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proposed mixing method is portable, requiring only the probabilities of the models as
inputs, providing easy adaptation to other data compressors or compression-based
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Abstract
Background: The increasing production of genomic data has led to an intensi�ed need for models that can cope e�ciently
with the lossless compression of DNA sequences. Important applications include long-term storage and
compression-based data analysis. In the literature, only a few recent articles propose the use of neural networks for DNA
sequence compression. However, they fall short when compared with speci�c DNA compression tools, such as GeCo2. This
limitation is due to the absence of models speci�cally designed for DNA sequences. In this work, we combine the power of
neural networks with speci�c DNA models. For this purpose, we created GeCo3, a new genomic sequence compressor that
uses neural networks for mixing multiple context and substitution tolerant context models. Findings: We benchmark
GeCo3 as a reference-free DNA compressor in �ve datasets, including a balanced and comprehensive dataset of DNA
sequences, the Y-chromosome and human mitogenome, two compilations of archaeal and virus genomes, four whole
genomes, and two collections of FASTQ data of a human virome and ancient DNA. GeCo3 achieves a solid improvement in
compression over the previous version (GeCo2) of 2.4%, 7.1%, 6.1%, 5.8%, and 6%, respectively. As a reference-based DNA
compressor, we benchmark GeCo3 in four datasets constituted by the pairwise compression of the chromosomes of the
genomes of several primates. GeCo3 improves the compression in 12.4%, 11.7%, 10.8% and 10.1% over the state-of-the-art.
The cost of this compression improvement is some additional computational time (1.7× to 3× slower than GeCo2). The
RAM is constant, and the tool scales e�ciently, independently from the sequence size. Overall, these values outperform the
state-of-the-art. Conclusions: GeCo3 is a genomic sequence compressor with a neural network mixing approach, that
provides additional gains over top speci�c genomic compressors. The proposed mixing method is portable, requiring only
the probabilities of the models as inputs, providing easy adaptation to other data compressors or compression-based data
analysis tools. GeCo3 is released under GPLv3 and is available for free download at https://github.com/cobilab/geco3.
Key words: Lossless data compression, DNA sequence compression, Context mixing, Neural networks, Mixture of experts

Introduction
The DNA sequencing rate is increasing exponentially, stretch-
ing the genomics storage requirements to unprecedented di-
mensions. Several projections show that by the year 2025, be-
tween 2 to 40 exabytes of additional storage will be needed per
year [1]. Discarding a signi�cant fraction of the data is not
a feasible alternative, given its high importance in many con-

texts, for example, in biomedical (e.g., personalized medicine)
and anthropological �elds.
The representation of genomic data usually consists of DNA

sequences accompanied by additional channels, such as head-
ers, quality-scores, variant positions, among others, that vary
from type and purpose. Di�erent �le formats store the se-
quence with subsets of this metadata, but the core remains
the DNA sequences. The compression of these sequences has
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been widely approached with general- and speci�c-purpose
compressors, where the latter is now signi�cantly started to
be used given its substantial compression gains.
Specialized DNA compressors achieve substantially higher

compression than general-purpose because most of these com-
pressors use various models that take into account speci�c
properties of DNA, such as inverted repeats and high-level
of substitutions [2, 3]. However, the e�cient combination of
multiple models for DNA sequence compression is not a trivial
problem. The complexity associated with the development of
improved algorithms to combine those predictions [4] and the
speci�cities of the genomic data, namely, heterogeneity and
non-stationarity, delivers a highly demanding task.
In this paper, we address the problem of combining the pre-

dictions of di�erent models to produce an improved predictive
model and, by consequence, improve the compression of DNA
sequences. Accordingly, we take the speci�c DNA models from
GeCo2 [3], namely the context and substitution tolerant context
models [5], and implement a mixture of these models with a
neural network.
Therefore, instead of combining only the models’ predic-

tions with the algebraic combiner of GeCo2, where weights are
attributed to each model and updated based on the model per-
formance with a particular forgetting factor, we improve the
mixture of experts using ensemble methods [6].
Speci�cally, we use a stacked generalization approach [7],

namely applying a neural network meta-model that takes as
inputs the outputs of other models and is trained to learn the
mapping between the models’ outputs and the actual correct
outputs. To implement the stack generalization, we use a mul-
tilayer perceptron. This network takes as inputs the probabili-
ties of each model as well as derived features [8] that represent
past model performance, while it outputs the probabilities for
each symbol, which are redirected to an arithmetic encoder.
For evaluation, we created a new DNA compression tool

(GeCo3) and benchmark it both reference-free and referential
compression. Nine datasets are employed for reference-free
and reference-based compression benchmarks, containing dif-
ferent sequence nature, lengths, and redundancy levels.
The results show a consistent improvement in the com-

pression ratio of GeCo3 over state-of-the-art DNA compres-
sors, both in reference-free and reference-based approaches,
enabling the use of GeCo3 as a long-term storage tool.
Although data compression is the natural approach for de-

creasing the storage of DNA sequences losslessly [9], it can also
be e�ciently applied to sequence analysis and prediction us-
ing special-purpose compressors [10, 11, 12]. Therefore, this
improvement also enables increasing the precision of DNA se-
quence compression-based analysis tools. In order to facilitate
the exportation of the mixing method to other data compres-
sion or data analysis tools, we provide the reusable andmodular
mixer code and instructions on how to integrate it easily.
In the following subsection, we provide background on

reference-free and reference-based DNA sequence compres-
sion. Then, we describe GeCo3 in detail and, �nally, we provide
the benchmark results and some discussion.

DNA sequence compression
Genomes are found in the most diverse places, for example,
in extreme environments as uranium mines [13], in soft and
hard tissues [14, 15], ancient cadavers [16], marine environ-
ments [17], or deep subterranean habitats [18]. The environ-
ment and species interactions are a key for genome adaptation,
providing a wide diversity in characteristics, namely high copy
number, high heterogeneity, high level of substitution muta-
tions, or multiple rearrangements, such as �ssions, fusions,

translocations, or inverted repeats [19, 20]. Additionally, since
genomic (DNA) sequences are an output of biochemical and
computational methods, these sequences may have other al-
teration sources, for example contamination [21], environmen-
tal factors [22, 23], pathogenic species included in the samples
[24, 25], and unknown sources [26]. Therefore, representing
genomic sequences requires the ability tomodel heterogeneous,
dynamic, incomplete, and imperfect information [27].
The above speci�c characteristics led to the development

of the �eld which studies and constructs speci�c genomic
data compressors [28, 29]. This �eld has now 27 years and
started with Biocompress [30]. Afterwards, several algorithms
emerged, mostly modeling the existence of exact or approxi-
mate repeated and inverted repeated regions, through the us-
age of simple bit encoding, context modeling, or dictionary ap-
proaches [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 53, 54, 55, 56, 57, 58, 59,
2, 60, 61, 62, 3, 63, 64, 65].
The FASTA format development permitted to standardize

the co-existence of DNA sequences (in a visible horizontal
range) along with annotations (headers). Usually, the DNA se-
quence is substantially the most abundant part of this data and,
hence, multiple tools use specialized DNA compression algo-
rithms combined with simple header coding, namely Delimi-
nate [66], MFCompress [67], and NAF [68]. Notwithstanding,
for comparison purposes with DNA sequence compressors, set-
ting aminimal header, asymptotically, increases its irrelevance
relative to the DNA sequence according to its size.
From all the previous algorithms, the most e�cient accord-

ing to compression ratio in the wide diversity of DNA sequences
are XM [44], GeCo2 [3], and Jarvis [65]. These compressors ap-
ply statistical and algorithmic model mixtures combined with
arithmetic encoding. Speci�cally, the XM algorithm [44] com-
bines three types of experts, namely repeat models, a low-
order context model, and a short memory context model of 512
bytes. The GeCo2 algorithm [3] uses soft-blending coopera-
tion between context models and substitution tolerant context
models [5] with a speci�c forgetting factor for each model. The
Jarvis compressor [65] uses a competitive prediction model to
estimate, for each symbol, the best class of models to be used;
there are two classes of models: weighted context models and
weighted stochastic repeat models, where both classes of mod-
els use speci�c sub-programs to handle inverted repeats e�-
ciently.
Some compressors use a reference genome as an additional

input. This approach is called referential compression, and
it started to gain momentum in 2009 [69, 70]. Referential
compressors attained substantially higher compression ratios
compared to reference-free compressors. The resulting com-
pressed lengths can be hundreds or thousands of times smaller
than the original �le [71, 72]. As an example, an entire human
genome of about 3GB can be compressed to 4MB by referential
compression; on the other hand, a reference-free compressor
minimizes the data to 580MB, approximately. The majority of
reference-based compression algorithms use dictionaries, re-
peats models, or context models [69, 70, 73, 74, 75, 76, 77, 55,
78, 71, 72, 79, 80, 3, 81]. From the previous compressors, the
most productive, according to compression ratio, are HiRGC
[79], GeCo2 [3], iDoComp [71], GDC2 [72] and HRCM [81]. The
HiRGC [79] is based on a 2-bit encoding scheme and an ad-
vanced greedy-matching search on a hash table. The GeCo2
[3] is described above. The iDoComp [71] uses a su�x array for
loading the reference and later applies a greedy parsing of the
target that bene�ts the substitutional single nucleotide poly-
morphisms that occur in higher number. The GDC2 [72] per-
forms a Ziv-Lempel factoring combined with a second-level
factoring and followed by arithmetic coding. The HRCM [81] ex-
plores sequence information extraction, followed by sequence
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information matching and further encoding.
The usage of neural networks to compress DNA sequences

is seen in DeepDNA [63]. The DeepDNA is a special purpose
DNA compressor without specialized models. It uses an hybrid
approach with a convolutional layer to capture the genome’s
local features and a recurrent layer to model long-term depen-
dencies.
In general-purpose sequence compressors, the idea of us-

ing neural networks to mix probabilities is seen in [4]. In this
case, it is called logistic mixing. Logistic mixing can be viewed
as using a neural network without hidden layers and a sim-
pler update rule than backpropagation. Other general-purpose
compressors followed the same line, namely Cmix [82] and
DeepZip [83]. The Cmix [82] uses recurrent neural networks
trained with stochastic gradient descent for context mixing.
The DeepZip [83] also uses recurrent neural networks, both as
predictors (models) and as mixers.
Although the best general-purpose compressors use com-

plex computational models, namely based on neural networks,
it has been shown that they still have lower compression capa-
bilities (5-10%) using substantially higher computational time
according to the most e�cient speci�c compressors [83]. The
discrepancy of precision is higher when the method is designed
for fast computations [84]. The main reason that the best
general-purpose algorithms (using neural networks) are not
so e�cient is that they do not use speci�c DNA models that
take into account the algorithmic nature of genomic sequences,
harming the model sensitivity.
In this paper, we combine the sensitivity of speci�c DNA

models, namely the usage ofmultiple contextmodels combined
with DNA speci�c algorithmic models, with the power of neural
networks for context mixing.

