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Abstract: Background

Cephalopods represent a rich system for investigating the genetic basis underlying
organismal novelties. This diverse group of specialised predators has evolved many
adaptations including proteinaceous venom. Of particular interest is the blue-ringed-
octopus genus (  Hapalochlaena  ), which are the only octopods known to store large
quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland.

Findings

To reveal genomic correlates of organismal novelties, we conducted a comparative
study of three octopod genomes, including the Southern blue-ringed octopus (
Hapalochlaena maculosa  ). We present the genome of this species and reveal highly
dynamic evolutionary patterns at both non-coding and coding organizational levels.
Gene family expansions previously reported in  Octopus bimaculoides  (e.g., zinc
finger and cadherins, both associated with neural functions), as well as formation of
novel gene families, dominate the genomic landscape in all octopods. Examination of
tissue-specific genes in the posterior salivary gland (PSG) revealed that expression
was dominated by serine proteases in non- tetrodotoxin bearing octopods, while this
family was a minor component in  H. maculosa  . Moreover, voltage-gated sodium
channels in  H. maculosa  contain a resistance mutation found in pufferfish and garter
snakes, which is exclusive to the genus. Analysis of the PSG microbiome revealed a
diverse array of bacterial species, including genera that can produce tetrodotoxin,
suggestive of a possible production source.

Conclusions

We present the first tetrodotoxin-bearing octopod genome  H. maculosa,  which
displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along
with other recently published cephalopod genomes, represents a valuable resource
from which future work could advance our understanding of the evolution of genomic
novelty in this family.
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specialised (British) or specialized (American).
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pg. 1, line 24.

2) In lines 372-374, the authors comment on the interactions between aspartic acid
and TTX, "While it has yet to be assessed for TTX resistance, the replacement of Asp
in B. candida with a neutral amino acid has been predicted to disrupt TTX binding by
preventing formation of a hydrogen bond." A better reference for this statement is Shen
et al. (2018). In addition, the cryo-EM structure data from this paper suggest that either
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position of the protein.
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Abstract 36 

Background 37 

Cephalopods represent a rich system for investigating the genetic basis underlying 38 

organismal novelties. This diverse group of specialised predators has evolved many 39 

adaptations including proteinaceous venom. Of particular interest is the blue-ringed-40 

octopus genus (Hapalochlaena), which are the only octopods known to store large 41 

quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland.  42 

Findings 43 

To reveal genomic correlates of organismal novelties, we conducted a comparative 44 

study of three octopod genomes, including the Southern blue-ringed octopus 45 

(Hapalochlaena maculosa). We present the genome of this species and reveal highly 46 

dynamic evolutionary patterns at both non-coding and coding organizational levels. 47 

Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger 48 

and cadherins, both associated with neural functions), as well as formation of novel 49 
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gene families, dominate the genomic landscape in all octopods. Examination of tissue-50 

specific genes in the posterior salivary gland (PSG) revealed that expression was 51 

dominated by serine proteases in non- tetrodotoxin bearing octopods, while this family 52 

was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. 53 

maculosa contain a resistance mutation found in pufferfish and garter snakes, which is 54 

exclusive to the genus. Analysis of the PSG microbiome revealed a diverse array of 55 

bacterial species, including genera that can produce tetrodotoxin, suggestive of a 56 

possible production source.   57 

Conclusions 58 

We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays 59 

lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other 60 

recently published cephalopod genomes, represents a valuable resource from which 61 

future work could advance our understanding of the evolution of genomic novelty in 62 

this family.  63 

 64 

Background  65 
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Reconstructing the evolution of novelties at the genomic level is becoming an 66 

increasingly viable approach to understand their origin. The recent publication of 67 

octopod genomes provides an opportunity to investigate the link between genomic and 68 

organismal evolution in this unique  lineage for which genomic resources have been 69 

lacking[1]. From their emergence 275 mya[2], octopods have diversified into > 300 70 

species, inhabiting tropical to polar regions, from the deep sea to shallow intertidal 71 

zones[3]. As a highly diverse group, octopods show remarkable variation in body form 72 

and function. They are specialised soft-bodied predators that are well adapted to their 73 

environment with prehensile limbs lined with chemosensory suckers[4], the ability to 74 

manipulate skin texture and colour using specialised chromatophores[5], the largest 75 

invertebrate nervous systems (excluding those of other cephalopods)[6], and a 76 

relatively large circumesophageal brain allowing for complex problem solving and 77 

retention of information[7]. Furthermore, the cephalopods have independently evolved 78 

proteinaceous venom, which is produced and stored within a specialised gland in 79 

known as the posterior salivary gland (PSG). All octopods are believed to possess a 80 

form of proteinaceous venom used to subdue prey[8–10]. Serine proteases are a 81 

common component of cephalopod venoms and have been observed in the PSG of 82 
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squids, cuttlefish and octopods[10–13].  Convergent recruitment of serine proteases has 83 

been observed between many vertebrate (Squamata[14–16] and Monotremata[17]) 84 

and invertebrate (Hymenoptera[18], Arachnida[19], Gastropoda[20], Remipedia[21] 85 

and Cnidarian[22]) venomous lineages. 86 

In addition to these proteinaceous venoms, the blue-ringed octopus (genus 87 

Hapalochlaena) is the only group that also contains the potent non-proteinaceous 88 

neurotoxin, tetrodotoxin (TTX)[12,23]. The mechanism of TTX resistance, which allows 89 

for safe sequestration of TTX, has been attributed to several substitutions in the p-loop 90 

regions of voltage-gated sodium channels(Nav) in H. lunulata[24]. However, these 91 

channels have yet to be examined in H. maculosa and H. fasciata. TTX resistance has 92 

also been studied in a range of other genera including, pufferfish[25], newts[26,27] 93 

arachnids[28], snakes[29] and gastropods[30].  94 

The blue-ringed octopus is easily identified by iridescent blue rings, which 95 

advertise its toxicity in an aposematic display[31–33]. Sequestration of the TTX within 96 

bodily tissues is unique to this genus among cephalopods[32,34]. While other 97 

unrelated TTX-bearing species primarily use TTX for defense,  Hapalochlaena is the only 98 

known taxa to utilise TTX in venom[23,35]. The impact of TTX inclusion on venom 99 
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composition and function has been previously investigated in the southern blue-ringed 100 

octopus (H. maculosa)[9]. Relative to the non-TTX bearing species Octopus kaurna, H. 101 

maculosa exhibited greater expression of putative dispersal factors such as 102 

hyaluronidase, which serve to aid in the dispersal of toxic venom components[9]. 103 

