunits
421	(DI, DII, DIII and DIV). Each unit is composed of six subunits 1-4 (blue) and 5-6 (yellow). Alternating
422	extra and intercellular loops are shown in black with the p-loops between subunits 5 and 6 highlighted
423	in red. Mutations conferring resistance are shown within black circles on p-loops.
424	
425	Microbiome of the PSG
426	TTX is produced through a wide variety of bacteria, which are common in
427	marine sediments and have been isolated from organisms such as
428	pufferfish[25,98,99]. Sequestration of TTX is not exclusive to the blue-ringed octopus
429	among molluscs. Gastropods such as Pleurobranchaea maculata[100] and Niotha
430	clathrata[30], as well as some bivalves, are also capable of sequestering TTX[95]. The
431	commonly held hypothesis for TTX acquisition within Hapalochlaena is that it is
432	bacterial in origin, and is either ingested or endosymbiotic[100,101]. Analysis of a
433	ribo-depleted RNA sample from the PSG of <i>H. maculosa</i> revealed a highly diverse
434	composition of bacterial genera with Simpson's and Shannon's diversity indices of 4.77
435	and 0.94, respectively. The dominant phyla were Proteobacteria and Firmicutes,
436	composing respectively 41% and 22% of overall bacterial species detected (Fig 5a-b).

437	To date, 151 strains of TTX-producing bacteria have been identified from 31 genera. Of
438	these, 104 are members of Proteobacteria[102]. The genera Pseudomonas and Bacillus
439	belonging to the phyla Proteobacteria and Firmicutes, respectively, have been
440	previously identified in the PSG of Hapalochlaena sp (Octopus maculosus)[101].
441	Examination of these bacterial strains revealed TTX production, and extracts injected
442	into mice proved to be lethal[101]. A more recent study on the bacterial composition
443	of H. maculosa PSG did not identify TTX-producing strains[100]. However, only a small
444	subset of the many strains identified were tested. Congruent with our findings the
445	diversity of bacterial genera was high and this may complicate identification of species
446	responsible for TTX production. The biosynthetic pathway of TTX has yet to be
447	elucidated, and as a result, only culturable bacterial species can be tested for TTX
448	production.
449	
450	Fig 6. Assessment of bacteria within the posterior salivary gland of H. maculosa (PSG). a) Bacterial composition at
451	the phylum level of a <i>H. maculosa</i> posterior salivary/venom gland. b) Composition of the largest Phylum,

- the phylum level of a *H. maculosa* posterior salivary/venom gland. **b)** Composition of the largest Phylum,
- 452 Protobacteria of a *H. maculosa* posterior salivary/venom gland.
- 453

Conclusions 454

455	This work describes the genome of a unique TTX bearing mollusc, the southern
456	blue-ringed octopus (Hapalochlaena maculosa). Much of cephalopod evolution is barely
457	understood due to sparseness of genomic data. Our analysis provides the first glimpse
458	into genomic changes underlying genome evolution of closely related octopod species.
459	While the size, heterozygosity and repetitiveness of the blue ring genome is congruent
460	with previously published octopod genomes, we find similar yet independent
461	expansions of key neuronal gene families across all three species and show evidence for
462	the involvement of gene novelty in the evolution of key neuronal, reproductive, and
463	sensory tissues. The evolution of venom in octopods also differs between species, with
464	H. maculosa showing a reduction in the number and expression of serine proteases in
465	their venom gland relative to the other octopods in this study. Inclusion of TTX in H.
466	maculosa distinguishes this species from related octopods and is believed to impact
467	toxin recruitment and retention, as the highly potent TTX is sufficient to subdue
468	common octopod prey without additional toxins.
469	
470	Methods

471 Genome sequencing and assembly

472	DNA was extracted from a single <i>H. maculosa</i> female collected at Port Phillip Bay,
473	Victoria, Australia. Two types of Illumina libraries were constructed, standard paired
474	end and Illumina mate pairs (Supplementary data 2). Dovetail sequencing, Chicago
475	libraries improved upon original sequencing resulting in an overall coverage of 71X.
476	Assembly-stats[103] was used to ascertain the quality of the assembly and relevant
477	metrics (Supplementary notes 1).
478	
479	Transcriptome sequencing
480	The H. maculosa transcriptome was generated using 12 tissues (brain, anterior salivary
481	gland, digestive gland, renal, brachial heart, male reproductive tract, systemic heart,
482	eyeballs, gills, posterior salivary gland, dorsal mantle and ventral mantle tissue). RNA
483	was extracted using the Qiagen RNeasy kit. Construction of cDNA libraries was
484	outsourced to AGRF (Australian Genome Research Facility), Melbourne and conducted
485	using their TruSeq mRNA Library Prep with polyA selection and unique dual indexing
486	method. Libraries were constructed using 3 μ g of RNA at a concentration of >100
487	ng/ μ L. Each tissue was sequenced on 1/12th of an Illumina HiSeq2000 lane with one
488	lane used in total.

490	De novo transcriptome assembly
491	De novo assembly of the H. maculosa transcriptome was conducted using sequencing
492	data from 11 tissues (as listed above) and Trinity v10.11.201 (Trinity,
493	RRID:SCR_013048)[104]. Default parameters were used aside from kmer coverage,
494	which was set to three to account for the large data volume. Protein coding sequences
495	were identified using Trinotate (Trinotate, RRID:SCR_018930) [105] and domains
496	assigned by Interpro v72.0 (InterPro, RRID:SCR_006695) [106].
497	
498	Genome annotation
499	Genes were annotated using a de novo predictor supplemented with transcriptomic
500	evidence. Training models were produced by PASA (PASA, RRID:SCR_014656)[38]
501	using a transcriptome composed of 12 tissues (as listed above) and supplied to the de
502	novo predictor Augustus (Augustus, RRID:SCR_008417) [39] along with intron, exon
503	and repeat hints (generated by repeatmasker). Alternative splicing of gene models was
504	also predicted using PASA (PASA, RRID:SCR_014656). Methods used for annotation
505	have been documented in the git[107]. Additional genes were predicted by mapping

506	raw expressed reads against the genome. Functional annotation of gene models was
507	achieved using InterPro v72.0 (InterPro, RRID:SCR_006695)[106]. Completeness of
508	genes was assessed using BUSCO v3 Metazoan database (BUSCO,
509	RRID:SCR_015008)[40].
510	
511	Heterozygosity
512	JELLYFISH v2.2.1 (Jellyfish, RRID:SCR_005491) was used in conjunction with
513	GenomeScope (GenomeScope, RRID:SCR_017014)[108] to calculate heterozygosity in
514	H. maculosa using a kmer frequency of 21 (Supplementary table 5).
515	
516	Repetitive and transposable elements
517	Repetitive and transposable elements were annotated using RepeatModeler v1.0.9
518	(RepeatScout) (RepeatModeler, RRID:SCR_015027) and masking performed with
519	RepeatMasker v4.0.8 (RepeatMasker, RRID:SCR_012954)[109](Supplementary notes
520	3.3). Analysis of gene associated TE was conducted by extracting TE within flanking
521	regions 10K upstream and downstream of genes using Bedtools v2.27.1 (BEDTools,
522	RRID:SCR_006646)[110].