Methods
In this section, we present the methods that describe the pro-
posed compressor (GeCo3). GeCo3 uses a combination of multi-
ple context models and substitution tolerant context models of
several order-depths. The neural network provides an e�cient
combination of these models. Therefore, we describe the new
method with the main focus on the neural network, including
the inputs, updates, outputs, and training process.

Neural network structure
The model mixing is constructed using a feed-forward arti�-
cial neural network trained with stochastic gradient descent
[85]. This choice is motivated by implementation simplicity
and competitive performance compared to more complex neu-
ral networks [86]. The activation function for this network is
the sigmoid, and the loss function is the mean squared error.
The network structure is fully connected with one hidden layer,
as seen in Fig. 1b. One bias neuron is used for the input and
hidden layer, while the weights respect the Xavier initialization
according to [87]. Although we empirically tested di�erent ac-
tivation functions (ReLu, TanH) and a higher number of hidden
layers, the most e�cient structure was obtained with the pre-
vious description.
We introduced two parameters for the GeCo3 compression

tool in order to control the number of nodes of the hidden layer
and the learning rate. These parameters are written in the com-
pressed �le header to ensure a lossless decompression.

Neural network inputs
The stretched probabilities of each symbol are used as inputs
to the network. These are given by

pi,j = stretch
 1 + fi,j∑
m∈Θ

1 + fi,m

 – stretch (meanp) , (1)

where fi,j is the frequency of symbol j for model i with Θ as
the set of all symbol and meanp is the mean probability of eachsymbol.
We stretch the probabilities according to the work of Ma-

honey [4]. The e�ects of stretching can be seen in Supple-
mentary Section 1 (Stretching function plot). The inputs are
normalized for forcing the average to be close to zero by sub-
tracting the stretched mean probability, which, for the case of
DNA, we assume to be 0.25. The normalization and its motiva-
tion are explained in [88]. Stretching the probabilities has the
e�ect of scaling them in a non-linear way, which increases the
weights of probabilities near zero and one.
The context models, substitution tolerant context models,

and the mixed probabilities of GeCo2 are used as input mod-
els. This inclusion means that the mixing done in GeCo2 is
not discarded, but are used as an additional input to the neural
network.
We extract features from the context (the last n symbols)

and also calculate model and network performance indicators
to improve the network predictions. These are used as inputs to
the neural network. Three performance indicators are derived
for each mode according to the names hit, best, and bits. These
features correspond to three input nodes per model, as seen in
Fig. 1b.
To measure how precise model i is voting, we use

hiti,n =

hiti,n–1, if ∀x, y ∈ Θ : pi,x = pi,y
hiti,n–1 + 0.1, if ∀x ∈ Θ : pi,sym > pi,x
hiti,n–1 – 0.1, otherwise.

(2)

The symbol with the highest probability is considered the vote
of the model. Each time the model votes correctly, hit is in-
creased. If the model abstains (probabilities of each symbol
are equal), then hit remains the same; otherwise, it decreases.
For each model, we also measure if it has assigned the high-

est probability to the correct symbol, compared to all other
models. This is given by

besti,n =

besti,n–1, if ∀x, y ∈ Θ : pi,x = pi,y
besti,n–1 + 0.1, if pi,sym ≥ pk,sym
besti,n–1 – 0.1, otherwise.

(3)

The update rules for best are similar to hit and both have a do-
main of [–1, 1].
As an approximation to the average number of bits the

model would output, we use an exponential moving average

bitsi,n = α1 · (– log2(pi,sym) + log2(meanp)) + (1 – α1) · bitsi,n–1,(4)
with α1 = 0.15. This input is also normalized such that theaverage value is close to zero.
In Eqs. (2), (3) and (4), pi,sym is the probability assigned bymodel i to the actual symbol in the sequence. To reach these

features and their constants, we tested each with a couple of
�les from one dataset and adjusted until �nding a value that
produced satisfactory results.
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Figure 1. Mixer architecture: (a) High level overview of inputs to the neural network (mixer) used in GeCo3. Model1 through Modeli represent the GeCo2 modeloutputs (probabilities for A, C, T, G). Perf represents the performance metrics (hit, best, bits) for each model. Freqs are the frequencies for the last 8, 16, and 64
symbols. NNBits is a moving average of the approximate number of bits that the neural network is producing. The network outputs represent the non-normalized
probabilities for each DNA symbol. (b) A fully connected neural network with one hidden layer. For illustration purposes, this neural network only has the inputs
corresponding to one model and the three features that evaluate the model performance. The frequencies of the last 8, 16, and 64 symbols, as well as the NNBits
and the bias neurons, are omitted.

The features extracted from the context are the probabili-
ties of each symbol for the last 8, 16, and 64 symbols. These
represent a total of twelve input nodes. In Fig. 1a, these nodes
are represented by FreqsL8, FreqsL16 and FreqsL64. For example,to obtain the probabilities for the last eight symbols with the
sequence ACAGTAAA, the number of A’s is divided by the num-
ber of total symbols, so the frequency of symbol A is 5/8 and
for the other symbols is 1/8. These probabilities are then scaled
to �t between -1 and 1.
In Fig. 1a, NNBits represents the exponential moving average

of the approximate number of bits and is given by
nnbitsn = α2 · (– log2(psym) + log2(meanp)) + (1 – α2) · nnbitsn–1,(5)
with psym as the probability the network assigned to the correctsymbol and α2 = 0.5.

Updating model performance features
As an example of how to update the features, consider two sym-
bols and three models, and assume all features start equal to
zero. Model 1 assigns the probabilities [0.5, 0.5], meaning that
the model abstains and, as such, no change is made to hit or
best. Also, bits1 would be equal to zero. The probabilities formodel 2 and 3 are [0.7, 0.3] and [0.8, 0.2], respectively. Assum-
ing the models voted correctly, then hit is now 0 + 0.1 = 0.1 for
both. Because model 3 assigned the highest probability to the
correct symbol then best3 is now 0+0.1 = 0.1, and best2 becomes–0.1. Moreover, bits2 would become bits2 = 0.15 · (– log2(0.7) +log2(0.5)) and bits3 = 0.15 · (– log2(0.8) + log2(0.5)).

Neural network outputs and training
One node per symbol is used as output from the network. Af-
ter the result is transferred to the encoder, the network is
trained with the current symbol using the learning rate speci-
�ed within the program input.
When compared to GeCo2, the results of the new mixing

contain two main di�erences. First, the sum of output nodes
is di�erent from one. This outcome is corrected by dividing the
node’s output by the sum of all nodes. The second di�erence is
that the new approach outputs probabilities in the range ]0, 1[,

while in GeCo2, the mixing always yielded probabilities inside
the range of the models.

Results
In this section, we benchmark GeCo3 against state-of-the-art
tools in both reference-free and referential compression ap-
proaches. In the following subsection, we describe the datasets
and materials used for the benchmark, followed by the com-
parison with GeCo2 using di�erent characteristics, number of
models, and data redundancy. Finally, we provide the full
benchmark for the nine datasets.

Datasets and materials
The benchmark includes nine datasets. Five datasets are se-
lected for reference-free compression, including
• DS1: two compilations of FASTQ data, namely a human vi-
rome (Virome) [89] and ancient DNA from a Denisova indi-
vidual (Denisova) [90];

• DS2: four whole genomes: human (HoSaC), chimpanzee
(PaTrC), gorilla (GoGoC), and the Norway spruce (PiAbC);

• DS3: two compilations of archaeal (Archaea) and viral
genomes (Virus);

• DS4: highly repetitive DNA with the human Y-chromosome
(HoSaY) and a human mitogenome collection (Mito) (pro-
posed in [91]);

• DS5: a comprehensive-balanced dataset (proposed in [92]),
containing the following sequences:
– HoSa: chromosome 4 of the reference human genome
– GaGa: chromosome 2 of G. gallus;
– DaRe: chromosome 3 of D. rerio;
– OrSa: chromosome 1 of O. sativa Japonica;
– DrMe: chromosome 2 of D. miranda;
– EnIn: genome of E. invadens;
– ScPo: genome of S. pomb;
– PlFa: genome of P. falciparum;
– EsCo: genome of E. coli;
– HaHi: genome of H. hispanica;
– AeCa: genome of A. camini;
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– HePy: genome of H. pylori;
– YeMi: genome of Yellowstone lake mimivirus;
– AgPh: genome of Aggregatibacter phage S1249;
– BuEb: genome of Bundibugyo ebolavirus.

On the other hand, to benchmark the reference-based ap-
proach, we use the complete genomes of four primates (human,
gorilla, chimpanzee, and orangutan) with a pairwise chromoso-
mal compression. Non-human chromosomes are concatenated
to match the human chromosomal fusion [93]. For each chro-
mosomal pair, the following compression was performed
• DSR1: chimpanzee (PT) using human (HS) as a reference;
• DSR2: orangutan (PA) using human (HS) as a reference;
• DSR3: gorilla (GG) using human (HS) as a reference;
• DSR4: human (HS) using gorilla (GG) as a reference.
All the materials to replicate the results, including the se-

quence identi�ers, URL, �ltering applications, and associated
commands, can be found at the Supplementary Section 8 (Re-
producibility).

Neural network mixing compression
In order to assess the performance of the neural network mix-
ing, we compare GeCo2 with GeCo3. To ensure a fair compari-
son, the compression modes, including the models and param-
eters, are kept identical for both programs.
In Table 1, GeCo2 and GeCo3 are compared using the com-

pression modes published in [3]. The overall compression
improves by 1.93%, and the average improvement is 1.06%.
The larger sequences (larger than ScPo) have average improve-
ments of 2.04%, while the remaining have modest improve-
ments of 0.4%. Only the two smallest sequences show negative
improvement, given the absence of enough time to train the
network. Additionally, the eight bytes that are used to trans-
mit the two network parameters to the decompressor are a sig-
ni�cant percentage of the total size, unlike in larger sequences.
Overall, GeCo3 improves the compression of the whole dataset
by more than 1.9%.