Conversely, tachykinins- neurotoxins known from other octopods[36,37] were absent 104 

from the H. maculosa PSG[9]. Further investigation into the broader impact of TTX on 105 

the evolutionary trajectory of the species has yet to be addressed due to the absence of 106 

a genome.  107 

This study presents the genome of the southern blue-ringed octopus (H. 108 

maculosa, NCBI:txid61716; marinespecies.org:taxname:342334), the first from the 109 

genus Hapalochlaena. By using a comparative genomic approach we are able to 110 

examine the emergence of octopod novelties, at a molecular level between H. maculosa 111 

and the two non-TTX bearing octopods: the California two-spot octopus (O. 112 

bimaculoides) and the long-armed octopus (Callistoctopus minor). We also address unique 113 

features of venom evolution in octopods while also addressing the species-specific 114 

evolution of tetrodotoxin acquisition and resistance in H. maculosa.  115 

 116 
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 120 

Data Description  121 

Genome assembly and annotation 122 

The southern blue-ringed octopus genome was sequenced using Illumina paired 123 

end and Dovetail sequencing from a single female collected at Beaumaris Sea Scout 124 

Boat Shed, Beaumaris, Port Phillip Bay, Victoria, Australia. The assembly was 125 

composed of 48,285 scaffolds with an N50 of 0.93 Mb and total size of 4.08 GB. A total 126 

of 29,328 inferred protein coding genes were predicted using a PASA[38] and an 127 

Augustus[39] pipeline and supplemented with zinc finger and cadherin genes obtained 128 

from aligning H. maculosa transcripts to O. bimaculoides gene models(Supplementary 129 

notes 1.1-1.4). Completeness of the genome was estimated using BUSCO[40], which 130 

identified 87.7% complete and 7.5% fragmented genes against the metazoan database 131 

of 978 groups (Supplementary notes 3.2).  132 
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H. maculosa has a highly heterozygous genome (0.95%), similar to O. vulgaris 133 

(1.1%)[41] but far higher than O. bimaculoides (0.08%)[42]. While the low 134 

heterozygosity of O. bimaculoides is surprising, other molluscs also have highly 135 

heterozygous genomes in accordance with H. maculosa, including the gastropods (1-136 

3.66%)[43,44] and bivalves (0.51-3%)[45–51](Supplementary table 5).  137 

 138 

PSMC (Pairwise Sequentially Markovian Coalescent) and mutation rate 139 

The mutation rate for H. maculosa was estimated to be 2.4 x 10-9 per site per 140 

generation based on analysis of synonymous differences with O. bimaculoides 141 

(Supplementary note 1.5). The mutation rate is comparable to the average mammalian 142 

mutation rate of 2.2 x 10-9 per site per generation, and Drosophila,  2.8 x 10-9[52,53]. 143 

Due to the unavailability of a suitable closely related and comprehensive genome until 144 

the publication of O. bimaculoides in 2015[42],  this is the first genome-wide mutation 145 

rate estimated for any cephalopod genome.   146 

The historic effective population size (Ne) of H. maculosa was estimated using 147 

the pairwise sequentially Markovian coalescent (PSMC) model (Supplementary Fig 2). 148 

Population size was found to initially increase during the early Pleistocene, followed by 149 
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a steady decline which slows slightly around 100kya. Note that PSMC estimates are not 150 

reliable at very recent times due to a scarcity of genomic blocks that share a recent 151 

common ancestor in this highly heterozygous genome.  A decline in population size 152 

started during the mid-Pleistocene approximately 1mya, a time of unstable 153 

environmental conditions with fluctuations in both temperature and glaciation 154 

events[54–56]. Corals in the genus Acropora show a similar pattern of expansion and 155 

contraction attributed to niche availability post mass extinction of shallow-water 156 

marine organisms 2-3 mya, followed by the unstable mid-Pleistocene climate[57,58]. A 157 

similar pattern of expansion and decline in effective population size has also been 158 

observed in the Antarctic ice fish among other marine organisms distributed in the 159 

Southern Hemisphere[59]. 160 

 161 

Phylogenomics 162 

A total of 2,108 (single copy/ 1-to-1) orthologous clusters were identified 163 

between the molluscan genomes and transcriptomes of 11 species and used to construct 164 

a time-calibrated maximum likelihood tree(Fig 1a). The phylogenetic reconstruction 165 

estimated the divergence time between H. maculosa and its nearest relative, O. 166 
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bimaculoides, to be ~59 mya. C. minor diverged from this clade much earlier ~183 167 

mya.  Previous phylogenies using a combination of a small number of mitochondrial 168 

and nuclear genes[60–62] and orthologs derived from transcriptomes[63] support this 169 

topology. Likewise, estimates by Tanner et al.2, using a concatenated alignment of 197 170 

genes with a Bayesian approach, placed divergence of H. maculosa from Abdopus 171 

aculeatus at ~59 mya[2].  172 

Inference of “shared” phenotypic traits can be difficult to resolve with the 173 

current literature.  For example, false eye spots/ocelli observed in both O. bimaculoides 174 

and H. maculosa are structurally very different. Each ocellus in H. maculosa is composed 175 

of a continuous single blue ring[33], while O. bimaculoides has a blue ring composed of 176 

multiple small rings.  Morphological variations of ocelli structure and colour, in 177 

conjunction with the taxonomically sporadic occurrence of this trait across species 178 

within Octopus and Amphioctopus, limits our interpretation as to the evolutionary 179 

history of this trait in octopods[3] . Large gaps remain in the literature between 180 

phenotypic traits in cephalopods and their genomic source[1]. This study aims to 181 

provide a genomic framework to enable resolution of these features by profiling 182 