524	Calibration of sequence divergence with respect to time
525	Divergence times between the molluscan genomes (Crassostrea gigas, Lottia gigantea,
526	Aplysia californica, Euprymna scolopes, Octopus bimaculoides, Callistoctopus minor and
527	Hapalochlaena maculosa) and transcriptomes (Sepia officinalis, idiosepius notoides,
528	Octopus kaurna and Octopus vulgaris) was obtained using a mutual best hit (MBH)
529	approach. Bioprojects for each genome used are as follows: Crassostera gigas
530	(PRJNA629593 & PRJEB3535), Lottia gigantea (PRJNA259762 & PRJNA175706),
531	Aplysia californica (PRJNA629593 & PRJNA13635) and (Euprymna scolopes
532	PRJNA47095). Octopus bimaculoides was obtained from this link [111]. The , Idiosepius
533	notoides (BioProject: PRJNA302677) transcriptome was sequenced and assembled using
534	the same method previously described for the <i>H. maculosa</i> transcriptome. Whole
535	genomes and transcriptomes were BLASTed against Octopus bimaculoides. The resulting
536	hits were filtered, and alignments shared between all species extracted. A maximum
537	likelihood phylogeny was generated using RAxML v8.0 (RAxML,
538	RRID:SCR_006086)[112]. Phylobayes v3.3 (PhyloBayes, RRID:SCR_006402)[113] was
539	used to calculate divergence times (Supplementary 4.1).

541 Effective population size (PSMC)

Historical changes in effective population size were estimated using PSMC 542 543 implemented in the software MSMC[114,115]. To generate inputs for MSMC we 544 selected a subset of the reads used for genome assembly corresponding to 38x coverage of reads from libraries with short (500bp) insert sizes. These were pre-processed 545 546 according to GATK best practices; briefly, adapters were marked with Picard 2.2.1, 547 reads were mapped to the H. maculosa genome using bwa mem v 0.7.17 (BWA, 548 RRID:SCR_010910)[116] and PCR duplicates identified using Picard v2.2.1. In order to 549 avoid inaccuracies due to poor coverage or ambiguous read mapping we masked 550 regions where short reads would be unable to find unique matches using SNPable[117] 551 and where coverage was more than double or less than half the genome wide average 552 of 38x. Variant sites were called within unmasked regions and results converted to 553 MSMC input format using msmc-tools[118]. All data for H. maculosa scaffolds of 554 length greater than 1Mb was then used to generate 100 bootstrap replicates by dividing data into 500kb chunks and assembling them into 20 chromosomes with 100 chunks 555 556 each. We then ran msmc2 on each bootstrap replicate and assembled imported the

557	resulting data into R for plotting. A mutation rate of 2.4e-9 per base per year and a
558	generation time of 1 year were assumed in order to set a timescale in years and convert
559	coalescence rates to effective population size.
560	
561	Mutation rate
562	Mutation rate was calculated by extracting orthologous genes from O. bimaculoides and
563	<i>H. maculosa.</i> Neutrality was assumed for genes with very low expression (>10 TMP
564	across all tissues). Neutral genes were aligned using MAFFT v7.407[119] and codeml
565	(PAML, RRID:SCR_014932)[120] was used to calculate substitution metrics (dS). Per
566	base neutral substitution between lineages was determined using the mean dS value
567	divided by divergence time (refer to Calibration of sequence divergence with respect to
568	<i>time</i>) over the number of generations. As octopus are diploid the rate was divided by
569	two. Divergence between species was calculated using Phylobayes v3.3 (PhyloBayes,
570	RRID:SCR_006402)[113].
571	

572 Quantifying gene expression/ specificity

573	Gene expression within individual tissues was calculated using Kallisto (kallisto,
574	RRID:SCR_016582)[121] for the transcriptomic data sets of <i>H. maculosa</i> , <i>O</i> .
575	bimaculoides and C. minor. Defaults were used and counts were calculated as TPM.
576	Gene specificity was defined as any gene with a tau value > 0.80 .
577	
578	Gene model expression dynamics
579	Patterns of gene expression and loss were assessed across octopod genomes at differing
580	taxonomic/organismal levels. Gene models were classified as lineage-specific, octopod
581	specific or non-specific (orthologous to a gene outside of octopods). Expression at each
582	level was determined using whole transcriptomes from all tissues of each species. Genes
583	with expression within one or more tissues were determined to be expressed, loss of
584	expression was classified as a gene with a single ortholog in each species, which is
585	expressed in one or more species and not expressed in the remaining species.
586	
587	Dynamics of PSG gene expression
588	In order to identify patterns of PSG specific gene expression (losses and shifts) between
589	the three available octopod genomes, genes with expression specific to the PSG of each

34

590	species were examined separately. Specific gene expression was defined as a tau value						
591	> 0.8. Orthologous groups were identified between species using Orthovenn2[122]						
592	and sequences which were identified as lineage-specific were confirmed using BLAST.						
593	Types of expressions were categorized as follows: A loss of expression requires a gene						
594	to be present in all three octopods and expressed in one or more species while having						
595	no detectable expression in at least one species. A shift in expression occurs when an						
596	ortholog present in all species is expressed in different tissues.						
597							
500							
598	The role of the Nav in TTX resistance						
598 599	Sodium channels for the three octopus genomes along with all available in-house						
599	Sodium channels for the three octopus genomes along with all available in-house						
599 600	Sodium channels for the three octopus genomes along with all available in-house cephalopod transcriptomes were extracted manually using a series of BLAST searches						
599 600 601	Sodium channels for the three octopus genomes along with all available in-house cephalopod transcriptomes were extracted manually using a series of BLAST searches against the nr database. Annotation was achieved using Interpro v72.0 (InterPro,						
599600601602	Sodium channels for the three octopus genomes along with all available in-house cephalopod transcriptomes were extracted manually using a series of BLAST searches against the nr database. Annotation was achieved using Interpro v72.0 (InterPro, RRID:SCR_006695)[106] and identification and extraction of p-loop regions of the						
 599 600 601 602 603 	Sodium channels for the three octopus genomes along with all available in-house cephalopod transcriptomes were extracted manually using a series of BLAST searches against the nr database. Annotation was achieved using Interpro v72.0 (InterPro, RRID:SCR_006695)[106] and identification and extraction of p-loop regions of the sodium channel alpha subunit were manually performed. Where sodium channels were						