Neural network mixing computational resources
Regarding computational resources, the mixing modi�cation
is 2.7× slower, as shown in Table 1. The computation was
performed on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
running Linux 5.4.0 with the scaling governor set to perfor-
mance and 32GB of RAM. The new mixing approach is always
slower because GeCo2’s mixing is still used, not as a result of
the encoder, but rather as an input to the network. The di�er-
ence in RAM usage of both approaches is less than 1 MB, which
corresponds to the size of the neural network and the derived
features for each model.
The number of hidden nodes is chosen to �t in the vector

registers in order to take full advantage of the vectorized in-
structions. Accordingly, we set the number of hidden nodes as
a multiple of eight, where �oating points of four bytes repre-
sent the nodes and 32 bytes represent the vector registers.

E�ects of the hidden layer size on mixing
Increasing or decreasing the number of hidden nodes a�ects
the number of weights, and it also a�ects compression, as can
be seen in Fig. 2. Increasing the number of nodes increases the
compression up to a point. This point varies from sequence to
sequence; however, the abruptest gains in compression gener-
ally occur until 24 hidden nodes. As expected, increasing the
number of hidden nodes leads to an increase in execution time
and a progressive decline of compression gain. These results
are also consistent in referential compression as seen in Sup-
plementary Section 6 (Referential hidden nodes e�ect).

The importance of derived features on mixing
We removed the derived features from the inputs to the net-
work to assess its impact on the mixing performance. The re-
sults are present in Table 2.
When using just the models’ probabilities as inputs, the

compression is more e�cient than GeCo2 by a small margin
(0.18%), while, in the majority of the sequences, there is no
improvement. By adding the result of the GeCo2 mixing as
an input, the improvement increases to 1.36%. The gain esca-

Table 1. Number of bytes needed to represent each DNA sequence for GeCo2 and GeCo3 compressors. The column mode applies to bothcompression methods, while the learning rate and the number of hidden nodes only apply to the latter.
ID GeCo2 bytes GeCo3 bytes GeCo2 secs GeCo3 secs Mode L.Rate H.Nodes
HoSa 38,845,642 37,891,143 223 598 12 0.03 64
GaGa 33,877,671 33,411,628 160 424 11 0.03 64
DaRe 11,488,819 11,189,716 64 189 10 0.03 64
OrSa 8,646,543 8,434,878 44 133 10 0.03 64
DrMe 7,481,093 7,379,992 33 99 10 0.03 64
EnIn 5,170,889 5,066,670 26 75 9 0.05 64
ScPo 2,518,963 2,511,054 11 24 8 0.03 40
PlFa 1,925,726 1,906,919 10 22 7 0.03 40
EsCo 1,098,552 1,094,298 2 8 6 0.03 40
HaHi 902,831 896,037 2 6 5 0.04 40
AeCa 380,115 377,343 1 2 5 0.04 16
HePy 375,481 373,583 1 3 4 0.04 40
YeMi 16,798 16,793 0 0 3 0.09 24
AgPh 10,708 10,715 0 0 2 0.06 16
BuEb 4,686 4,686 0 0 1 0.06 8
Total 112,744,517 110,565,455 577 1,583
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Figure 2. Number of bytes (s) and time (t) according to the number of hidden nodes for the reference-free compression of ScPo, EnIn, and DrMe sequence genomes.

lates, having an improvement of 1.73%, when using the context
models and tolerant context models as inputs and the derived
features.

Table 2. Number of bytes needed to represent each DNA sequenceusing the GeCo3 compressor with speci�c conditions. For the col-umn named Models, only the context models and tolerant con-text models of GeCo2 were used as network inputs. For "Models+ GeCo2", the result of GeCo2 mixing was also used as input. With"Models + Derived" the inputs for the network were the same as"Models" with the derived features added. The compression modesare the same as in Table 1.
ID Models Models + GeCo2 Models + Derived
HoSa 38,556,039 38,153,358 37,943,933
GaGa 33,758,606 33,548,929 33,444,816
DaRe 11,615,937 11,280,688 11,251,390
OrSa 8,694,790 8,517,947 8,471,715
DrMe 7,475,341 7,414,919 7,392,290
EnIn 5,183,237 5,095,391 5,087,359
ScPo 2,524,818 2,514,188 2,513,085
PlFa 1,928,282 1,912,745 1,912,176
EsCo 1,104,646 1,095,589 1,096,255
HaHi 903,019 898,280 898,145
AeCa 378,226 377,857 377,696
HePy 379,285 374,364 374,975
YeMi 16,901 16,827 16,882
AgPh 10,744 10,727 10,731
BuEb 4,694 4,696 4,698
Total 112,534,565 111,216,505 110,796,146

Scaling the number of models
GeCo2 and GeCo3 contain several modes (compression levels),
which are parameterized combinations of models with diverse
neural network characteristics. To see how the compression
of the new approach scales with more models, we introduced
mode 16 with a total of 21 models. This new mode was used to
compress the sequences of HoSa to HePy (by size order). For
the remaining sequences, the same models were used as in Ta-
ble 1. We used this approach because increasing the number of
models was incapable of improving the compression of GeCo3
and GeCo2, given the smaller dimensions of these sequences.
The number of hidden nodes was also adjusted until no tangi-
ble improvements in compression were observed.
The results in Table 3 show that the distance between the

approaches increases from 1.93% to 2.43%. The time di�er-
ence reduces from 2.7× to 2.0×. This reduction is due to the
increased percentage of time spent by the higher-order con-
text models. These results show that neural network mixing
can scale with the number of models. The forgetting factors for
this new mode were not tuned, due to the use of a large num-
ber of models. Therefore, with this tuning, additional gains
can be observed. Nevertheless, this shows another advantage
of this newmixing, which is that there are only two parameters
that need tuning regardless of the number of models. As the
sequence size and the number of models increases, there is al-
most no tuning required, with the optimal values being around
0.03 for the learning rate and 64 hidden nodes.

Compressing highly repetitive and large sequences
In this subsection, we show how the reference-free compres-
sion scales with the new mixing using highly repetitive and ex-
tensive sequences, namely in the gigabyte scale. Four datasets
are selected, and the results shown in Table 3.
According to the results from Table 3, GeCo3 compresses

the highly repetitive sequences (DS3 and DS4) with an aver-
age of 6.6% compared to GeCo2 using more 1.9× time. For the
larger sequences of DS1 and DS2, GeCo3 has an average com-
pression improvement of 3.2% in the primates, 8.2% in the
spruce (PiAbC), 11.8% for the Virome and 5.2% for Denisova,
with a 2.6× average slower execution time. These results show
that the compression of longer repetitive sequences present
higher compression gains.

Reference-free sequence compression bechmark
In this subsection, we compare GeCo3 with other specialized
reference-free compressors, namely XM (v3.0) [44], GeCo2
(previously compared), Jarvis [65], and NAF [68]. As presented
in Table 3, GeCo3 achieves the best total size in three out of
�ve datasets. In DS3 and DS4, GeCo3 was unable to achieve the
best compression, delivered by Jarvis. These types of datasets
justify this performance. Speci�cally, DS3 and DS4 contain a
high number of identical sequences. These are collection of mi-
togenomes, archeal and virus where the variability is very low,
which gives an advantage to models of extremely repetitive na-
ture. Such models, also known as weighted stochastic repeat
models, are present in Jarvis, unlike in GeCo3. The reason why
we excluded the inclusion of these models in GeCo is that they
fail in scalability because the RAM increases according to the se-
quence length. For the larger datasets, DS1 and DS2, Jarvis was
unable to compress the sequences even with 32 GB of RAM. On
the other hand, GeCo3 has constant RAM, which is not a�ected
by the sequence length but rather only by the mode used.
Comparing GeCo3 against the second best compressor for
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each dataset, the compression gain is 6% (vs GeCo2), 5.8%
(vs GeCo2), –0.8% (vs Jarvis), –3.2% (vs Jarvis) and 1.9% (vs
Jarvis), for DS1, DS2, DS3, DS4 and DS5, respectively. For the
individual sequences in the datasets, GeCo3 compresses more
than the other compressors, except for the AgPh, BuEb, Mito,
Virus and Archaea. Tiny sequences compose the AgPh and BuEb
dataset, and the neural network does not have enough time to
learn, while Mito, Virus and Archaea have already been men-
tioned above.
Regarding computational time, GeCo3 is faster than XM per

dataset, spending on the average only 0.6× the time. Against
GeCo2, it is slower 2.1× on average, and compared to Jarvis, it
is 1.1× slower. NAF is the fastest compressor in the benchmark.
Compared to NAF, GeCo3 is between 12× slower for DS5 and 3×
for DS1.
Regarding computational memory, the maximum amount

of RAM used for GeCo2 and GeCo3 was 12.6GB, Jarvis peaked
at 32GB, XM at 8GB, and NAF used at most 0.7GB. Jarvis could
not complete the compression for DS1 and DS2 due to a lack of
memory. This issue is a limitation that was mentioned earlier.
We also note that the XM is unable to decompress some of the
sequences. In these cases, the decompressed �le has the cor-
rect size, but the sequence does not fully match the original �le.
NAF, GeCo2, and GeCo3 were the only compressors that have
been able to compress all the sequences losslessly, indepen-
dently from the size. The overall results of these compressors
show that GeCo3 provides a total compression improvement of
25% and 6% over NAF and GeCo2, respectively.
Compared with general-purpose compressors that achieve

the best compression ratios, such as CMIX and DeepZip, GeCo3
is approximately 100 times faster. GeCo3 also has better to-
tal compression ratio compared to CMIX (7.7%). We could not
obtain enough results with DeepZip to make ameaningful com-
parison. The table with the results can be seen in Supplemen-
tary Section 3 (Results for general purpose compressors).