 11 

changes in several genomic characters: (i) gene duplications, (ii) novel gene formation, 183 

and (iii) non-coding element evolution.  184 

 185 

Fig 1. Comparisons of molluscan genomes and gene families a) Time-calibrated maximum likelihood 186 

phylogeny of seven molluscan genomes (Aplysia californica, Lottia gigantea, Crassostrea gigas, Euprymna 187 

scolopes,  Octopus bimaculoides, Callistoctopus minor and Hapalochlaena maculosa) and four transcriptomes 188 

(Octopus kaurna, Octopus vulgaris, Sepia officinalis and Idiosepius notoides) using 2,108 single copy 189 

orthologous sequence clusters. Node labels show divergence times in millions of years (mya), blue 190 

(divergence to octopods) and orange bars (decopods) represent standard error within a 95% confidence 191 

interval. Octopodiformes lineages are highlighted in blue and decapod orange. Scale bar represents 192 

millions of year (mya).  b) Expansions of octopod gene families relative to molluscan genomes Aplysia 193 

californica (A. cali), Biomphalaria glabrata (B. glab), Crassostrea gigas (C. gig), Lottia gigantea (L. gig), 194 

Euprymna scolopes (E. scol) c) Lineage-specific gene expansions in the octopod genomes Callistoctopus 195 

minor (C. min), Octopus bimaculoides (O. bim) and Hapalochlaena maculosa (H. mac). Domains 196 

abbreviated: Chondroitin N-acetylgalactosaminyltransferase (CHGN), C2H2(Cys2-His2) zinc finger and 197 

Cornifin SPRR(small proline-rich proteins). 198 

 199 

Organismal impact of novel genes and gene family expansions  200 
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 Gene family expansions between octopods (O. bimaculoides, C. minor and H. 201 

maculosa) and three other molluscan genomes (Aplysia californica, Lottia gigantea and 202 

Crassostrea gigas) were examined using Pfam annotations. A total of 5565 Pfam 203 

domains were identified among six molluscan genomes. H. maculosa and C. minor 204 

exhibit expansions in the cadherin gene family, characteristic of other octopod 205 

genomes, including O. bimaculoides (Fig1b)[42,64]. C. minor, in particular, shows the 206 

greatest expansion of this family within octopods. Expansions of protocadherins, a 207 

subset of the cadherin family, have also occurred independently in squid[42], with the 208 

octopod expansions occurring post divergence ~135 mya[42]. The shared ancestry of 209 

octopod cadherins was also documented by  Styfhals et al[64] using phylogenetic 210 

inference between O. bimaculoides and O. vulgaris.Cadherins, specifically 211 

protocadherins, play crucial roles in synapse formation, elimination and axon targeting 212 

within mammals and are essential mediators of short-range neuronal connections[65–213 

68]. It should be noted that octopods lack a myelin sheath, as a result short-range 214 

connections are integral to maintaining signal fidelity over distance[6].  The 215 

independent expansions of protocadherins within chordate and cephalopod lineages are 216 

believed to be associated with increased neuronal complexity[42,64]. Elevated 217 
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expression of protocadherins within neural tissues have been observed in O. vulgaris 218 

and O. bimaculoides by both Styfhals et al[64] and Albertin et al[42] respectively. In 219 

particular Styfhals et al[64] noted differential expression across neural tissues 220 

including supra-esophageal mass, sub-esophageal mass, optic lobe and the stellate 221 

ganglion[64]. However, functional implications of observed expression patterns remain 222 

speculative without further study. 223 

H. maculosa also shows expansions in the C2H2-type zinc finger family. Zinc 224 

fingers form an ancient family of transcription factors, which among other roles serve 225 

to regulate transposon splicing as well as embryonic and neural development[69,70]. 226 

Expansion of this type of zinc finger in O. bimaculoides has been associated with neural 227 

tissues. It should be noted that due to the inherent difficulty in fully annotating the 228 

zinc finger family, alternative methods were used to examine the number of exons in C. 229 

minor with high similarity to annotated zinc finger genes in O. bimaculoides 230 

(Supplementary notes 5.1). A total of 609 exons (not captured by published gene 231 

models) from C. minor were found with high similarity to accepted zinc finger genes in 232 

O. bimaculoides, suggesting this family is larger than that which the genome annotation 233 

infers.  234 
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Examination of genes specifically expressed within neural tissues found that 235 

cadherins were among the most highly expressed gene families of all octopod species. 236 

Particularly in C. minor, relative to the other octopods, such a trend reflects the gene 237 

family expansions found in this species (Fig2c). Zinc fingers were less pronounced, 238 

representing 1.1% of overall expression in C. minor compared to cadherins at 11.3%. 239 