608	Microbiome of PSG
609	A single ribo-depleted RNA sample of <i>H. maculosa</i> PSG was examined using the
610	SAMSA2 pipeline[124] to identify the bacterial composition and corresponding
611	molecular functions. Two databases were used Subsys and NCBI RefBac. The Krona
612	package[125] was used to produce visualizations of each dataset.
613	
614	Availability of source code and requirements
615	Project name: BRO_annotation
616	Project home page: https://github.com/blwhitelaw/BRO_annotation
617	Operating system(s): linux
618	Programming language: Unix/Bash
619	Other requirements: HPC
620	License: GPL-2.0 License
621	Any restrictions to use by non-academics: none
622	RRID: SCR_019072
623	

624 Availability of supporting data and materials

625	Genomic and transcriptomic data produced and used in this paper have been made
626	available in the NCBI BioProject: PRJNA602771 under the following accession
627	numbers: raw transcriptome (SAMN13930963 - SAMN13930975), genome assembly
628	(SAMN13906985), raw genome reads (SAMN13906958), gene models
629	(SAMN13942395). Voucher specimen for the transcriptome is stored at Melbourne
630	museum. All supporting data and materials are available in the GigaScience GigaDB
631	database [126]. This includes expression data for the transcriptome, raw
632	transcriptomes reads, gene models, gene annotation gff and assembled genome, as well
633	as files used in figure generation (i.e. trees, heatmaps).
634	
635	Supplementary Information
636	Supplementary Notes 1-8, Supplementary Tables 1-8, Supplementary Figs 1-10
637	Supplementary Data 2: Table of genomic Illumina library insert sizes
638	

639 Abbreviations

640	TTX: Tetrodotoxin, STX: Saxitoxin, PSG: Posterior Salivary Gland, CHGN: Chondroitin					
641	N-acetylgalactosaminyltransferase, C2H2(Cys2-His2) zinc finger, Cornifin SPRR:Small					
642	Proline-Rich Proteins, LINE: Long Interspersed Nuclear Element, SINE: Short					
643	Interspersed Nuclear Element, Mya: Million Years Ago, BUSCO: Benchmarking					
644	Universal Single-Copy Orthologs, PSMC: Pairwise Sequentially Markovian Coalescent and					
645	MSMC:multiple sequentially Markovian coalescent					
646						
647	Ethics declaration					
648	Animal Ethics Approval					
649	Field collection of fishes, cephalopods (nautiluses, squids, cuttlefishes and octopuses}					
650	and decapod crustaceans (crabs, lobsters, crayfishes and their allies) in for Museum					
651	Victoria" (Animal Ethics Committee: Museums Victoria; AEC Approval Number: 10006)					
652						
653	Competing interests					
654	Authors have no conflicts/competing interests to declare.					
655						

656 Acknowledgements

657	We th	e thank Dr Mark Norman and Colin Silvey for aiding Dr Julian Finn in collection of					
658	the ty	e two blue-ringed octopus specimens. We thank Jacqui Stuart for her brilliant					
659	illust	llustrations and work on Figure beautification. This work was supported by an					
660	Australian Biological Resources Study (ABRS) grant (ref:RF211-41). O. Simakov was						
661	supported by the Austrian Science Fund (FWF) grant P30686-B29.						
662							
663	References						
664							
665	1.	Ritschard EA, Whitelaw B, Albertin CB, Cooke IR, Strugnell JM, Simakov O.					
666		Coupled Genomic Evolutionary Histories as Signatures of Organismal Innovations					
667		in Cephalopods. BioEssays. 2019;					
668	2.	Tanner AR, Fuchs D, Winkelmann IE, Gilbert MTP, Pankey MS, Ribeiro ÂM, et al.					
669		Molecular clocks indicate turnover and diversification of modern coleoid					
670		cephalopods during the Mesozoic Marine Revolution. Proc R Soc B Biol Sci.					
671		2017;284(1850):2016–818.					
672	3.	Jereb Roper, C. F. E., Norman, M. D., and Finn, J. K. P. Cephalopods of the					
673		world. An annotated and illustrated catalogue of cephalopod species known to					
674		date," in Octopods and Vampire Squids, Vol. 3,. Rome FAO. 2014;					
675	4.	Graziadei PPC, Gagne HT. Sensory innervation in the rim of the octopus sucker. J					
676		Morphol. 1976;150(3):639–79.					
677	5.	Froesch D. Projection of chromatophore nerves on the body surface of Octopus					
678		vulgaris. Mar Biol. 1973;19(2):153–5.					
679	6.	Budelmann BU. The cephalopod nervous system: what evolution has made of the					
680		molluscan design. In: The nervous systems of invertebrates: An evolutionary and					
681		comparative approach. Springer; 1995. p. 115–38.					

- 682 7. Gray EG, Young JZ. Electron microscopy of synaptic structure of Octopus brain. J
 683 Cell Biol. 1964;21(1):87–103.
- 8. Fingerhut LCHW, Strugnell JM, Faou P, Labiaga ÁR, Zhang J, Cooke IR. Shotgun
 proteomics analysis of saliva and salivary gland tissue from the common octopus
 Octopus vulgaris. J Proteome Res. 2018;17(11):3866–76.
- 687 9. Whitelaw BL, Cooke IR, Finn J, Zenger K, Strugnell JM. The evolution and origin
 688 of tetrodotoxin acquisition in the blue-ringed octopus (genus Hapalochlaena).
 689 Aquat Toxicol. 2019;206:114–22.
- 690 10. Cooke IR, Whitelaw B, Norman M, Caruana N, Strugnell JM. Toxicity in
 691 cephalopods. Evol Venom Anim Their Toxins. 2015;1–15.
- 692 11. Whitelaw BL, Strugnell JM, Faou P, Da Fonseca RR, Hall NE, Norman M, et al.
- 693 Combined Transcriptomic and Proteomic Analysis of the Posterior Salivary Gland
 694 from the Southern Blue-Ringed Octopus and the Southern Sand Octopus. J
 695 Proteome Res. 2016;15(9):3284–97.
- Fry BG, Roelants K, Norman JA. Tentacles of venom: toxic protein convergence in
 the Kingdom Animalia. J Mol Evol. 2009;68(4):311–21.
- Ruder T, Sunagar K, Undheim EAB, Ali SA, Wai T-C, Low DHW, et al. Molecular
 phylogeny and evolution of the proteins encoded by coleoid (cuttlefish, octopus,
 and squid) posterior venom glands. J Mol Evol. 2013;76(4):192–204.
- Fry BG, Winter K, Norman JA, Roelants K, Nabuurs RJA, Van Osch MJP, et al.
 Functional and structural diversification of the anguimorpha lizard venom
 system. Mol Cell Proteomics. 2010;9(11):2369–90.
- Hendon RA, Tu AT. Biochemical Characterization of the Lizard Toxin Gilatoxin.
 Biochemistry. 1981;20(12):3517–22.
- Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and
 thrombosis. Biochimica et Biophysica Acta Protein Structure and Molecular
 Enzymology. 2000. p. 146–56.
- Mitreva M, Papenfuss AT, Whittington CM, Locke DP, Mardis E, Wilson RK, et al.
 Novel venom gene discovery in the platypus. Genome Biol. 2010;11:1–13.
- 711 18. Choo YM, Lee KS, Yoon HJ, Qiu Y, Wan H, Sohn MR, et al. Antifibrinolytic role
- of a bee venom serine protease inhibitor that acts as a plasmin inhibitor. PLoS
 One. 2012;7(2):e32269.
- 714 19. Veiga SS, Da Silveira RB, Dreyfuss JL, Haoach J, Pereira AM, Mangili OC, et al.