Reference-based sequence compression bechmark
In this subsection, we benchmark GeCo3 with state-of-the-
art referential compressors. The comparison is done between
the genomes of di�erent species and not for re-sequenced
genomes. Re-sequencing is applied to the same species and,
in a general case, limits the domain of applications; for exam-
ple, phylogenomic, phylogenetic, or evolutionary analysis.
To run the experiments, we used four complete genomes

of closely related species: Homo sapiens (HS), Pan troglodytes
(PT), Gorilla gorilla (GG) and Pongo abelii (PA). The compres-
sion for PT, GG, and PA was done using HS as the refer-
ence. HS was compressed using GG as a reference. Each chro-
mosome was paired with the corresponding one of the other
species. Due to the unavailability of chromosome Y for GG
and PA, comparisons that involved these chromosomes were
not made. The compressors used in this benchmark are GeCo3,
GeCo2, iDoComp [71], GDC2 [72], and HRCM [81]. The FASTA
�les were �ltered such that the resulting �le only contained
the symbols {A, C,G, T}, and a tiny header line. HRCM needs
the line size to be limited; therefore, line breaks were added
for the �les under its compression. However, this approach
prevents a direct comparison of total compressed size and
time, which we solved using the compression ratio percent-
age (output_size÷ input_size× 100) and the speed in kilobytes
per seconds (input_size÷ 1000÷ seconds_spent). For GeCo2 and
GeCo3, two approaches of referential compression are consid-
ered. One approach is based on conditional compression, where
a hybrid of both reference and target models are used. The
other approach, called relative approach, uses exclusively mod-
els loaded from the reference sequence. Both types of compres-

sion assume causality, which means that with the respective
reference sequence, the decompressor is able to decompress
without loss. The reason why we benchmark these two ap-
proaches is that there are many sequence analysis applications
for both approaches.
The results are presented in Table 4, showing the to-

tal compression ratio and speed for the four compar-
isons. The total compression ratio is the total_output_size ÷
total_input_size× 100 and the total speed is total_input_size÷
1000 ÷ total_seconds_spent. The results show GeCo3 achiev-
ing the best compression ratio, both in relative and conditional
compression. The latter shows improved compression capabil-
ities, with average improvements of 11%, 35%, 38% and 50%
over GeCo2, iDoComp, GDC2 and HRCM, respectively. This
comes at a cost of being the slowest. The average increase
in time over GeCo2, iDoComp, GDC2 and HRCM is 1.7×, 9.8×,
2.6× and 7.3×, respectively. Compared with GeCo2, the total
improvement for PT, PA, GG, and HS is 12.4%, 11.7%, 10.8%
and 10.1%. The total improvements are similar to the aver-
age improvement per chromosome. The computational RAM
of GeCo3 is similar to GeCo2. The complete results per chromo-
some are shown in Supplementary Section 4 (Complete results
for referential compression). These show that in the majority
of pairs GeCo3 o�ers better compression.
In Table S7 of Supplementary Section 4, we show the results

for compression of a re-sequenced genome. In this dataset
HRCM achieves the best results, with GeCo3 trailing both in
speed (42×) and ratio (–363%). While these results show that
GeCo2 and GeCo3 are not suitable for compressing this type of
dataset, the substantial improvement over GeCo2 (20%), hint
at the possibility that the new mixer might be useful when in-
tegrated into a di�erent type of compressor.

Estimating the cost for long term storage
To estimate the cost of long term storage, we developed amodel
with the following simplifying assumptions:
• two or more copies are stored;
• compression is done once and the result is copied to the
di�erent backup media;

• one CPU core is at 100% utilization during compression;
• the cooling and transfer costs are ignored;
• the computing platform is idle when not compressing;
• no human operator is waiting for the operations to termi-
nate.
Given the assumptions we now show the cost model:
Totalcost = Processingcost + Storagecost
Processingcost = Processingtime × Power × Energyprice
Storagecost = Ncopies × Size× Sizeprice,

where Processingtime is the total time to compress and decom-press the sequence.
From [94], we use the single thread load subtracted by the

idle value to calculate the power (watts) a system uses during
processing. The average result for all systems is 34 watts. The
average cost of electricity in the world is 12 cents per kWh, ac-
cording to [95]. The average storage costs per GB for HDDs is
4 cents [96] and for SSDs is 13 cents [97].
Assuming 13 cents per GB and three copies, the costs for

DS1 are 11.86€, 9.54€ and 9.5€ for NAF, GeCo2, and GeCo3,
respectively. Using 4 cents per GB and three copies, GeCo2 is
more cost e�ective at 3.12€, followed by GeCo3 (3.46€) and
NAF (3.74€). In Fig. 3, we show the costs of storing each se-
quence in DS1 and DS2 with GeCo3 relative to NAF and GeCo2.
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Table 3. Size and time needed to represent a DNA sequence for NAF, XM, Jarvis, GeCo2, and GeCo3. For DS5, Jarvis uses the same con�gu-ration as in [65], for DS4 and DS3 it uses level 7. XM uses the default con�guration. NAF uses the highest compression level (22). GeCo2and GeCo3 use mode 16 for DS5, except for BuEb, AgPh and YeMi which use the con�gurations of Table 1. For DS4 and DS3 the modelsare "-tm 3:1:1:1:0.8/0:0:0 -tm6:1:1:1:0.85/0:0:0 -tm9:1:1:1:0.85/0:0:0 -tm 12:10:0:1:0.85/0:0:0 -tm 15:200:1:10:0.85/2:1:0.85 -tm 17:200:1:10:0.85/2:1:0.85-tm 20:500:1:40:0.85/5:20:0.85", DS2 uses "-tm 3:1:1:1:0.70/0:0:0 -tm 8:1:1:1:0.85/0:0:0 -tm 13:10:0:1:0.85/0:0:0 -tm 19:500:1:40:0.85/5:20:0.85", andVirome uses "-tm 7:1:1:1:0.8/0:0:0 -tm 13:10:0:1:0.95/0:0:0 -tm 19:500:1:40:0.95/5:20:0.95". Denisova uses the same models as Virome but withinversions turned o�. GeCo3 uses a learning rate of 0.03 and 64 hidden nodes for all sequences. The character ’*’ indicates the sequencewas not compressed due to an error and ’/’ due to out of memory. Results where the decompression produces di�erent results than theinput �le are appended by the character ’?’.
NAF XM Jarvis GeCo2 GeCo3

DS ID size time size time size time size time size time
Denisova 25.36 GB 25h22m * * / / 20.61 GB 23h18m 19.55 GB 71h19m
Virome 4.72 GB 6h01m * * / / 3.17 GB 8h45m 2.79 GB 24h32m1
Total 30.08 GB 31h23m * * / / 23.78 GB 32h04m 22.34 GB 95h51m
PiAbC 2.29 GB 2h45m * * / / 1.86 GB 4h02m 1.71 GB 9h21m
HoSaC 634.07 MB 38m * * / / 579.66 MB 53m12s 560.88 MB 2h14m
PaTrC 619.48 MB 37m * * / / 569.40 MB 51m40s 551.54 MB 2h08m
GoGoC 603.39 MB 36m * * / / 556.54 MB 49m57s 539.30 MB 2h04m

2

Total 4.15 GB 4h36m * * / / 3.57 GB 6h37m 3.36 GB 15h49m
Archaea 128.09 MB 7m 103.01 MB? 1h41m 96.66 MB 57m 103.70 MB 30m 97.87 MB 55m
Virus 85.51 MB 6m 63.93 MB? 1h35m 61.19 MB 1h35m 65.63 MB 29m 61.19 MB 55m3
Total 213.60 MB 14m 166.93 MB? 3h16m 157.84 MB 2h32m 169.34 MB 1h00m 159.07 MB 1h51m
Mito 35.93 MB 2m32s 28.12 MB? 47m11s 27.11 MB 16m1s 30.40 MB 11m26s 28.17 MB 21m31s
HoSaY 5.17 MB 11s 3.88 MB? 3m25s 3.93 MB 1m45s 4.08 MB 1m15s 3.85 MB 2m21s4
Total 41.10 MB 2m43s 32.01 MB? 50m36s 31.04 MB 17m46s 34.48 MB 12m41s 32.03 MB 23m52s
HoSa 41.73 MB 2m06s 38.66 MB? 29m26s 38.66 MB 4m33s 38.79 MB 11m17s 37.56 MB 22m39s
GaGa 35.57 MB 1m38s 33.83 MB? 22m20s 33.70 MB 2m38s 33.75 MB 8m43s 33.26 MB 17m38s
DaRe 12.83 MB 32s 11.17 MB? 8m59s 11.17 MB 1m32s 11.44 MB 3m40s 10.97 MB 7m32s
OrSa 9.53 MB 21s 8.48 MB? 6m39s 8.45 MB 1m14s 8.60 MB 2m37s 8.34 MB 5m17s
DrMe 7.85 MB 15s 7.53 MB? 5m01s 7.49 MB 22s 7.47 MB 1m57s 7.36 MB 3m50s
EnIn 5.87 MB 12s 5.12 MB? 3m19s 5.09 MB 36s 5.14 MB 1m37s 5.02 MB 3m12s
ScPo 2.59 MB 4s 2.53 MB 55s 2.52 MB 11s 2.52 MB 44s 2.51 MB 1m21s
PlFa 2.02 MB 4s 1.92 MB 59s 1.92 MB 10s 1.93 MB 37s 1.90 MB 1m09s
EsCo 1.15 MB 2s 1.11 MB 13s 1.10 MB 4s 1.10 MB 24s 1.09 MB 39s
HaHi 948.69 KB 2s 914.87 KB 16s 899.47 KB 2s 899.17 KB 21s 889.51 KB 34s
AeCa 396.82 KB 1s 387.00 KB 3s 380.51 KB 1s 381.29 KB 13s 376.97 KB 18s
HePy 404.55 KB 1s 384.30 KB 4s 374.37 KB 1s 375.66 KB 13s 371.62 KB 19s
YeMi 17.35 KB 1s 16.84 KB 0s 16.87 KB 0s 16.80 KB 0s 16.79 KB 0s
AgPh 11.02 KB 1s 10.71 KB 0s 10.75 KB 0s 10.71 KB 0s 10.72 KB 0s
BuEb 4.81 KB 1s 4.64 KB 0s 4.70 KB 0s 4.69 KB 0s 4.69 KB 0s

5

Total 120.94 MB 5m22s 112.07 MB 1h18m14s 111.79 MB 11m24s 112.42 MB 32m23s 109.68 MB 1h04m28s

Table 4. Total referential compression ratio and speed in kB/s. GeCo3 uses 64 hidden nodes and has 0.03 learning rate. The con�gurationfor GeCo2-r and GeCo3-r (relative approach) is "-rm20:500:1:35:0.95/3:100:0.95 -rm 13:200:1:1:0.95/0:0:0 -rm 10:10:0:0:0.95/0:0:0". For GeCo2-hand GeCo3-h (conditional approach) the following models where added "-tm 4:1:0:1:0.9/0:0:0 -tm 17:100:1:10:0.95/2:20:0.95". iDoComp, GDC2and HRCM use the default con�guration.
HRCM GDC2 iDoComp GeCo2-r GeCo3-r GeCo2-h GeCo3-h

DSR ID ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed
1 HSxPT 6.29 2,006 5.01 841 4.78 2,430 4.16 527 3.65 296 4.02 374 3.52 224
2 HSxPA 15.27 1,260 12.24 382 11.31 1,891 7.51 513 6,57 294 7.26 367 6.41 222
3 HSxGG 8.80 1,691 7.06 588 6.70 2,201 5.58 516 4.96 293 5.43 369 4.84 222
4 GGxHS 9.48 1,773 8.11 712 7.80 2,332 6.43 558 5.81 301 5.77 389 5.19 230

Total 9.96 1,635 8.11 580 7.66 2,195 5.92 529 5.26 296 5.62 375 4.99 225
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Figure 3. Relative ratio and cost of GeCo3 compared with NAF and GeCo2 for sequences in DS1 and DS2. Higher relative ratios represent greater compression
improvements by GeCo3. The cost is calculated assuming 13 cents per GB and the storage of three copies. The red dashed line shows the cost threshold. Cost points
above the line indicate that GeCo3 is more expensive. Denisova32h represents the results of running the Denisova sequence with 32 instead of 64 hidden nodes.