Overall, neural tissues express a large diversity of Pfams with each species, exhibiting a 240 

similar profile and proportion of orthologous to lineage-specific genes.  241 

 242 

Novel patterns of gene expression   243 

High-level examination of gene dynamics (expression, loss of expression and 244 

absence of expression) between octopods across different levels of orthology provides 245 

insight into large-scale expression patterns and highlights lineage-specific loss of 246 

expression.  247 

The greatest proportion of genes in each species examined were not specific to 248 

octopods or an octopus lineage (ancient genes) (Fig 2a). Expression of these genes were 249 

enriched in neural tissues across all species, indicating the core conservation of neural 250 

development and function. However, we also find that genes specific to each octopod 251 
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species also show this expression pattern. The overall elevated expression of genes 252 

within neural tissues could be reflective of the extensive neural network present in 253 

cephalopods, which comprises around 520 million nerve cells[71], rivalling 254 

vertebrates/mammals in size[6]. Expression of many novel genes in the nervous system 255 

may also indicate contribution of those genes to lineage-specific neural network 256 

evolution. In contrast, genes that date back to the shared octopod ancestor show 257 

highest expression in male reproductive tissues in all species.  258 

Loss of expression between octopod genomes is exhibited most clearly in H. maculosa 259 

with 11% (1993 genes) of all ancient genes having no expression, compared to 1% in 260 

both O. bimaculoides and C. minor. Absence of gene expression for genes whose 261 

orthologs have retained expression in one or more other species suggests a unique 262 

evolutionary trajectory from other octopods. It should be noted that differences in 263 

tissue sampling may in part influence these values and due to the limited sampling of 264 

species, loss of expression cannot be inferred at a species level and may have occurred 265 

at any point in the lineage. In order to fully understand the implications of the gene 266 

family contractions and loss of expression in H. maculosa, relative to other octopods, 267 

further investigation is required. 268 
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 269 

Fig2. Dynamics of gene expression in octopod genomes. Proportion of gene expression across levels 270 

of specificity from not specific to octopods or an octopus species (left) to octopod-specific (middle) and 271 

lineage-specific (right). Donut plots show gene expression as some expression in any tissue (purple), no 272 

expression (blue) or expression that has been lost (dark blue). Loss of expression requires an ortholog of 273 

the gene to be expressed in one or more species and not expressed in the other species. Heatmaps at each 274 

specificity level show average expression of genes within their respective tissues, low expression (cream) 275 

to high expression (dark red). 276 

 277 

Fig3. Dynamics of gene expression in neural and venom producing tissues of octopods. a) Tissue 278 

specific expression of genes within the brain of H. maculosa, O. bimaculoides and C. minor (red). Venn 279 

diagram shows numbers of shared and exclusive genes between species (Left). Bar chart of the top 5 280 

Pfams and their contribution to overall expression in the brain (right).  b)  Tissue specific expression of 281 

genes within the posterior salivary gland (PSG) of H. maculosa, O. bimaculoides and C. minor (Blue). Venn 282 

diagram shows numbers of shared and exclusive genes between species (left). Bar chart of the top 5 283 

Pfams and their contribution to overall expression in the PSG (right).  284 

 285 

Evolution of the octopod non-coding genome 286 
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Similar to other cephalopod genomes, the H. maculosa genome has a high repeat 287 

content of 37.09% (bases masked). O bimaculoides and C. minor are also highly 288 

repetitive with 46.39% and 44% of their genomes composed of transposable elements 289 

(TE) respectively. Of the repetitive elements, LINEs dominate the decapodiform 290 

Euprymna scolopes genome accounting for its larger genome size[72], while SINEs are 291 

expanded in all four octopod genomes. SINEs have been previously documented in O. 292 

bimaculoides (7.86%)[42], comparable with H. maculosa (7.53%), while fewer SINEs 293 

were previously reported for C. minor (4.7%)[73]. SINE elements also dominate the O. 294 

vulgaris genome with an expansion occurring post divergence from O. bimaculoides[41]. 295 

Rolling circle (RC) elements are a prominent minor component in octopods, 296 

particularly in H. maculosa. RC transposons have been isolated from plant (Zea mays) 297 

and mammalian genomes. They depend greatly on proteins used in host DNA 298 

replication and are the only known class of eukaryotic mobile element (transposon) to 299 

have this dependence[74]. TE elements in cephalopod lineages show differing 300 

expansions between most of the genomes currently available, suggesting they are 301 

highly active and play a strong role in cephalopod evolution. 302 
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Enrichment of transposable elements associated with genes (flanking regions 303 

10kb up- and downstream) was not observed compared to the whole genome for any 304 

species examined. More notable were differences between species, in particular C. 305 

minor shows a greater proportion of LINE to SINE elements relative to both O. 306 

bimaculoides and H. maculosa.  307 

Together, this highlights a very dynamic evolutionary composition of repeats in 308 

cephalopods, that requires further study to test for any potential association with 309 

changes in gene expression or genome evolution.  310 

 311 

Dynamics of gene expression in the posterior salivary gland (PSG) 312 

The posterior salivary gland is the primary venom-producing gland in octopods. 313 

Venom composition in the majority of octopods is primarily composed of proteinaceous 314 

toxins. Hapalochlaena is an exception containing an additional non-proteinaceous 315 

neurotoxin, TTX, within their venom. We hypothesize that the Hapalochlaena PSG will 316 

exhibit a loss of redundant proteinaceous toxins due to the presence of TTX.  317 

Examination of all PSG-specific genes from the three octopods revealed a 318 

disproportionate number of genes exclusive to H. maculosa (Fig 3a).  A total of 623 319 
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genes were exclusive to H. maculosa PSG compared to only 230 and 164 exclusive to O. 320 

bimaculoides and C. minor PSGs, respectively. Additionally, we predict that the H. 321 

maculosa PSG is functionally more diverse based on the number of Pfam families 322 

detected, 532 in total. Comparatively, the PSG genes in O. bimaculoides and C. minor 323 

are fewer and more specialised. Gene family expansions of serine proteases dominate 324 

expression comprising over 30% of total PSG-specific expression in C. minor and 17-325 

20% in O. bimaculoides (Fig 3b). Serine proteases were also among genes whose 326 

expression appears to have shifted between octopod species. Several serine proteases 327 

show specific expression to the PSG of O. bimaculoides and C. minor while being 328 

expressed in a non-specific pattern among brain, skin, muscle and anterior salivary 329 

gland tissues in H. maculosa (Fig 4b). Most notable is the absence of many paralogs in 330 

both H. maculosa and O. bimaculoides suggesting a lineage-specific expansion of this 331 

cluster in C. minor. Fewer  serine protease genes can also be observed in H. maculosa 332 