- 715 Identification of high molecular weight serine-proteases in Loxosceles intermedia
 716 (brown spider) venom. Toxicon. 2000;38(6):825–39.
- Modica MV, Lombardo F, Franchini P, Oliverio M. The venomous cocktail of the
 vampire snail Colubraria reticulata (Mollusca, Gastropoda). BMC Genomics.
 2015;16(1):1–21.
- von Reumont BM, Undheim EAB, Jauss RT, Jenner RA. Venomics of remipede
 crustaceans reveals novel peptide diversity and illuminates the venom's
 biological role. Toxins (Basel). 2017;9(8):234.
- Jaimes-Becerra A, Chung R, Morandini AC, Weston AJ, Padilla G, Gacesa R, et al.
 Comparative proteomics reveals recruitment patterns of some protein families in
 the venoms of Cnidaria. Toxicon. 2017;137:19–26.
- Crone HD, Leake B, Jarvis MW, Freeman SE. On the nature of "Maculotoxin", a
 toxin from the blue-ringed octopus (Hapalochlaena maculosa). Toxicon.
 1976;14(6):423–6.
- Geffeney SL, Williams BL, Rosenthal JJC, Birk MA, Felkins J, Wisell CM, et al.
 Convergent and parallel evolution in a voltage-gated sodium channel underlies
 TTX-resistance in the Greater Blue-ringed Octopus: Hapalochlaena lunulata.
 Toxicon. 2019;170:77–84.
- Wu Z, Yang Y, Xie L, Xia G, Hu J, Wang S, et al. Toxicity and distribution of
 tetrodotoxin-producing bacteria in puffer fish Fugu rubripes collected from the
 Bohai Sea of China. Toxicon. 2005;46(4):471–6.
- 736 26. Tsuruda K, Arakawa O, Kawatsu K, Hamano Y, Takatani T, Noguchi T. Secretory
 737 glands of tetrodotoxin in the skin of the Japanese newt Cynops pyrrhogaster.
 738 Toxicon. 2002;40(2):131–6.
- Wakely JF, Fuhrman GJ, Fuhrman FA, Fischer HG, Mosher HS. The occurrence of
 tetrodotoxin (tarichatoxin) in Amphibia and the distribution of the toxin in the
 organs of newts (Taricha). Toxicon. 1966;3(3):195–203.
- Du Y, Nomura Y, Liu Z, Huang ZY, Dong K. Functional expression of an arachnid
 sodium channel reveals residues responsible for tetrodotoxin resistance in
 invertebrate sodium channels. J Biol Chem. 2009;284(49):33869–75.
- 745 29. McGlothlin JW, Chuckalovcak JP, Janes DE, Edwards S V, Feldman CR, Brodie Jr
- ED, et al. Parallel evolution of tetrodotoxin resistance in three voltage-gated
- 747 sodium channel genes in the garter snake Thamnophis sirtalis. Mol Biol Evol.

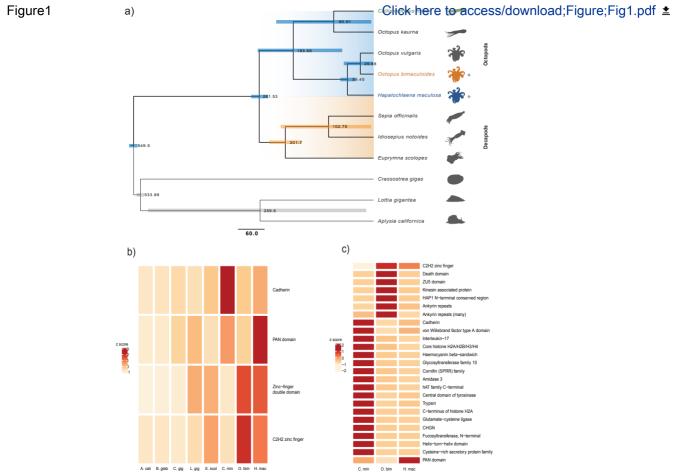
748 2014;31(11):2836–46.