As hinted by Fig. 2, we also show that the cost of compress-
ing the Denisova sequence is improved when using 32 instead
of 64 hidden nodes. The reduction of hidden nodes leads to a
negligible drop in compression ratio (5.2% to 4.9% vs GeCo2),
but a substantial time decrease (3.1× to 2.4× vs GeCo2).
These results use the average costs, though given the vari-

ability of electricity prices, CPU power e�ciency and storage
costs, the analysis would need to be done for each speci�c case.

Discussion
In essence, this article considers the GeCo2 as a base, collecting
its speci�c DNA models, and augments the mixture of models
by using a neural network. The primary outcome is a new ef-
�cient tool, GeCo3. The results show a compression improve-
ment at the cost of longer execution times and equivalent RAM.
For the evaluated datasets, this approach delivers the best

results for the most signi�cant and the highest repetitive se-
quences. One of the reasons for this is that for small sequences,
the network spends a signi�cant percentage of time adjusting.
Moreover, we show the importance of selecting and deriving
the appropriate network inputs as well as the in�uence of the
number of hidden nodes. These can be used to increase com-
pression at the cost of higher execution times.
Compared to other state-of-the-art compressors, this ap-

proach is typically slower, but achieves better compression ra-
tios both in reference-free and referential compression. Nev-
ertheless, the compression times can be reduced by decreasing
the number of hidden nodes while still improving the ratio.
The GeCo3 reference-free results, show an improvement of

25%, and 6% over NAF and GeCo2, respectively. In reference-
based compression, GeCo3 is able to provide compression gains
of 11%, 35%, 38%, and 50% over GeCo2, iDoComp, GDC2, and
HRCM, respectively.
The time trade-o� and the symmetry of compression-

decompression establish GeCo3 as a non-appropriate tool for
on-the-�y decompression. Tools such as NAF [68] are e�-
cient for this purpose, namely because the computational de-
compression speed is very high, which for industrial usage is
mandatory. The purposes of tools such as GeCo3 are in another
domain, namely long-term storage and data analysis.
In particular, the results suggest that long-term storage of

extensive databases, for example, as proposed in [98], would
be a good �t for GeCo3.

The steady rise of analysis tools based on DNA sequence
compression is showing its potential, with increasing applica-
tions and surprising results. Some of the applications are the
estimation of the Kolmogorov complexity of genomes [99], re-
arrangements detection [100], sequence clustering [101], mea-
surement of distances and phylogenetic trees computation
[102], and metagenomics [12].
The main advantage of using e�cient (lossless)

compression-based data analysis is non-overestimation.
Many analysis algorithms include multiple thresholds that
use a consensus value for what is considered balanced and
consistent, leaving space for overestimation. The problem is
that using a consensus or average parameter for a speci�c
analysis may overtake the limit of the estimation balance.
Since data compression needs the appropriate decompressor
to ensure the full recovery of the data, the compressor
acts under a boundary that ensures that the limit is never
overpassed (Kolmogorov complexity). This property is critical
in data analysis because the data in use may be vital and
sensitive, mainly when multiple models are used. Without a
channel information limit and an e�cient mixing model, the
information that is embedded in the probabilities estimation
of each model transits to the model choice.
The mixing method used to achieve these results assumes

only that probabilities for the symbols are available. Because
of this, it permits to be easily exported to other compressors or
compressed-based data analysis tools that usemultiple models.
GeCo3 shows what compression improvements and execution
times can be expected when using neural networks for the mix-
ture of experts in DNA sequence compression.
This paper highlights the importance of expertmixing. Mix-

ing has applications in all areas where there is the uncertainty
of outcomes, and many expert opinions are available. This
ranges from compression to climate modeling and, in the fu-
ture, possibly the creation of legislation. While more tradi-
tional methods, such as weighted majority voting, are more ef-
�cient and can achieve accurate results, neural networks show
promising results. With the development of specialized hard-
ware instructions and data-types to be included in general-
purpose CPUs [103, 104], neural networks should become an
even more attractive option for expert mixing.
One of the possible reasons this approach has higher com-

pression than GeCo2 is due to the mixing output not being
constrained by the inputs. By comparing the histograms in
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Figure 4. Comparison of histograms using the EnIn (Entamoeba invadens) and OrSa (Oryza sativa) genome sequences and the GeCo2 and GeCo3 as data compressors.
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Figure 5. Complexity pro�le using the smoothed number of bits per symbol (Bps) of GeCo2 subtracted by GeCo3 Bps. The Bps were obtained by referential
compression of PT_Y (Chromosome Y from Pan troglodytes) with the corresponding Homo sapiens chromosome, with the same parameters as in Table 4. Regions
where the line rises above zero indicate that GeCo3 compresses more than GeCo2.

Fig. 4 for the sequence EnIn and OrSa (two of the sequences
with higher gains), we can verify that GeCo3 appears to cor-
rect the models’ probabilities greater than 0.8 to probabilities
closer to 0.99. Therefore, in some way, it is betting more if
at least four in �ve chances are accomplished. Referential his-
tograms are presented in Supplementary Section 7 (Referential
histograms); these are similar to the ones presented here.
Another improvement is due to the higher percentage of

symbols inferred correctly. For dataset �ve (DS5), GeCo3 has
an average improvement of 1.5% in the number of symbols in-
ferred correctly, where only the smallest sequence has a lower
hit rate than GeCo2. Supplementary Section 2 (Percentage of
symbols guessed correctly), presents the table of hit rate per
sequence.
For referential compression, we show a complexity pro�le

in Fig. 5. This pro�le reveals that GeCo3 consistently outputs a
lower number of bits per symbol. The gains appear to be larger
in places of higher sequence complexity, namely in the higher
Bps regions. These regions are typically where rapid switching
between smaller models should occur, suggesting that the neu-
ral network mixer can adapt faster than the approach used in
GeCo2. Supplementary Section 5 (Referential complexity pro-
�les), presents two additional complexity pro�les with similar
nature.
Finally, the training is maintained during the entire se-

quence. Because, we found that doing early stopping leads to
worse outcomes. This characteristic might be due to the advan-
tages of over-�tting for non-stationary time series reported in
[105].
Additional improvements on the compression of large

FASTQ data, for example, from the Virome and Denisova

datasets can be achieved with complementary techniques
based on reordering or metagenomic composition identi�ca-
tion. Speci�cally, the reads of these datasets can be splited
according to their composition using fast assembly-free and
alignment-free methods, namely extensions of Read-SpaM
[106], in order to take advantage of the similarity read prox-
imity to improve substantially the compression.
Whichever the technology and application, the core method

that we provide here, namely for combining the speci�c DNA
models with neural networks, enables a substantial improve-
ment in the precision of DNA sequence compression-based
data analysis tools and provides a signi�cant reduction of stor-
age associated with DNA sequences.

Availability of source code and requirements
• Project name: GeCo3
• Project home page: http://github.com/cobilab/geco3
• RRID: SCR_018877
• biotools: geco3
• Operating system(s): Platform independent
• Programming language: C
• Other requirements: C compiler(e.g. gcc)
• License: GNU GPL

Availability of supporting data and materials
Supplementary material includes the information to install the
benchmark compressors, download and compress the data.

http://github.com/cobilab/geco3
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Additional supporting data andmaterials are available at the
GigaScience database (GigaDB) [107].
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Abstract
Background: The increasing production of genomic data has led to an intensified need for models that can cope
efficiently with the lossless compression of DNA sequences. Important applications include long-term storage and
compression-based data analysis. In the literature, only a few recent articles propose the use of neural networks for DNA
sequence compression. However, they fall short when compared with specific DNA compression tools, such as GeCo2.
This limitation is due to the absence of models specifically designed for DNA sequences. In this work, we combine the
power of neural networks with specific DNA models. For this purpose, we created GeCo3, a new genomic sequence
compressor that uses neural networks for mixing multiple context and substitution tolerant context models. Findings:
We benchmark GeCo3 as a reference-free DNA compressor in five datasets, including a balanced and comprehensive
dataset of DNA sequences, the Y-chromosome and human mitogenome, two compilations of archaeal and virus genomes,
four whole genomes, and two collections of FASTQ data of a human virome and ancient DNA. GeCo3 achieves a solid
improvement in compression over the previous version (GeCo2) of 2.4%, 7.1%, 6.1%, 5.8%, and 6%, respectively. As a
reference-based DNA compressor, we benchmark GeCo3 in four datasets constituted by the pairwise compression of the
chromosomes of the genomes of several primates. GeCo3 improves the compression in 12.4%, 11.7%, 10.8% and 10.1%
over the state-of-the-art. The cost of this compression improvement is some additional computational time (1.7× to 3×
slower than GeCo2). The RAM is constant, and the tool scales efficiently, independently from the sequence size. Overall,
these values outperform the state-of-the-art. Conclusions: GeCo3 is a genomic sequence compressor with a neural
network mixing approach, that provides additional gains over top specific genomic compressors. The proposed mixing
method is portable, requiring only the probabilities of the models as inputs, providing easy adaptation to other data
compressors or compression-based data analysis tools. GeCo3 is released under GPLv3 and is available for free download
at https://github.com/cobilab/geco3.
Key words: Lossless data compression, DNA sequence compression, Context mixing, Neural networks, Mixture of experts

Introduction
The DNA sequencing rate is increasing exponentially, stretch-
ing the genomics storage requirements to unprecedented di-
mensions. Several projections show that by the year 2025, be-
tween 2 to 40 exabytes of additional storage will be needed per
year [1]. Discarding a significant fraction of the data is not

a feasible alternative, given its high importance in many con-
texts, for example, in biomedical (e.g., personalized medicine)
and anthropological fields.

The representation of genomic data usually consists of DNA
sequences accompanied by additional channels, such as head-
ers, quality-scores, variant positions, among others, that vary
from type and purpose. Different file formats store the se-
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quence with subsets of this metadata, but the core remains
the DNA sequences. The compression of these sequences has
been widely approached with general- and specific-purpose
compressors, where the latter is now significantly started to
be used given its substantial compression gains.

