01 1	aore, our	minary or parameter	orb and carcarations as	ea in binnanaeionb ior ee	ion pooning motinou.
Method	Class	Parameters	No. Tests	No. Steps	No. Pipettings
DNA Sudoku	Non-adaptive	96 Samples: w = 2: 6 W = [10, 11, 13, 17, 19, 23] Ex: $W_{w=2} = [10, 11]$ 384 Samples: w = 2: 10 W = [20, 21, 23, 29, 31, 37, 41, 43, 47, 53] 1,536 Samples w = 2: 21 W = [40, 41, 43, 47, 49, 51, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]	$T = \sum_{i=1}^{w} W_i > w\sqrt{N} + \text{Ambiguous samples} $	$S = 1$ if $k \le \hat{k}$ (unambiguous) $S = 2$ if $k > \hat{k}$ (ambiguous)	$P = N \times w + \text{Ambiguous Samples} $
2D Pooling	Non-adaptive	$\begin{array}{l} 96 \; {\rm Samples} \; ({\rm MxDxD}\; {\rm Grids}) \\ 11 \times 3 \times 3, 6 \times 4 \times 4, \\ 4 \times 5 \times 5, 1 \times 10 \times 10 \\ 284 \; {\rm Samples}: \\ 43 \times 3 \times 3, 24 \times 4 \times 4, \\ 16 \times 5 \times 5, 8 \times 7 \times 7, \\ 4 \times 10 \times 10, 1 \times 20 \times 20 \\ 1,536 \; {\rm Samples}: \\ 171 \times 3 \times 3, 96 \times 4 \times 4, \\ 62 \times 5 \times 5, 43 \times 6 \times 6, \\ 32 \times 7 \times 7, 24 \times 8 \times 8, \\ 16 \times 10 \times 10, 8 \times 14 \times 14, \\ 4 \times 20 \times 20, 1 \times 40 \times 40 \\ \end{array}$	T = 2DM	S = 1 if unambiguous S = 2 if ambiguous	$P = \sum_{i=1}^{2DM} \left\lceil \frac{n_i}{c} \right\rceil$ where n_i is the number of samples in each row or column and c is the number of channels in the pipette
S-Stage	Hybrid/ multistage adaptive	$k = 1 - 20$ $\hat{k} = 1 - 20$ $k \times \hat{k}$	$T = \sum_{i=1}^{s} g_i \leq \frac{N}{n_1} + \frac{kn_1}{n+2} + \ldots + \frac{kn_{s-2}}{n_{s-1}} + kn_{s-1}$ where $g_i = \left\lfloor \frac{N_i}{n_i} \right\rfloor$ is the number of groups tested at each step and $n_i = \frac{N^{i+1}}{k}$ is the number of samples per group.	$S = \ln\left(\frac{N}{\tilde{k}}\right)$	$P = \sum_{i=1}^{S} g_i \left\lceil \frac{n_i}{c} \right\rceil$
Modified 3-Stage	Hybrid/ multistage adaptive	$k = 1 - 20$ $\hat{k} = 1 - 20$ $k \times \hat{k}$	$T = \sum_{i=1}^{s} g_i \leq \frac{N}{n_1} + \frac{kn_1}{n+2} + \ldots + \frac{kn_{s-2}}{n_{s-1}} + kn_{s-1}$ where $g_i = \left\lfloor \frac{n_i}{n_i+1} \right\rfloor$ is the number of groups tested at each step and $n_i = \frac{N}{k}^{\frac{i-1}{2}}$ is the number of samples per group.	$S = \min\left(3, \left\lceil \ln \frac{N}{\tilde{k}} \right\rceil\right)$	$P = \sum_{i=1}^{S} g_i \left\lceil \frac{n_i}{c} \right\rceil$
Binary Splitting by Halving	Adaptive	k = 1 - 20	$T\approx k\log_2 N$	S = T	$P = \sum_{i=1}^{S} \left\lceil \frac{n_i}{c} \right\rceil$
Gen. Binary Splitting	Adaptive	$k = 1 - 20$ $\hat{k} = 1 - 20$ $k \times \hat{k}$	$T \approx k \log_2\left(\frac{n}{k}\right)$	$S \approx T$	$P = \sum_{i=1}^{S} g_i \left\lceil \frac{n_i}{c} \right\rceil$ where $g_i = N_i$ if $N_i \le 2\hat{k} - 2$ else 1

S1 Table: Summary of parameters and calculations used in simulations for each pooling method