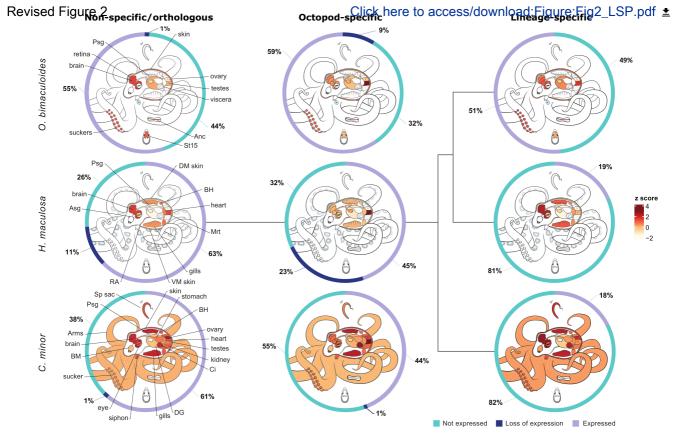
- Cheng CA, Hwang DF, Tsai YH, Chen HC, Jeng SS, Noguchi T, et al. Microflora
 and tetrodotoxin-producing bacteria in a gastropod, Niotha clathrata. Food Chem
 Toxicol. 1995;33(11):929–34.
- Williams BL, Caldwell RL. Intra-organismal distribution of tetrodotoxin in two
 species of blue-ringed octopuses (Hapalochlaena fasciata and H. lunulata).
 Toxicon. 2009;54(3):345–53.
- Yotsu-Yamashita M, Mebs D, Flachsenberger W. Distribution of tetrodotoxin in
 the body of the blue-ringed octopus (Hapalochlaena maculosa). Toxicon.
 2007;49(3):410–2.
- Mäthger LM, Bell GRR, Kuzirian AM, Allen JJ, Hanlon RT. How does the blueringed octopus (Hapalochlaena lunulata) flash its blue rings? J Exp Biol.
 2012;215(21):3752–7.
- 34. Williams BL, Stark MR, Caldwell RL. Microdistribution of tetrodotoxin in two
 species of blue-ringed octopuses (Hapalochlaena lunulata and Hapalochlaena
 fasciata) detected by fluorescent immunolabeling. Toxicon. 2012;60(7):1307–13.
- 35. Savage IVE, Howden MEH. Hapalotoxin, a second lethal toxin from the octopus
 Hapalochlaena maculosa. Toxicon. 1977;15(5):463–6.
- 36. Kanda A, Iwakoshi-Ukena E, Takuwa-Kuroda K, Minakata H. Isolation and
 characterization of novel tachykinins from the posterior salivary gland of the
 common octopus Octopus vulgaris. Peptides. 2003;24(1):35–43.
- 769 37. Ruder T, Ali SA, Ormerod K, Brust A, Roymanchadi M-L, Ventura S, et al.
 770 Functional characterization on invertebrate and vertebrate tissues of tachykinin
 771 peptides from octopus venoms. Peptides. 2013;47:71–6.
- 772 38. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith Jr RK, Hannick LI, et al.
- 773 Improving the Arabidopsis genome annotation using maximal transcript
- alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–66.
- 39. Stanke M. Gene prediction with a hidden Markov model. University of Göttingen;2004.
- 40. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et
- al. BUSCO applications from quality assessments to gene prediction and
 phylogenomics. Mol Biol Evol. 2017;35(3):543–8.
- 780 41. Zarrella I, Herten K, Maes GE, Tai S, Yang M, Seuntjens E, et al. The survey and

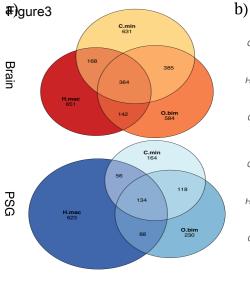
- reference assisted assembly of the Octopus vulgaris genome. Sci data.2019;6(1):13.
- 42. Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et
 al. The octopus genome and the evolution of cephalopod neural and
- morphological novelties. Nature [Internet]. 2015;524(7564):220–4. Available
 from: https://dx.doi.org/10.1038/nature14668
- Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, et al. A draft genome
 assembly of the solar-powered sea slug Elysia chlorotica. Sci data.
 2019;6:190022.
- Liu C, Zhang Y, Ren Y, Wang H, Li S, Jiang F, et al. The genome of the golden
 apple snail Pomacea canaliculata provides insight into stress tolerance and
 invasive adaptation. Gigascience. 2018;7(9):giy101.
- 45. Du X, Fan G, Jiao Y, Zhang H, Guo X, Huang R, et al. The pearl oyster Pinctada
 fucata martensii genome and multi-omic analyses provide insights into
 biomineralization. Gigascience. 2017;6(8):gix059.
- Powell D, Subramanian S, Suwansa-ard S, Zhao M, O'Connor W, Raftos D, et al.
 The genome of the oyster Saccostrea offers insight into the environmental
 resilience of bivalves. DNA Res. 2018;25(6):655–65.
- Sun J, Zhang Y, Xu T, Zhang Y, Mu H, Zhang Y, et al. Adaptation to deep-sea
 chemosynthetic environments as revealed by mussel genomes. Nat Ecol Evol.
 2017;1(5):121.
- 48. Uliano-Silva M, Dondero F, Dan Otto T, Costa I, Lima NCB, Americo JA, et al. A
 hybrid-hierarchical genome assembly strategy to sequence the invasive golden
 mussel, Limnoperna fortunei. Gigascience. 2017;7(2):gix128.
- 805 49. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress
 806 adaptation and complexity of shell formation. Nature. 2012;490(7418):49.
- 50. Jiao W, Fu X, Dou J, Li H, Su H, Mao J, et al. High-resolution linkage and
 quantitative trait locus mapping aided by genome survey sequencing: building up
 an integrative genomic framework for a bivalve mollusc. DNA Res.
 2013;21(1):85–101.
- 51. Garton DW, Haag WR. Heterozygosity, shell length and metabolism in the
- 812 European mussel, Dreissena polymorpha, from a recently established population
- in Lake Erie. Comp Biochem Physiol Part A Physiol. 1991;99(1–2):45–8.

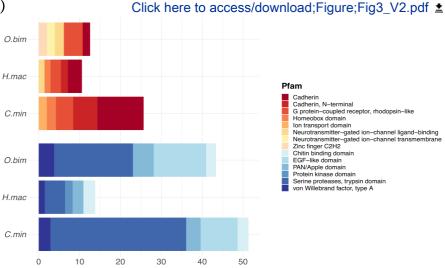
- Simmons MJ, Crow JF. Mutations affecting fitness in Drosophila populations.
 Annu Rev Genet. 1977;11(1):49–78.
- 816 53. Kumar S, Subramanian S. Mutation rates in mammalian genomes. Proc Natl Acad
 817 Sci. 2002;99(2):803–8.
- 818 54. Hayward BW, Kawagata S, Grenfell HR, Sabaa AT, O'Neill T. Last global
 819 extinction in the deep sea during the mid-Pleistocene climate transition.
 820 Paleoceanogr Paleoclimatology. 2007;22(3).
- 821 55. Hofreiter M, Stewart J. Ecological change, range fluctuations and population
 822 dynamics during the Pleistocene. Curr Biol. 2009;19(14):R584–94.
- 823 56. Reynolds T V, Matthee CA, Von Der Heyden S. The influence of Pleistocene
- climatic changes and ocean currents on the phylogeography of the southern
- 825 African barnacle, Tetraclita serrata (Thoracica; Cirripedia). PLoS One.
- 826 2014;9(7):e102115.
- 57. Huber CD, DeGiorgio M, Hellmann I, Nielsen R. Detecting recent selective sweeps
 while controlling for mutation rate and background selection. Mol Ecol.
 2016;25(1):142–56.
- 83058.Mao Y, Economo EP, Satoh N. The roles of introgression and climate change in831the rise to dominance of Acropora Corals. Curr Biol. 2018;28(21):3373-3382. e5.
- Kim B-M, Amores A, Kang S, Ahn D-H, Kim J-H, Kim I-C, et al. Antarctic blackfin
 icefish genome reveals adaptations to extreme environments. Nat Ecol Evol.
 2019;3(3):469.
- 60. Guzik MT, Norman MD, Crozier RH. Molecular phylogeny of the benthic shallowwater octopuses (Cephalopoda: Octopodinae). Mol Phylogenet Evol [Internet].
 2005;37(1):235–48. Available from:
- 838 https://dx.doi.org/10.1016/j.ympev.2005.05.009
- 839 61. Strugnell J, Jackson J, Drummond AJ, Cooper A. Divergence time estimates for
 840 major cephalopod groups: evidence from multiple genes. Cladistics.
- 841 2006;22(1):89–96.
- 842 62. Strugnell JM, Rogers AD, Prodöhl PA, Collins MA, Allcock AL. The thermohaline
 843 expressway: the Southern Ocean as a centre of origin for deep-sea octopuses.
 844 Cladistics. 2008;24(6):853–60.
- 845 63. Lindgren AR, Anderson FE. Assessing the utility of transcriptome data for
 846 inferring phylogenetic relationships among coleoid cephalopods. Mol Phylogenet