Specialized DNA compressors achieve substantially higher
compression than general-purpose because most of these com-
pressors use various models that take into account specific
properties of DNA, such as inverted repeats and high-level
of substitutions [2, 3]. However, the efficient combination of
multiple models for DNA sequence compression is not a trivial
problem. The complexity associated with the development of
improved algorithms to combine those predictions [4] and the
specificities of the genomic data, namely, heterogeneity and
non-stationarity, delivers a highly demanding task.

In this paper, we address the problem of combining the pre-
dictions of different models to produce an improved predictive
model and, by consequence, improve the compression of DNA
sequences. Accordingly, we take the specific DNA models from
GeCo2 [3], namely the context and substitution tolerant context
models [5], and implement a mixture of these models with a
neural network.

Therefore, instead of combining only the models’ predic-
tions with the algebraic combiner of GeCo2, where weights are
attributed to each model and updated based on the model per-
formance with a particular forgetting factor, we improve the
mixture of experts using ensemble methods [6].

Specifically, we use a stacked generalization approach [7],
namely applying a neural network meta-model that takes as
inputs the outputs of other models and is trained to learn the
mapping between the models’ outputs and the actual correct
outputs. To implement the stack generalization, we use a mul-
tilayer perceptron. This network takes as inputs the probabili-
ties of each model as well as derived features [8] that represent
past model performance, while it outputs the probabilities for
each symbol, which are redirected to an arithmetic encoder.

For evaluation, we created a new DNA compression tool
(GeCo3) and benchmark it both reference-free and referential
compression. Nine datasets are employed for reference-free
and reference-based compression benchmarks, containing dif-
ferent sequence nature, lengths, and redundancy levels.

The results show a consistent improvement in the com-
pression ratio of GeCo3 over state-of-the-art DNA compres-
sors, both in reference-free and reference-based approaches,
enabling the use of GeCo3 as a long-term storage tool.

Although data compression is the natural approach for de-
creasing the storage of DNA sequences losslessly [9], it can also
be efficiently applied to sequence analysis and prediction us-
ing special-purpose compressors [10, 11, 12]. Therefore, this
improvement also enables increasing the precision of DNA se-
quence compression-based analysis tools. In order to facilitate
the exportation of the mixing method to other data compres-
sion or data analysis tools, we provide the reusable and modular
mixer code and instructions on how to integrate it easily.

In the following subsection, we provide background on
reference-free and reference-based DNA sequence compres-
sion. Then, we describe GeCo3 in detail and, finally, we provide
the benchmark results and some discussion.

DNA sequence compression
Genomes are found in the most diverse places, for example,
in extreme environments as uranium mines [13], in soft and
hard tissues [14, 15], ancient cadavers [16], marine environ-
ments [17], or deep subterranean habitats [18]. The environ-
ment and species interactions are a key for genome adaptation,
providing a wide diversity in characteristics, namely high copy

number, high heterogeneity, high level of substitution muta-
tions, or multiple rearrangements, such as fissions, fusions,
translocations, or inverted repeats [19, 20]. Additionally, since
genomic (DNA) sequences are an output of biochemical and
computational methods, these sequences may have other al-
teration sources, for example contamination [21], environmen-
tal factors [22, 23], pathogenic species included in the samples
[24, 25], and unknown sources [26]. Therefore, representing
genomic sequences requires the ability to model heterogeneous,
dynamic, incomplete, and imperfect information [27].

The above specific characteristics led to the development
of the field which studies and constructs specific genomic
data compressors [28, 29]. This field has now 27 years and
started with Biocompress [30]. Afterwards, several algorithms
emerged, mostly modeling the existence of exact or approxi-
mate repeated and inverted repeated regions, through the us-
age of simple bit encoding, context modeling, or dictionary ap-
proaches [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 53, 54, 55, 56, 57, 58, 59,
2, 60, 61, 62, 3, 63, 64, 65].

The FASTA format development permitted to standardize
the co-existence of DNA sequences (in a visible horizontal
range) along with annotations (headers). Usually, the DNA se-
quence is substantially the most abundant part of this data and,
hence, multiple tools use specialized DNA compression algo-
rithms combined with simple header coding, namely Delimi-
nate [66], MFCompress [67], and NAF [68]. Notwithstanding,
for comparison purposes with DNA sequence compressors, set-
ting a minimal header, asymptotically, increases its irrelevance
relative to the DNA sequence according to its size.

From all the previous algorithms, the most efficient accord-
ing to compression ratio in the wide diversity of DNA sequences
are XM [44], GeCo2 [3], and Jarvis [65]. These compressors ap-
ply statistical and algorithmic model mixtures combined with
arithmetic encoding. Specifically, the XM algorithm [44] com-
bines three types of experts, namely repeat models, a low-
order context model, and a short memory context model of 512
bytes. The GeCo2 algorithm [3] uses soft-blending coopera-
tion between context models and substitution tolerant context
models [5] with a specific forgetting factor for each model. The
Jarvis compressor [65] uses a competitive prediction model to
estimate, for each symbol, the best class of models to be used;
there are two classes of models: weighted context models and
weighted stochastic repeat models, where both classes of mod-
els use specific sub-programs to handle inverted repeats effi-
ciently.

Some compressors use a reference genome as an additional
input. This approach is called referential compression, and
it started to gain momentum in 2009 [69, 70]. Referential
compressors attained substantially higher compression ratios
compared to reference-free compressors. The resulting com-
pressed lengths can be hundreds or thousands of times smaller
than the original file [71, 72]. As an example, an entire human
genome of about 3GB can be compressed to 4MB by referential
compression; on the other hand, a reference-free compressor
minimizes the data to 580MB, approximately. The majority of
reference-based compression algorithms use dictionaries, re-
peats models, or context models [69, 70, 73, 74, 75, 76, 77, 55,
78, 71, 72, 79, 80, 3, 81]. From the previous compressors, the
most productive, according to compression ratio, are HiRGC
[79], GeCo2 [3], iDoComp [71], GDC2 [72] and HRCM [81]. The
HiRGC [79] is based on a 2-bit encoding scheme and an ad-
vanced greedy-matching search on a hash table. The GeCo2
[3] is described above. The iDoComp [71] uses a suffix array for
loading the reference and later applies a greedy parsing of the
target that benefits the substitutional single nucleotide poly-
morphisms that occur in higher number. The GDC2 [72] per-
forms a Ziv-Lempel factoring combined with a second-level
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factoring and followed by arithmetic coding. The HRCM [81] ex-
plores sequence information extraction, followed by sequence
information matching and further encoding.

The usage of neural networks to compress DNA sequences
is seen in DeepDNA [63]. The DeepDNA is a special purpose
DNA compressor without specialized models. It uses an hybrid
approach with a convolutional layer to capture the genome’s
local features and a recurrent layer to model long-term depen-
dencies.

In general-purpose sequence compressors, the idea of us-
ing neural networks to mix probabilities is seen in [4]. In this
case, it is called logistic mixing. Logistic mixing can be viewed
as using a neural network without hidden layers and a sim-
pler update rule than backpropagation. Other general-purpose
compressors followed the same line, namely Cmix [82] and
DeepZip [83]. The Cmix [82] uses recurrent neural networks
trained with stochastic gradient descent for context mixing.
The DeepZip [83] also uses recurrent neural networks, both as
predictors (models) and as mixers.

Although the best general-purpose compressors use com-
plex computational models, namely based on neural networks,
it has been shown that they still have lower compression capa-
bilities (5-10%) using substantially higher computational time
according to the most efficient specific compressors [83]. The
discrepancy of precision is higher when the method is designed
for fast computations [84]. The main reason that the best
general-purpose algorithms (using neural networks) are not
so efficient is that they do not use specific DNA models that
take into account the algorithmic nature of genomic sequences,
harming the model sensitivity.

In this paper, we combine the sensitivity of specific DNA
models, namely the usage of multiple context models combined
with DNA specific algorithmic models, with the power of neural
networks for context mixing.

Methods
In this section, we present the methods that describe the pro-
posed compressor (GeCo3). GeCo3 uses a combination of multi-
ple context models and substitution tolerant context models of
several order-depths. The neural network provides an efficient
combination of these models. Therefore, we describe the new
method with the main focus on the neural network, including
the inputs, updates, outputs, and training process.

Neural network structure
The model mixing is constructed using a feed-forward artifi-
cial neural network trained with stochastic gradient descent
[85]. This choice is motivated by implementation simplicity
and competitive performance compared to more complex neu-
ral networks [86]. The activation function for this network is
the sigmoid, and the loss function is the mean squared error.
The network structure is fully connected with one hidden layer,
as seen in Fig. 1b. One bias neuron is used for the input and
hidden layer, while the weights respect the Xavier initialization
according to [87]. Although we empirically tested different ac-
tivation functions (ReLu, TanH) and a higher number of hidden
layers, the most efficient structure was obtained with the pre-
vious description.

We introduced two parameters for the GeCo3 compression
tool in order to control the number of nodes of the hidden layer
and the learning rate. These parameters are written in the com-
pressed file header to ensure a lossless decompression.

Neural network inputs
The stretched probabilities of each symbol are used as inputs
to the network. These are given by

pi,j = stretch
 1 + fi,j∑
m∈Θ

1 + fi,m

 – stretch (meanp) , (1)

where fi,j is the frequency of symbol j for model i with Θ as
the set of all symbol and meanp is the mean probability of each
symbol.

We stretch the probabilities according to the work of Ma-
honey [4]. The effects of stretching can be seen in Supple-
mentary Section 1 (Stretching function plot). The inputs are
normalized for forcing the average to be close to zero by sub-
tracting the stretched mean probability, which, for the case of
DNA, we assume to be 0.25. The normalization and its motiva-
tion are explained in [88]. Stretching the probabilities has the
effect of scaling them in a non-linear way, which increases the
weights of probabilities near zero and one.

The context models, substitution tolerant context models,
and the mixed probabilities of GeCo2 are used as input mod-
els. This inclusion means that the mixing done in GeCo2 is
not discarded, but are used as an additional input to the neural
network.

We extract features from the context (the last n symbols)
and also calculate model and network performance indicators
to improve the network predictions. These are used as inputs to
the neural network. Three performance indicators are derived
for each mode according to the names hit, best, and bits. These
features correspond to three input nodes per model, as seen in
Fig. 1b.

To measure how precise model i is voting, we use

hiti,n =

hiti,n–1, if ∀x, y ∈ Θ : pi,x = pi,y
hiti,n–1 + 0.1, if ∀x ∈ Θ : pi,sym > pi,x
hiti,n–1 – 0.1, otherwise.

(2)

The symbol with the highest probability is considered the vote
of the model. Each time the model votes correctly, hit is in-
creased. If the model abstains (probabilities of each symbol
are equal), then hit remains the same; otherwise, it decreases.