(Fig 4c). Similarly, reprolysin (M12B) exhibits shifting expression in H. maculosa, 333 

presumably from the PSG to the branchial heart, and a complete loss of paralogs from 334 

the genome. While the function of this protein has not been assessed in octopus, 335 
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members of this protein family exhibit anticoagulant properties in snake venom[75–336 

78].  337 

Serine proteases have been previously documented in cephalopod venom and 338 

are prime candidates for conserved toxins in octopods. Cephalopod-specific expansions 339 

have been identified with strong association to the PSG in 11 cephalopods (seven 340 

octopus, two squid and two cuttlefish)[8,13]. All serine proteases identified from the 341 

PSG of these species were found to belong to the cephalopod-specific clade. 342 

Functionally, cephalopod venom serine proteases have yet to be assessed. However, 343 

octopod venom has been observed to have strong digestive and hemolytic properties, 344 

which may be in part due to this crucial protein family[79–81]. The reduced number 345 

and expression of serine proteases in H. maculosa suggests a change in function of the 346 

PSG for this species. These results support the hypothesis of toxin redundancy in the H. 347 

maculosa PSG due to the incorporation of tetrodotoxin. Previous proteomic analysis of 348 

the H. maculosa PSG revealed high expression of hyaluronidase, which often serves as a 349 

dispersal factor within snake venom, facilitating the spread of toxin while not being 350 

directly toxic to their prey[9,82]. While further investigation is required, the 351 

incorporation of TTX within H. maculosa venom may have contributed to a shift in 352 
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function, with proteins present acting to support the spread of venom and digestion of 353 

tissues.  354 

 355 

Fig 4. Examination of posterior salivary gland (PSG) gene expression between three octopod 356 

genomes. a) Heatmap of genes expressed specifically in the PSG of H. maculosa (tau > 0.8) and their 357 

orthologs in O. bimaculoides and C. minor lacking specific expression to the PSG (tau < 0.8). Genes with 358 

an ortholog lacking expression are coloured in grey while the absence of an ortholog is white. b) 359 

Heatmap of genes expressed specifically in the (PSG) of both O. bimaculoides and C. minor  (tau >0.8) 360 

and their orthologs in H. maculosa lacking specific expression to the PSG.   361 

 362 

TTX resistance of the Nav channels 363 

To identify the mechanism of TTX resistance in H. maculosa, the voltage gated 364 

sodium channel (Nav) sequences were compared between susceptible (human) and 365 

resistant (pufferfish, salamanders and garter snakes) species. TTX binds to the p-loop 366 

regions of sodium channels, inhibiting the flow of sodium ions in neurons, resulting in 367 

paralysis[83,84]. Inhibition of TTX binding has been observed in species which either 368 
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ingest TTX via prey, such as garter snakes[85], and in those which retain TTX within 369 

their tissues like pufferfish[86].  370 

Two Nav genes were identified in the H. maculosa genome (Nav1 and Nav2), this 371 

is congruent with the recent identification of two Nav isoforms in H. 372 

lunulata[24](Supplementary Fig 8 & 9). Among cephalopods with sequenced Nav1 373 

channels, p-loop regions are highly conserved with both DI and DII shared between all 374 

species. The regions DIII and DIV closer to the C-terminal end of the protein in 375 

Hapalochlaena sp. contain mutations, which may impact TTX binding and differ 376 

between families and species as follows.  Similar to the pufferfish (Arothron, 377 

Canthigaster, Takifugu and Tetraodon)[87]and garter snake Thamnophis couchii[88], H. 378 

maculosa Nav1 has a mutation within the third p-loop at site (DIII) from M1406T, 379 

while all other cephalopods have an Ile(I) at this position (Fig 5a). The dumbo octopus 380 

(Grimpoteuthis) is the only exception retaining the susceptible M at this site similar to 381 

humans and other non-resistant mammals[83]. Additionally, the fourth p-loop (DIV) in 382 

H. maculosa exhibits two substitutions at known TTX binding sites: D1669H and 383 

H1670S. In a previous study a Met to Thr substitution into a TTX sensitive Nav1.4 384 

channel  decreased binding affinity to TTX by 15-fold[87]. Likewise, a 10-fold increase 385 
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in sensitivity was observed from a T1674M substitution in a mite (Varroa destructor) 386 

channel VdNav1[28]. However, resistance is often a result of multiple substitutions and 387 

when I1674T/D1967S occur together in VdNav1, resistance is multiplicative resulting 388 

in “super resistant” channels with binding inhibition of 1000-fold. The combination of 389 

M1406T/ D1669H in H. maculosa also occurs in the turbellarian flatworm Bdelloura 390 

candida(BcNav1)[87,89]. While it has yet to be assessed for TTX resistance, the 391 

replacement of Asp in B. candida with a neutral amino acid has been predicted to 392 

disrupt TTX binding by preventing formation of a salt bridge or hydrogen bond[89,90]. 393 

These three substitutions (M1406T, D1669H and H1670S) in H. maculosa, with the 394 

potential to inhibit TTX binding, have also been identified by Geffeney et al[24] in H. 395 

lunulata. It has yet to be established if these mutations are derived from a shared 396 

ancestor or have occurred independently.  397 

While Hapalochlaena remains the best documented example of TTX resistance 398 

among cephalopods, other species may contain some level of TTX resistance (e.g. 399 

Octopus vulgaris)[91,92]. Saxitoxin (STX) is a similar toxin in structure and function, 400 

and mutations resistant to TTX are often also STX inhibiting[93] O. vulgaris has been 401 

observed consuming STX-contaminated bivalves with no negative impacts and as such 402 
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is believed to be resistant[92]. However, no mutations known to reduce TTX/STX 403 

binding affinity occur in its Nav1[92,94]. The selective pressure facilitating the 404 

evolution of STX/TTX resistance in these shallow water benthic octopods may be toxic 405 

prey, similar to garter snakes. STX is also known as a paralytic shellfish poison (PSP). 406 