- 847 Evol. 2018;118:330–42.
- 848 64. Styfhals R, Seuntjens E, Simakov O, Sanges R, Fiorito G. In silico Identification
 849 and Expression of Protocadherin Gene Family in Octopus vulgaris. Frontiers in
 850 Physiology. 2019. p. 1905.
- 851 65. Zipursky SL, Sanes JR. Chemoaffinity revisited: dscams, protocadherins, and
 852 neural circuit assembly. Cell. 2010;143(3):343–53.
- 853 66. Tepass U, Truong K, Godt D, Ikura M, Peifer M. Cadherins in embryonic and
 854 neural morphogenesis. Nat Rev Mol Cell Biol. 2000;1(2):91.
- 855 67. Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by
 856 protocadherins. Cellular and Molecular Life Sciences. 2017. p. 4133–57.
- 857 68. De Wit J, Ghosh A. Specification of synaptic connectivity by cell surface
 858 interactions. Nat Rev Neurosci. 2016;1:4.
- 69. Layden MJ, Meyer NP, Pang K, Seaver EC, Martindale MQ. Expression and
 phylogenetic analysis of the zic gene family in the evolution and development of
 metazoans. Evodevo. 2010;1(1):12.
- Young JZ. The number and sizes of nerve cells in Octopus. In: Proceedings of the
 Zoological Society of London. Wiley Online Library; 1963. p. 229–54.
- 866 72. Belcaid M, Casaburi G, McAnulty SJ, Schmidbaur H, Suria AM, Moriano-
- Gutierrez S, et al. Symbiotic organs shaped by distinct modes of genome
 evolution in cephalopods. Proc Natl Acad Sci [Internet]. 2019;116(8):3030–5.
 Available from: https://dx.doi.org/10.1073/pnas.1817322116
- Kim B-M, Kang S, Ahn D-H, Jung S-H, Rhee H, Yoo JS, et al. The genome of
 common long-arm octopus Octopus minor. Gigascience. 2018;7(11):giy119.
- 872 74. Kapitonov V V, Jurka J. Rolling-circle transposons in eukaryotes. Proc Natl Acad
 873 Sci. 2001;98(15):8714–9.
- 874 75. Oulion B, Dobson JS, Zdenek CN, Arbuckle K, Lister C, Coimbra FCP, et al. Factor
 875 X activating Atractaspis snake venoms and the relative coagulotoxicity
 876 neutralising efficacy of African antivenoms. Toxicol Lett. 2018;15:119–28.
- 877 76. Rogalski A, Soerensen C, op den Brouw B, Lister C, Dashevsky D, Arbuckle K, et
- al. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae:
- 879 Echis) snake venoms on human plasma and the narrow taxonomic ranges of

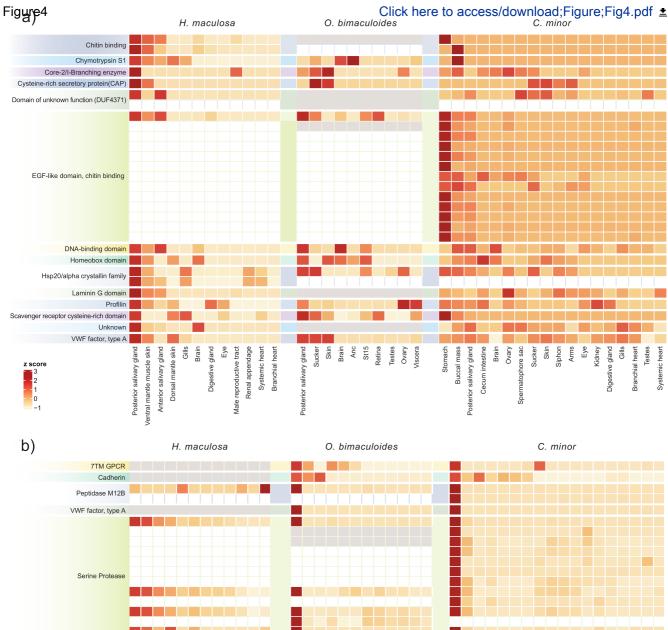

- antivenom efficacies. Toxicol Lett. 2017;280:159–70.
- 881 http://www.sciencedirect.com/science/article/pii/S0378427417312675
- 882 77. Sousa LF, Zdenek CN, Dobson JS, den Brouw B op, Coimbra FCP, Gillett A, et al.
- 883 Coagulotoxicity of Bothrops (lancehead pit-vipers) venoms from Brazil:
- 884 Differential biochemistry and antivenom efficacy resulting from prey-driven
 885 venom variation. Toxins (Basel). 2018;
- Fox JW, Serrano SMT. Structural considerations of the snake venom
 metalloproteinases, key members of the M12 reprolysin family of
 metalloproteinases. Toxicon. 2005;45(8):969–85.
- 679. Grisley MS, Boyle PR. Bioassay and proteolytic activity of digestive enzymes from
 octopus saliva. Comp Biochem Physiol Part B Comp Biochem. 1987;88(4):1117–
 23.
- 892 80. Key LN, Boyle PR, Jaspars M. Novel activities of saliva from the octopus Eledone
 893 cirrhosa (Mollusca; Cephalopoda). Toxicon. 2002;40(6):677–83.
- 894 81. McDonald NM, Cottrell GA. Purification and mode of action of toxin from
 895 Eledone cirrosa. Comp Gen Pharmacol. 1972;3(10):243–8.
- 896 82. Bordon KCF, Perino MG, Giglio JR, Arantes EC. Isolation, enzymatic
- 897 characterization and antiedematogenic activity of the first reported rattlesnake
- 898 hyaluronidase from Crotalus durissus terrificus venom. Biochimie.
- 899 2012;94(12):2740–8.
- 83. Frank HY, Catterall WA. Overview of the voltage-gated sodium channel family.
 901 Genome Biol. 2003;4(3):207.
- 84. How C-K, Chern C-H, Huang Y-C, Wang L-M, Lee C-H. Tetrodotoxin poisoning.
 Am J Emerg Med. 2003;21(1):51–4.
- 85. Brodie III ED, Brodie Jr ED. Tetrodotoxin resistance in garter snakes: an
 evolutionary response of predators to dangerous prey. Evolution (N Y).
 1990;44(3):651–9.
- 86. Nakamura M, Yasumoto T. Tetrodotoxin derivatives in puffer fish. Toxicon.
 1985;23(2):271–6.
- 909 87. Jost MC, Hillis DM, Lu Y, Kyle JW, Fozzard HA, Zakon HH. Toxin-resistant
- 910 sodium channels: parallel adaptive evolution across a complete gene family. Mol
 911 Biol Evol. 2008;25(6):1016–24.
- 912 88. Feldman CR, Brodie ED, Pfrender ME. Constraint shapes convergence in