For each model, we also measure if it has assigned the high-
est probability to the correct symbol, compared to all other
models. This is given by

besti,n =

besti,n–1, if ∀x, y ∈ Θ : pi,x = pi,y
besti,n–1 + 0.1, if pi,sym ≥ pk,sym
besti,n–1 – 0.1, otherwise.

(3)

The update rules for best are similar to hit and both have a do-
main of [–1, 1].

As an approximation to the average number of bits the
model would output, we use an exponential moving average

bitsi,n = α1 · (– log2(pi,sym) + log2(meanp)) + (1 – α1) · bitsi,n–1,(4)
with α1 = 0.15. This input is also normalized such that the
average value is close to zero.

In Eqs. (2), (3) and (4), pi,sym is the probability assigned by
model i to the actual symbol in the sequence. To reach these
features and their constants, we tested each with a couple of
files from one dataset and adjusted until finding a value that
produced satisfactory results.
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Figure 1. Mixer architecture: (a) High level overview of inputs to the neural network (mixer) used in GeCo3. Model1 through Modeli represent the GeCo2 model
outputs (probabilities for A, C, T, G). Perf represents the performance metrics (hit, best, bits) for each model. Freqs are the frequencies for the last 8, 16, and 64
symbols. NNBits is a moving average of the approximate number of bits that the neural network is producing. The network outputs represent the non-normalized
probabilities for each DNA symbol. (b) A fully connected neural network with one hidden layer. For illustration purposes, this neural network only has the inputs
corresponding to one model and the three features that evaluate the model performance. The frequencies of the last 8, 16, and 64 symbols, as well as the NNBits
and the bias neurons, are omitted.

The features extracted from the context are the probabili-
ties of each symbol for the last 8, 16, and 64 symbols. These
represent a total of twelve input nodes. In Fig. 1a, these nodes
are represented by FreqsL8, FreqsL16 and FreqsL64. For example,
to obtain the probabilities for the last eight symbols with the
sequence ACAGTAAA, the number of A’s is divided by the num-
ber of total symbols, so the frequency of symbol A is 5/8 and
for the other symbols is 1/8. These probabilities are then scaled
to fit between -1 and 1.

In Fig. 1a, NNBits represents the exponential moving average
of the approximate number of bits and is given by
nnbitsn = α2 · (– log2(psym) + log2(meanp)) + (1 – α2) · nnbitsn–1,(5)
with psym as the probability the network assigned to the correct
symbol and α2 = 0.5.

Updating model performance features
As an example of how to update the features, consider two sym-
bols and three models, and assume all features start equal to
zero. Model 1 assigns the probabilities [0.5, 0.5], meaning that
the model abstains and, as such, no change is made to hit or
best. Also, bits1 would be equal to zero. The probabilities for
model 2 and 3 are [0.7, 0.3] and [0.8, 0.2], respectively. Assum-
ing the models voted correctly, then hit is now 0 + 0.1 = 0.1 for
both. Because model 3 assigned the highest probability to the
correct symbol then best3 is now 0+0.1 = 0.1, and best2 becomes
–0.1. Moreover, bits2 would become bits2 = 0.15 · (– log2(0.7) +
log2(0.5)) and bits3 = 0.15 · (– log2(0.8) + log2(0.5)).

Neural network outputs and training
One node per symbol is used as output from the network. Af-
ter the result is transferred to the encoder, the network is
trained with the current symbol using the learning rate speci-
fied within the program input.

When compared to GeCo2, the results of the new mixing
contain two main differences. First, the sum of output nodes
is different from one. This outcome is corrected by dividing the
node’s output by the sum of all nodes. The second difference is
that the new approach outputs probabilities in the range ]0, 1[,

while in GeCo2, the mixing always yielded probabilities inside
the range of the models.

Results
In this section, we benchmark GeCo3 against state-of-the-art
tools in both reference-free and referential compression ap-
proaches. In the following subsection, we describe the datasets
and materials used for the benchmark, followed by the com-
parison with GeCo2 using different characteristics, number of
models, and data redundancy. Finally, we provide the full
benchmark for the nine datasets.

Datasets and materials
The benchmark includes nine datasets. Five datasets are se-
lected for reference-free compression, including
• DS1: two compilations of FASTQ data, namely a human vi-

rome (Virome) [89] and ancient DNA from a Denisova indi-
vidual (Denisova) [90];

• DS2: four whole genomes: human (HoSaC), chimpanzee
(PaTrC), gorilla (GoGoC), and the Norway spruce (PiAbC);

• DS3: two compilations of archaeal (Archaea) and viral
genomes (Virus);

• DS4: highly repetitive DNA with the human Y-chromosome
(HoSaY) and a human mitogenome collection (Mito) (pro-
posed in [91]);

• DS5: a comprehensive-balanced dataset (proposed in [92]),
containing the following sequences:
– HoSa: chromosome 4 of the reference human genome
– GaGa: chromosome 2 of G. gallus;
– DaRe: chromosome 3 of D. rerio;
– OrSa: chromosome 1 of O. sativa Japonica;
– DrMe: chromosome 2 of D. miranda;
– EnIn: genome of E. invadens;
– ScPo: genome of S. pomb;
– PlFa: genome of P. falciparum;
– EsCo: genome of E. coli;
– HaHi: genome of H. hispanica;
– AeCa: genome of A. camini;
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– HePy: genome of H. pylori;
– YeMi: genome of Yellowstone lake mimivirus;
– AgPh: genome of Aggregatibacter phage S1249;
– BuEb: genome of Bundibugyo ebolavirus.

On the other hand, to benchmark the reference-based ap-
proach, we use the complete genomes of four primates (human,
gorilla, chimpanzee, and orangutan) with a pairwise chromoso-
mal compression. Non-human chromosomes are concatenated
to match the human chromosomal fusion [93]. For each chro-
mosomal pair, the following compression was performed
• DSR1: chimpanzee (PT) using human (HS) as a reference;
• DSR2: orangutan (PA) using human (HS) as a reference;
• DSR3: gorilla (GG) using human (HS) as a reference;
• DSR4: human (HS) using gorilla (GG) as a reference.

All the materials to replicate the results, including the se-
quence identifiers, URL, filtering applications, and associated
commands, can be found at the Supplementary Section 8 (Re-
producibility).

Neural network mixing compression
In order to assess the performance of the neural network mix-
ing, we compare GeCo2 with GeCo3. To ensure a fair compari-
son, the compression modes, including the models and param-
eters, are kept identical for both programs.

In Table 1, GeCo2 and GeCo3 are compared using the com-
pression modes published in [3]. The overall compression
improves by 1.93%, and the average improvement is 1.06%.
The larger sequences (larger than ScPo) have average improve-
ments of 2.04%, while the remaining have modest improve-
ments of 0.4%. Only the two smallest sequences show negative
improvement, given the absence of enough time to train the
network. Additionally, the eight bytes that are used to trans-
mit the two network parameters to the decompressor are a sig-
nificant percentage of the total size, unlike in larger sequences.
Overall, GeCo3 improves the compression of the whole dataset
by more than 1.9%.

Neural network mixing computational resources
Regarding computational resources, the mixing modification
is 2.7× slower, as shown in Table 1. The computation was
performed on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
running Linux 5.4.0 with the scaling governor set to perfor-
mance and 32GB of RAM. The new mixing approach is always
slower because GeCo2’s mixing is still used, not as a result of
the encoder, but rather as an input to the network. The differ-
ence in RAM usage of both approaches is less than 1 MB, which
corresponds to the size of the neural network and the derived
features for each model.

The number of hidden nodes is chosen to fit in the vector
registers in order to take full advantage of the vectorized in-
structions. Accordingly, we set the number of hidden nodes as
a multiple of eight, where floating points of four bytes repre-
sent the nodes and 32 bytes represent the vector registers.

Effects of the hidden layer size on mixing
Increasing or decreasing the number of hidden nodes affects
the number of weights, and it also affects compression, as can
be seen in Fig. 2. Increasing the number of nodes increases the
compression up to a point. This point varies from sequence to
sequence; however, the abruptest gains in compression gener-
ally occur until 24 hidden nodes. As expected, increasing the
number of hidden nodes leads to an increase in execution time
and a progressive decline of compression gain. These results
are also consistent in referential compression as seen in Sup-
plementary Section 6 (Referential hidden nodes effect).

The importance of derived features on mixing
We removed the derived features from the inputs to the net-
work to assess its impact on the mixing performance. The re-
sults are present in Table 2.

When using just the models’ probabilities as inputs, the
compression is more efficient than GeCo2 by a small margin
(0.18%), while, in the majority of the sequences, there is no
improvement. By adding the result of the GeCo2 mixing as
an input, the improvement increases to 1.36%. The gain esca-

Table 1. Number of bytes needed to represent each DNA sequence for GeCo2 and GeCo3 compressors. The column mode applies to bothcompression methods, while the learning rate and the number of hidden nodes only apply to the latter.
ID GeCo2 bytes GeCo3 bytes GeCo2 secs GeCo3 secs Mode L.Rate H.Nodes
HoSa 38,845,642 37,891,143 223 598 12 0.03 64
GaGa 33,877,671 33,411,628 160 424 11 0.03 64
DaRe 11,488,819 11,189,716 64 189 10 0.03 64
OrSa 8,646,543 8,434,878 44 133 10 0.03 64
DrMe 7,481,093 7,379,992 33 99 10 0.03 64
EnIn 5,170,889 5,066,670 26 75 9 0.05 64
ScPo 2,518,963 2,511,054 11 24 8 0.03 40
PlFa 1,925,726 1,906,919 10 22 7 0.03 40
EsCo 1,098,552 1,094,298 2 8 6 0.03 40
HaHi 902,831 896,037 2 6 5 0.04 40
AeCa 380,115 377,343 1 2 5 0.04 16
HePy 375,481 373,583 1 3 4 0.04 40
YeMi 16,798 16,793 0 0 3 0.09 24
AgPh 10,708 10,715 0 0 2 0.06 16
BuEb 4,686 4,686 0 0 1 0.06 8
Total 112,744,517 110,565,455 577 1,583
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Figure 2. Number of bytes (s) and time (t) according to the number of hidden nodes for the reference-free compression of ScPo, EnIn, and DrMe sequence genomes.

lates, having an improvement of 1.73%, when using the context
models and tolerant context models as inputs and the derived
features.