Produced by photosynthetic dinoflagellates and bioaccumulated in bivalves[95], this 407 

toxin contaminates a common octopus food source.  Pelagic squids such as the 408 

Humboldt (D. gigas) and longfin inshore squid (D. pealeii) do not appear to be TTX/STX 409 

resistant; mass strandings of Humboldt squid have been associated with ingestion of 410 

STX-contaminated fish[96]. Likewise, no evidence of resistance was found in the 411 

sodium channel of the dumbo octopus (Grimpoteuthis). This species typically inhabits 412 

depths of 2000-5000m and is unlikely to encounter STX-contaminated food 413 

sources[97].  414 

 415 

Fig 5. Mechanism of tetrodotoxin resistance within the posterior salivary gland of H. maculosa 416 

(PSG) a) Alignment of voltage gated sodium channel alpha subunits (DI, DII,DIII & DIV)  p-loop regions. 417 

Mutations conferring resistance are coloured in green (pufferfish), orange (salamander), purple (clam) 418 

and blue (octopus). Susceptible mutations at the same site are Black and bolded. Sites which may be 419 



 25 

involved with resistance are in bold. b) Schematic of voltage-gated sodium channel (Nav) alpha subunits 420 

(DI, DII, DIII and DIV). Each unit is composed of six subunits 1-4 (blue) and 5-6 (yellow). Alternating 421 

extra and intercellular loops are shown in black with the p-loops between subunits 5 and 6 highlighted 422 

in red. Mutations conferring resistance are shown within black circles on p-loops.  423 

 424 

Microbiome of the PSG 425 

TTX is produced through a wide variety of bacteria, which are common in 426 

marine  sediments and have been isolated from organisms such as 427 

pufferfish[25,98,99]. Sequestration of TTX is not exclusive to the blue-ringed octopus 428 

among molluscs. Gastropods such as Pleurobranchaea maculata[100] and Niotha 429 

clathrata[30], as well as some bivalves, are also capable of sequestering TTX[95]. The 430 

commonly held hypothesis for TTX acquisition within Hapalochlaena is that it is 431 

bacterial in origin, and is either ingested or endosymbiotic[100,101]. Analysis of a 432 

ribo-depleted RNA sample from the PSG of H. maculosa revealed a highly diverse 433 

composition of bacterial genera with Simpson's and Shannon’s diversity indices of 4.77 434 

and 0.94, respectively. The dominant phyla were Proteobacteria and Firmicutes, 435 

composing respectively 41% and 22% of overall bacterial species detected (Fig 5a-b). 436 
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To date, 151 strains of TTX-producing bacteria have been identified from 31 genera. Of 437 

these, 104 are members of Proteobacteria[102]. The genera Pseudomonas and Bacillus 438 

belonging to the phyla Proteobacteria and Firmicutes, respectively, have been 439 

previously identified in the PSG of Hapalochlaena sp (Octopus maculosus)[101]. 440 

Examination of these bacterial strains revealed TTX production, and extracts injected 441 

into mice proved to be lethal[101]. A more recent study on the bacterial composition 442 

of H. maculosa PSG did not identify TTX-producing strains[100]. However, only a small 443 

subset of the many strains identified were tested.  Congruent with our findings the 444 

diversity of bacterial genera was high and this may complicate identification of species 445 

responsible for TTX production. The biosynthetic pathway of TTX has yet to be 446 

elucidated, and as a result, only culturable bacterial species can be tested for TTX 447 

production.  448 

 449 

Fig 6. Assessment of bacteria within the posterior salivary gland of H. maculosa (PSG). a) Bacterial composition at 450 

the phylum level of a H. maculosa posterior salivary/venom gland. b)  Composition of the largest Phylum, 451 

Protobacteria of a H. maculosa posterior salivary/venom gland. 452 

                                                                                                                                                                                                                                                                                                            453 

Conclusions  454 
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This work describes the genome of a unique TTX bearing mollusc, the southern 455 

blue-ringed octopus (Hapalochlaena maculosa). Much of cephalopod evolution is barely 456 

understood due to sparseness of genomic data.  Our analysis provides the first glimpse 457 

into genomic changes underlying genome evolution of closely related octopod species. 458 

While the size, heterozygosity and repetitiveness of the blue ring genome is congruent 459 

with previously published octopod genomes, we find similar yet independent 460 

expansions of key neuronal gene families across all three species and show evidence for 461 

the involvement of gene novelty in the evolution of key neuronal, reproductive, and 462 

sensory tissues.  The evolution of venom in octopods also differs between species, with 463 

H. maculosa showing a reduction in the number and expression of serine proteases in 464 

their venom gland relative to the other octopods in this study. Inclusion of TTX in H. 465 

maculosa distinguishes this species from related octopods and is believed to impact 466 

toxin recruitment and retention, as the highly potent TTX is sufficient to subdue 467 

common octopod prey without additional toxins.  468 

 469 

Methods  470 

Genome sequencing and assembly 471 
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DNA was extracted from a single H. maculosa female collected at Port Phillip Bay, 472 

Victoria, Australia. Two types of Illumina libraries were constructed, standard paired 473 

end and Illumina mate pairs (Supplementary data 2). Dovetail sequencing, Chicago 474 

libraries improved upon original sequencing resulting in an overall coverage of 71X. 475 