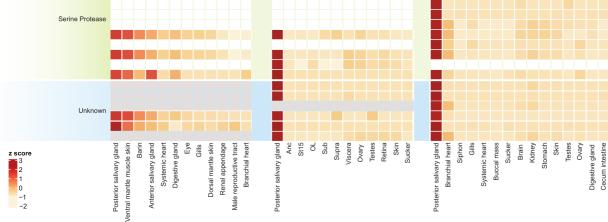

- 913 tetrodotoxin-resistant sodium channels of snakes. Proc Natl Acad Sci.
- 914 2012;109(12):4556–61.
- 915 89. Jeziorski MC, Greenberg RM, Anderson PA V. Cloning of a putative voltage-gated
 916 sodium channel from the turbellarian flatworm Bdelloura candida. Parasitology.
 917 1997;115(3):289–96.
- 918 90. Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, et al. Structural basis
 919 for the modulation of voltage-gated sodium channels by animal toxins. Science
 920 (80-). 2018;362:6412.
- 921 91. Flachsenberger W, Kerr DIB. Lack of effect of tetrodotoxin and of an extract from
 922 the posterior salivary gland of the blue-ringed octopus following injection into
 923 the octopus and following application to its brachial nerve. Toxicon.
 924 1985;23(6):997–9.
- 925 92. Lopes VM, Baptista M, Repolho T, Rosa R, Costa PR. Uptake, transfer and
 926 elimination kinetics of paralytic shellfish toxins in common octopus (Octopus
 927 vulgaris). Aquat Toxicol. 2014;146:205–11.
- 928 93. Ulbricht W, Wagner H, Schmidtmayer J. Kinetics of TTX-STX Block of Sodium
 929 Channels. Ann N Y Acad Sci. 1986;479(1):68–83.
- 930 94. Monteiro A, Costa PR. Distribution and selective elimination of paralytic shellfish
 931 toxins in different tissues of Octopus vulgaris. Harmful Algae. 2011;10(6):732–7.
- 932 95. Li S-C, Wang W-X, Hsieh D. Feeding and absorption of the toxic dinoflagellate
 933 Alexandriumtamarense by two marine bivalves from the South China Sea. Mar
 934 Biol. 2001;139(4):617–24.
- 935 96. Braid HE, Deeds J, DeGrasse SL, Wilson JJ, Osborne J, Hanner RH. Preying on
 936 commercial fisheries and accumulating paralytic shellfish toxins: a dietary
 937 analysis of invasive Dosidicus gigas (Cephalopoda Ommastrephidae) stranded in
 938 Pacific Canada. Mar Biol. 2012;159(1):25–31.
- 939 97. Shea EK, Ziegler A, Faber C, Shank TM. Dumbo octopod hatchling provides
 940 insight into early cirrate life cycle. Curr Biol. 2018;28(4):R144–5.
- 941 98. Lee M-J, Jeong D-Y, Kim W-S, Kim H-D, Kim C-H, Park W-W, et al. A
- 942 tetrodotoxin-producing Vibrio strain, LM-1, from the puffer fish Fugu
- 943 vermicularis radiatus. Appl Environ Microbiol. 2000;66(4):1698–701.
- 944
 99. Yotsu M, Yamazaki T, Meguro Y, Endo A, Murata M, Naoki H, et al. Production
 945 of tetrodotoxin and its derivatives by Pseudomonas sp. isolated from the skin of a

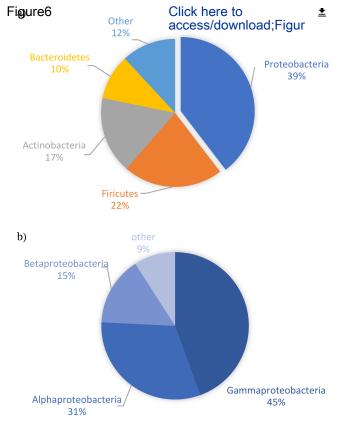

- 946 pufferfish. Toxicon. 1987;25(2):225–8.
- 947 100. Chau R, Kalaitzis J, Wood S, Neilan B. Diversity and biosynthetic potential of
 948 culturable microbes associated with toxic marine animals. Mar Drugs.
 949 2013;11(8):2695–712.
- 101. Hwang DF, Arakawa O, Saito T, Noguchi T, Simidu U, Tsukamoto K, et al.
 Tetrodotoxin-producing bacteria from the blue-ringed octopus Octopus
 maculosus. Mar Biol. 1989;100(3):327–32.
- 953 102. Magarlamov T, Melnikova D, Chernyshev A. Tetrodotoxin-producing bacteria:
 954 Detection, distribution and migration of the toxin in aquatic systems. Toxins
 955 (Basel). 2017;9(5):166.
- 956 103. assembly-stats. https://github.com/sanger-pathogens/assembly-stats.Accessed 29
 957 Sep 2020
- 958 104. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full959 length transcriptome assembly from RNA-Seq data without a reference genome.
 960 Nat Biotechnol. 2011;29(7):644–52.
- 961 105. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et
 962 al. A tissue-mapped axolotl de novo transcriptome enables identification of limb
 963 regeneration factors. Cell Rep. 2017;18(3):762–76.
- 964 106. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5:
 965 genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–
 966 40.
- 967 107. BRO_annotation. https://github.com/blwhitelaw/BRO_annotation. Accessed 29
 968 Sep 2020
- 969 108. Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et
 970 al. GenomeScope: fast reference-free genome profiling from short reads.
 971 Bioinformatics. 2017;33(14):2202–4.
- 972 109. Smit Hubley, R & Green, P. AFA. RepeatMasker Open-4.0.
- 973 110. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
 974 genomic features. Bioinformatics. 2010;26(6):841–2.
- 975 111. Octopus bimaculoides genome files.
- 976 http://octopus.unit.oist.jp/OCTDATA/BASIC/Metazome/Obimaculoides_280.fa.g
 977 z. Accessed 29 Sep 2020
- 978 112. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses


979		with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90.
980	113	Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large
981	110.	phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696–704.
982	114	Li H, Durbin R. Inference of human population history from whole genome
983	11 11	sequence of a single individual. Nature. 2012;475(7357):493.
984	115.	Schiffels S, Durbin R. Inferring human population size and separation history
985	1101	from multiple genome sequences. Nat Genet. 2014;46(8):919.
986	116.	Li H, Durbin R. Fast and accurate short read alignment with BurrowsWheeler
987		transform. bioinformatics. 2009;25(14):1754–60.
988	117.	SNPable. http://lh3lh3.users.sourceforge.net/snpable.shtml. Accessed 29 Sep
989		2020
990	118.	msmc-tools. https://github.com/stschiff/msmc-tools. Accessed 29 Sep 2020
991	119.	Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: integrated
992		protein sequence and structural alignment. Nucleic Acids Res. 2019;47(W1):W5–
993		10.
994	120.	Adachi J, Hasegawa M. MOLPHY version 2.3: programs for molecular
995		phylogenetics based on maximum likelihood. Institute of Statistical Mathematics
996		Tokyo; 1996.
997	121.	Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq
998		quantification. Nat Biotechnol. 2016;34(5):525–7.
999	122.	Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. OrthoVenn2: a web server for
1000		whole-genome comparison and annotation of orthologous clusters across multiple
1001		species. Nucleic Acids Res. 2019;47(W1):W52–8.
1002	123.	Geneious v10.1.
1003		https://assets.geneious.com/documentation/geneious/release_notes.html#v10.1
1004		Accessed 29 Sep 2020
1005	124.	Westreich ST, Korf I, Mills DA, Lemay DG. SAMSA: a comprehensive
1006		metatranscriptome analysis pipeline. BMC Bioinformatics. 2016;17(1):399.
1007	125.	Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in
1008		a Web browser. BMC Bioinformatics. 2011;12(1):385.
1009	126.	Whitelaw BL; Cooke IR; Finn J; da Fonseca RR; Ritschard EA; Gilbert MTP;
1010		Simakov O; Strugnell JM. Supporting data for "Adaptive venom evolution and
1011		toxicity in octopods is driven by extensive novel gene formation, expansion and

1012 loss" *GigaScience* Database 2020. http://dx.doi.org/10.5524/100793






% Expression

Arm Spermatophore sac Eye

a) Revised Figure 5	DI DYWEN	DII EWIES	Click here tନ_{t 1} access/dବୁଝୁଲୁଦୁad;Figur	e;FiggwBcTR_A	<u>≛</u> u
	_				
Mya arenaria		<u>D</u> -	I-		
Crassostrea gigas	F	Q-	IE		
Mizuhopecten yessoensis			<u>T</u> V	S	
Lottia gigantea	S-		V-		
Aplysia californica	F – – S –		I-	SD	
Euprymna scolopes			IN		and the second second
Doryteuthis pealeii			IN		
Doryteuthis opalescens			I N		
Dosidicus gigas			IN		
Grimpoteuthis			M-		
Callistoctopus minor					
Octopus bimaculoides			I-		
Octopus vulgaris			I-		- 9
Hapalochlaena maculosa			<u>T</u> E	HS 🕺	
Hapalochlaena lunulata			<u>T</u> E	HS 🞗	
					2
Taricha granulosa		T	<u>T</u> -	SD 🎗	
Tetraodon nigroviridis	<u>c</u>	N	<u>T</u> A	GG−−Q 🎗	
Homo sapiens		T	M-	G	舯
b) Extracellular 1 2 3 4 NH2+				1 2 3 4 5 6	Р-Іоор СНООН-

Revised_Supplementary Materials

Click here to access/download Supplementary Material SUPPLEMENTARY MATERIALS_GS2_5_8_2020.docx Supplementary Material(insert sizes)

Click here to access/download Supplementary Material BRO Sequencing Insert Sizes.xlsx Cairns Singapore

Townsville

Dear Dr. Goodman

I am pleased to submit an original research piece titled "**Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion and loss** " for consideration to be published in *GigaScience*.

Much of cephalopod evolution remains unknown due to sparseness of their genomic sampling. Cephalopod genomes are some of the largest and most repetitive animal genomes and exhibit drastically different evolutionary trajectories relative to other better documented lineages. A more focused genomic study to reveal how individual genomic changes are associated with the evolution of novel organs, tissues, or adaptations, within a single group of cephalopods has been missing so far. We present such a study, focussing on adaptations in the toxic blue-ringed octopus the *Hapalochlaena maculosa*, for which we provide a high quality genome assembly based on multiple technologies. Members of the genus *Hapalochlaena* are the only octopods to contain the lethal neurotoxin, tetrodotoxin (TTX), within their venom and tissues and are a prime example of the origin of evolutionary novelties within octopods.

Using global comparative genomics approaches and focused study on TTX evolution, we report key findings:

- Gene family expansions crucial for the development of complex neural networks are present in cephalopods, yet are differentially expanding in all three octopod species
- Novel gene formation at different phylogenetic levels can be associated with evolution in a specific set of cephalopod tissues
- Changes in Posterior Salivary Gland composition (PSG) between TTX bearing and non-TTX bearing species
- Convergently evolved mutations consistent with TTX resistance detected in *H*. *maculosa*

We firmly believe that our manuscript is suited for publication by *GigaScience* as one of the first to explore the evolutionary genomic basis for novelties within octopods and cephalopods in general. Our whole genomic comparisons provide insight into the defining structure/features of octopod genomes at the species-specific level. Additionally, we

examine the impact of TTX on the evolution of venom in *H. maculosa* relative to non-TTX bearing octopods.

Yours sincerely,

Brooke L. Whitelaw James Cook University, Townsville, QLD 4810 Mobile: 0424642621 brooke.whitelaw@my.jcu.edu.au

Assoc. Prof. Jan Strugnell James Cook University, Townsville, QLD 4810 jan.strugnell.jcu.edu.au

and

Prof. Oleg Simakov University of Vienna Universitätsring 1, 1010 Wien, Austria oleg.simakov@univie.ac.at