Assembly-stats[103] was used to ascertain the quality of the assembly and relevant 476 

metrics (Supplementary notes 1).  477 

 478 

Transcriptome sequencing  479 

The H. maculosa transcriptome was generated using 12 tissues (brain, anterior salivary 480 

gland, digestive gland, renal, brachial heart, male reproductive tract, systemic heart, 481 

eyeballs, gills, posterior salivary gland, dorsal mantle and ventral mantle tissue). RNA 482 

was extracted using the Qiagen RNeasy kit. Construction of cDNA libraries was 483 

outsourced to AGRF (Australian Genome Research Facility), Melbourne and conducted 484 

using their TruSeq mRNA Library Prep with polyA selection and unique dual indexing 485 

method. Libraries were constructed using 3 μg of RNA at a concentration of >100 486 

ng/μ  L. Each tissue was sequenced on 1/12th of an Illumina HiSeq2000 lane with one 487 

lane used in total.  488 
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 489 

De novo transcriptome assembly 490 

De novo assembly of the H. maculosa transcriptome was conducted using sequencing 491 

data from 11 tissues (as listed above) and Trinity v10.11.201 (Trinity, 492 

RRID:SCR_013048)[104]. Default parameters were used  aside from kmer coverage, 493 

which was set to three to account for the large data volume. Protein coding sequences 494 

were identified using Trinotate (Trinotate, RRID:SCR_018930) [105] and domains 495 

assigned by Interpro v72.0 (InterPro, RRID:SCR_006695) [106]. 496 

 497 

Genome annotation   498 

Genes were annotated using a de novo predictor supplemented with transcriptomic 499 

evidence. Training models were produced by PASA (PASA, RRID:SCR_014656)[38] 500 

using a transcriptome composed of 12 tissues (as listed above) and supplied to the de 501 

novo predictor Augustus (Augustus, RRID:SCR_008417) [39] along with intron, exon 502 

and repeat hints (generated by repeatmasker).  Alternative splicing of gene models was 503 

also predicted using PASA (PASA, RRID:SCR_014656). Methods used for annotation 504 

have been documented in the git[107]. Additional genes were predicted by mapping 505 
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raw expressed reads against the genome. Functional annotation of gene models was 506 

achieved using InterPro v72.0 (InterPro, RRID:SCR_006695)[106]. Completeness of 507 

genes was assessed using BUSCO v3 Metazoan database (BUSCO, 508 

RRID:SCR_015008)[40].  509 

  510 

Heterozygosity   511 

JELLYFISH v2.2.1 (Jellyfish, RRID:SCR_005491) was used in conjunction with 512 

GenomeScope (GenomeScope, RRID:SCR_017014)[108] to calculate heterozygosity in 513 

H. maculosa using a kmer frequency of 21 (Supplementary table 5).  514 

 515 

Repetitive and transposable elements 516 

Repetitive and transposable elements were annotated using RepeatModeler v1.0.9 517 

(RepeatScout) (RepeatModeler, RRID:SCR_015027) and masking performed with 518 

RepeatMasker v4.0.8 (RepeatMasker, RRID:SCR_012954)[109](Supplementary notes 519 

3.3). Analysis of gene associated TE was conducted by extracting TE within flanking 520 

regions 10K upstream and downstream of genes using Bedtools v2.27.1 (BEDTools, 521 

RRID:SCR_006646)[110].  522 
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 523 

Calibration of sequence divergence with respect to time  524 

 Divergence times between the molluscan genomes (Crassostrea gigas, Lottia gigantea, 525 

Aplysia californica, Euprymna scolopes, Octopus bimaculoides, Callistoctopus minor and 526 

Hapalochlaena maculosa) and transcriptomes (Sepia officinalis, idiosepius notoides, 527 

Octopus kaurna and Octopus vulgaris) was obtained using a mutual best hit (MBH) 528 

approach. Bioprojects for each genome used are as follows: Crassostera gigas 529 

(PRJNA629593 & PRJEB3535), Lottia gigantea (PRJNA259762 & PRJNA175706), 530 

Aplysia californica (PRJNA629593 & PRJNA13635) and (Euprymna scolopes 531 

PRJNA47095). Octopus bimaculoides was obtained from this link [111]. The , Idiosepius 532 

notoides (BioProject: PRJNA302677) transcriptome was sequenced and assembled using 533 

the same method previously described for the H. maculosa transcriptome. Whole 534 

genomes and transcriptomes were BLASTed against  Octopus bimaculoides. The resulting 535 

hits were filtered, and alignments shared between all species extracted. A maximum 536 

likelihood phylogeny was generated using RAxML v8.0 (RAxML, 537 

RRID:SCR_006086)[112]. Phylobayes v3.3 (PhyloBayes, RRID:SCR_006402)[113] was 538 

used to calculate divergence times (Supplementary 4.1).  539 
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 540 

Effective population size (PSMC) 541 

Historical changes in effective population size were estimated using PSMC 542 

implemented in the software MSMC[114,115].  To generate inputs for MSMC we 543 

selected a subset of the reads used for genome assembly corresponding to 38x coverage 544 

of reads from libraries with short (500bp) insert sizes.  These were pre-processed 545 

according to GATK best practices; briefly, adapters were marked with Picard 2.2.1, 546 

reads were mapped to the H. maculosa genome using bwa mem v 0.7.17 (BWA, 547 

RRID:SCR_010910)[116] and PCR duplicates identified using Picard v2.2.1.  In order to 548 

avoid inaccuracies due to poor coverage or ambiguous read mapping we masked 549 

regions where short reads would be unable to find unique matches using SNPable[117] 550 

and where coverage was more than double or less than half the genome wide average 551 

of 38x. Variant sites were called within unmasked regions and results converted to 552 

MSMC input format using msmc-tools[118] . All data for H. maculosa scaffolds of 553 

length greater than 1Mb was then used to generate 100 bootstrap replicates by dividing 554 

data into 500kb chunks and assembling them into 20 chromosomes with 100 chunks 555 

each. We then ran msmc2 on each bootstrap replicate and assembled imported the 556 
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resulting data into R for plotting.  A mutation rate of 2.4e-9 per base per year and a 557 

generation time of 1 year were assumed in order to set a timescale in years and convert 558 

coalescence rates to effective population size.  559 

 560 

Mutation rate 561 

Mutation rate was calculated by extracting orthologous genes from O. bimaculoides and 562 

H. maculosa. Neutrality was assumed for genes with very low expression (>10 TMP 563 

across all tissues). Neutral genes were aligned using MAFFT v7.407[119] and codeml 564 

(PAML, RRID:SCR_014932)[120] was used to calculate substitution metrics (dS).  Per 565 

base neutral substitution between lineages was determined using the mean dS value 566 

divided by divergence time (refer to Calibration of sequence divergence with respect to 567 

time)  over the number of generations. As octopus are diploid the rate was divided by 568 

two. Divergence between species was calculated using Phylobayes v3.3 (PhyloBayes, 569 

RRID:SCR_006402)[113].  570 

 571 

Quantifying gene expression/ specificity  572 
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Gene expression within individual tissues was calculated using Kallisto (kallisto, 573 

RRID:SCR_016582)[121] for the transcriptomic data sets of H. maculosa, O. 574 

bimaculoides and C. minor.  Defaults were used and counts were calculated as TPM. 575 

Gene specificity was defined as any gene with a tau value > 0.80.  576 

  577 

Gene model expression dynamics 578 

Patterns of gene expression and loss were assessed across octopod genomes at differing 579 

taxonomic/organismal levels.  Gene models were classified as lineage-specific, octopod 580 

specific or non-specific (orthologous to a gene outside of octopods). Expression at each 581 

level was determined using whole transcriptomes from all tissues of each species. Genes 582 

with expression within one or more tissues were determined to be expressed, loss of 583 

expression was classified as a gene with a single ortholog in each species, which is 584 

expressed in one or more species and not expressed in the remaining species.  585 

 586 

Dynamics of PSG gene expression  587 

 In order to identify patterns of PSG specific gene expression (losses and shifts) between 588 

the three available octopod genomes,  genes with expression specific to the PSG of each 589 
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species were examined separately.  Specific gene expression was defined as a tau value 590 

> 0.8. Orthologous groups were identified between species using Orthovenn2[122] 591 

and sequences which were identified as lineage-specific were confirmed using BLAST. 592 

Types of expressions were categorized as follows: A loss of expression requires a gene 593 

to be present in all three octopods  and expressed in one or more species while having 594 

no detectable expression in at least one species. A shift in expression occurs when an 595 

ortholog present in all species is expressed in different tissues.  596 

 597 

The role of the Nav in TTX resistance  598 

Sodium channels for the three octopus genomes along with all available in-house 599 

cephalopod transcriptomes were extracted manually using a series of BLAST searches 600 

against the nr database. Annotation was achieved using Interpro v72.0 (InterPro, 601 

RRID:SCR_006695)[106] and identification and extraction of p-loop regions of the 602 

sodium channel alpha subunit were manually performed. Where sodium channels were 603 

incomplete alignment against related complete channels were used to extract the p-604 

loop regions.  Individual mutations with potential to confer resistance were identified 605 

manually in Geneious v10.1[123]. 606 
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 607 

 Microbiome of PSG 608 

A single ribo-depleted RNA sample of H. maculosa PSG was examined using the 609 

SAMSA2 pipeline[124] to identify the bacterial composition and corresponding 610 

molecular functions. Two databases were used Subsys and NCBI RefBac. The Krona 611 

package[125] was used to produce visualizations of each dataset. 612 

 613 

Availability of source code and requirements  614 

Project name: BRO_annotation 615 

Project home page: https://github.com/blwhitelaw/BRO_annotation 616 

Operating system(s): linux 617 

Programming language: Unix/Bash 618 

Other requirements: HPC 619 

License: GPL-2.0 License 620 

Any restrictions to use by non-academics: none 621 

RRID: SCR_019072 622 

 623 
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Availability of supporting data and materials  624 

Genomic and transcriptomic data produced and used in this paper have been made 625 

available in the NCBI BioProject: PRJNA602771 under the following accession 626 

numbers: raw transcriptome (SAMN13930963 - SAMN13930975), genome assembly 627 

(SAMN13906985), raw genome reads (SAMN13906958), gene models 628 

(SAMN13942395). Voucher specimen for the transcriptome is stored at Melbourne 629 

museum. All supporting data and materials are available in the GigaScience GigaDB 630 

database [126]. This includes expression data for the transcriptome, raw 631 

transcriptomes reads, gene models, gene annotation gff and assembled genome, as well 632 

as files used in figure generation (i.e. trees, heatmaps).  633 
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I am pleased to submit an original research piece titled “Adaptive venom evolution and 
toxicity in octopods is driven by extensive novel gene formation, expansion and loss 
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Much of cephalopod evolution remains unknown due to sparseness of their genomic 
sampling. Cephalopod genomes are some of the largest and most repetitive animal genomes 
and exhibit drastically different evolutionary trajectories relative to other better 
documented lineages. A more focused genomic study to reveal how individual genomic 
changes are associated with the evolution of novel organs, tissues, or adaptations, within a 
single group of cephalopods has been missing so far. We present such a study, focussing on 
adaptations in the toxic blue-ringed octopus the Hapalochlaena maculosa, for which we 
provide a high quality genome assembly based on multiple technologies. Members of the 
genus Hapalochlaena are the only octopods to contain the lethal neurotoxin, tetrodotoxin 
(TTX), within their venom and tissues and are a prime example of the origin of 
evolutionary novelties within octopods.  
 
Using global comparative genomics approaches and focused study on TTX evolution, we 
report key findings: 

 Gene family expansions crucial for the development of complex neural networks are 
present in cephalopods, yet are differentially expanding in all three octopod species 

 Novel gene formation at different phylogenetic levels can be associated with 
evolution in a specific set of cephalopod tissues 

 Changes in Posterior Salivary Gland composition (PSG) between TTX bearing and 
non-TTX bearing species 

 Convergently evolved mutations consistent with TTX resistance detected in H. 
maculosa  
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