Table 2. Number of bytes needed to represent each DNA sequenceusing the GeCo3 compressor with specific conditions. For the col-umn named Models, only the context models and tolerant con-text models of GeCo2 were used as network inputs. For "Models+ GeCo2", the result of GeCo2 mixing was also used as input. With"Models + Derived" the inputs for the network were the same as"Models" with the derived features added. The compression modesare the same as in Table 1.
ID Models Models + GeCo2 Models + Derived
HoSa 38,556,039 38,153,358 37,943,933
GaGa 33,758,606 33,548,929 33,444,816
DaRe 11,615,937 11,280,688 11,251,390
OrSa 8,694,790 8,517,947 8,471,715
DrMe 7,475,341 7,414,919 7,392,290
EnIn 5,183,237 5,095,391 5,087,359
ScPo 2,524,818 2,514,188 2,513,085
PlFa 1,928,282 1,912,745 1,912,176
EsCo 1,104,646 1,095,589 1,096,255
HaHi 903,019 898,280 898,145
AeCa 378,226 377,857 377,696
HePy 379,285 374,364 374,975
YeMi 16,901 16,827 16,882
AgPh 10,744 10,727 10,731
BuEb 4,694 4,696 4,698
Total 112,534,565 111,216,505 110,796,146

Scaling the number of models
GeCo2 and GeCo3 contain several modes (compression levels),
which are parameterized combinations of models with diverse
neural network characteristics. To see how the compression
of the new approach scales with more models, we introduced
mode 16 with a total of 21 models. This new mode was used to
compress the sequences of HoSa to HePy (by size order). For
the remaining sequences, the same models were used as in Ta-
ble 1. We used this approach because increasing the number of
models was incapable of improving the compression of GeCo3
and GeCo2, given the smaller dimensions of these sequences.
The number of hidden nodes was also adjusted until no tangi-
ble improvements in compression were observed.

The results in Table 3 show that the distance between the

approaches increases from 1.93% to 2.43%. The time differ-
ence reduces from 2.7× to 2.0×. This reduction is due to the
increased percentage of time spent by the higher-order con-
text models. These results show that neural network mixing
can scale with the number of models. The forgetting factors for
this new mode were not tuned, due to the use of a large num-
ber of models. Therefore, with this tuning, additional gains
can be observed. Nevertheless, this shows another advantage
of this new mixing, which is that there are only two parameters
that need tuning regardless of the number of models. As the
sequence size and the number of models increases, there is al-
most no tuning required, with the optimal values being around
0.03 for the learning rate and 64 hidden nodes.

Compressing highly repetitive and large sequences
In this subsection, we show how the reference-free compres-
sion scales with the new mixing using highly repetitive and ex-
tensive sequences, namely in the gigabyte scale. Four datasets
are selected, and the results shown in Table 3.

According to the results from Table 3, GeCo3 compresses
the highly repetitive sequences (DS3 and DS4) with an aver-
age of 6.6% compared to GeCo2 using more 1.9× time. For the
larger sequences of DS1 and DS2, GeCo3 has an average com-
pression improvement of 3.2% in the primates, 8.2% in the
spruce (PiAbC), 11.8% for the Virome and 5.2% for Denisova,
with a 2.6× average slower execution time. These results show
that the compression of longer repetitive sequences present
higher compression gains.

Reference-free sequence compression bechmark
In this subsection, we compare GeCo3 with other specialized
reference-free compressors, namely XM (v3.0) [44], GeCo2
(previously compared), Jarvis [65], and NAF [68]. As presented
in Table 3, GeCo3 achieves the best total size in three out of
five datasets. In DS3 and DS4, GeCo3 was unable to achieve the
best compression, delivered by Jarvis. These types of datasets
justify this performance. Specifically, DS3 and DS4 contain a
high number of identical sequences. These are collection of mi-
togenomes, archeal and virus where the variability is very low,
which gives an advantage to models of extremely repetitive na-
ture. Such models, also known as weighted stochastic repeat
models, are present in Jarvis, unlike in GeCo3. The reason why
we excluded the inclusion of these models in GeCo is that they
fail in scalability because the RAM increases according to the se-
quence length. For the larger datasets, DS1 and DS2, Jarvis was
unable to compress the sequences even with 32 GB of RAM. On
the other hand, GeCo3 has constant RAM, which is not affected
by the sequence length but rather only by the mode used.

Comparing GeCo3 against the second best compressor for
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each dataset, the compression gain is 6% (vs GeCo2), 5.8%
(vs GeCo2), –0.8% (vs Jarvis), –3.2% (vs Jarvis) and 1.9% (vs
Jarvis), for DS1, DS2, DS3, DS4 and DS5, respectively. For the
individual sequences in the datasets, GeCo3 compresses more
than the other compressors, except for the AgPh, BuEb, Mito,
Virus and Archaea. Tiny sequences compose the AgPh and BuEb
dataset, and the neural network does not have enough time to
learn, while Mito, Virus and Archaea have already been men-
tioned above.

Regarding computational time, GeCo3 is faster than XM per
dataset, spending on the average only 0.6× the time. Against
GeCo2, it is slower 2.1× on average, and compared to Jarvis, it
is 1.1× slower. NAF is the fastest compressor in the benchmark.
Compared to NAF, GeCo3 is between 12× slower for DS5 and 3×
for DS1.

Regarding computational memory, the maximum amount
of RAM used for GeCo2 and GeCo3 was 12.6GB, Jarvis peaked
at 32GB, XM at 8GB, and NAF used at most 0.7GB. Jarvis could
not complete the compression for DS1 and DS2 due to a lack of
memory. This issue is a limitation that was mentioned earlier.
We also note that the XM is unable to decompress some of the
sequences. In these cases, the decompressed file has the cor-
rect size, but the sequence does not fully match the original file.
NAF, GeCo2, and GeCo3 were the only compressors that have
been able to compress all the sequences losslessly, indepen-
dently from the size. The overall results of these compressors
show that GeCo3 provides a total compression improvement of
25% and 6% over NAF and GeCo2, respectively.

Compared with general-purpose compressors that achieve
the best compression ratios, such as CMIX and DeepZip, GeCo3
is approximately 100 times faster. GeCo3 also has better to-
tal compression ratio compared to CMIX (7.7%). We could not
obtain enough results with DeepZip to make a meaningful com-
parison. The table with the results can be seen in Supplemen-
tary Section 3 (Results for general purpose compressors).

Reference-based sequence compression bechmark
In this subsection, we benchmark GeCo3 with state-of-the-
art referential compressors. The comparison is done between
the genomes of different species and not for re-sequenced
genomes. Re-sequencing is applied to the same species and,
in a general case, limits the domain of applications; for exam-
ple, phylogenomic, phylogenetic, or evolutionary analysis.

To run the experiments, we used four complete genomes
of closely related species: Homo sapiens (HS), Pan troglodytes
(PT), Gorilla gorilla (GG) and Pongo abelii (PA). The compres-
sion for PT, GG, and PA was done using HS as the refer-
ence. HS was compressed using GG as a reference. Each chro-
mosome was paired with the corresponding one of the other
species. Due to the unavailability of chromosome Y for GG
and PA, comparisons that involved these chromosomes were
not made. The compressors used in this benchmark are GeCo3,
GeCo2, iDoComp [71], GDC2 [72], and HRCM [81]. The FASTA
files were filtered such that the resulting file only contained
the symbols {A, C,G, T}, and a tiny header line. HRCM needs
the line size to be limited; therefore, line breaks were added
for the files under its compression. However, this approach
prevents a direct comparison of total compressed size and
time, which we solved using the compression ratio percent-
age (output_size÷ input_size× 100) and the speed in kilobytes
per seconds (input_size÷ 1000÷ seconds_spent). For GeCo2 and
GeCo3, two approaches of referential compression are consid-
ered. One approach is based on conditional compression, where
a hybrid of both reference and target models are used. The
other approach, called relative approach, uses exclusively mod-
els loaded from the reference sequence. Both types of compres-

sion assume causality, which means that with the respective
reference sequence, the decompressor is able to decompress
without loss. The reason why we benchmark these two ap-
proaches is that there are many sequence analysis applications
for both approaches.

The results are presented in Table 4, showing the to-
tal compression ratio and speed for the four compar-
isons. The total compression ratio is the total_output_size ÷
total_input_size× 100 and the total speed is total_input_size÷
1000 ÷ total_seconds_spent. The results show GeCo3 achiev-
ing the best compression ratio, both in relative and conditional
compression. The latter shows improved compression capabil-
ities, with average improvements of 11%, 35%, 38% and 50%
over GeCo2, iDoComp, GDC2 and HRCM, respectively. This
comes at a cost of being the slowest. The average increase
in time over GeCo2, iDoComp, GDC2 and HRCM is 1.7×, 9.8×,
2.6× and 7.3×, respectively. Compared with GeCo2, the total
improvement for PT, PA, GG, and HS is 12.4%, 11.7%, 10.8%
and 10.1%. The total improvements are similar to the aver-
age improvement per chromosome. The computational RAM
of GeCo3 is similar to GeCo2. The complete results per chromo-
some are shown in Supplementary Section 4 (Complete results
for referential compression). These show that in the majority
of pairs GeCo3 offers better compression.

In Table S7 of Supplementary Section 4, we show the results
for compression of a re-sequenced genome. In this dataset
HRCM achieves the best results, with GeCo3 trailing both in
speed (42×) and ratio (–363%). While these results show that
GeCo2 and GeCo3 are not suitable for compressing this type of
dataset, the substantial improvement over GeCo2 (20%), hint
at the possibility that the new mixer might be useful when in-
tegrated into a different type of compressor.

Estimating the cost for long term storage
To estimate the cost of long term storage, we developed a model
with the following simplifying assumptions:
• two or more copies are stored;
• compression is done once and the result is copied to the

different backup media;
• one CPU core is at 100% utilization during compression;
• the cooling and transfer costs are ignored;
• the computing platform is idle when not compressing;
• no human operator is waiting for the operations to termi-

nate.
Given the assumptions we now show the cost model:
Totalcost = Processingcost + Storagecost
Processingcost = Processingtime × Power × Energyprice
Storagecost = Ncopies × Size× Sizeprice,

where Processingtime is the total time to compress and decom-
press the sequence.

From [94], we use the single thread load subtracted by the
idle value to calculate the power (watts) a system uses during
processing. The average result for all systems is 34 watts. The
average cost of electricity in the world is 12 cents per kWh, ac-
cording to [95]. The average storage costs per GB for HDDs is
4 cents [96] and for SSDs is 13 cents [97].

Assuming 13 cents per GB and three copies, the costs for
DS1 are 11.86€, 9.54€ and 9.5€ for NAF, GeCo2, and GeCo3,
respectively. Using 4 cents per GB and three copies, GeCo2 is
more cost effective at 3.12€, followed by GeCo3 (3.46€) and
NAF (3.74€). In Fig. 3, we show the costs of storing each se-
quence in DS1 and DS2 with GeCo3 relative to NAF and GeCo2.
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Table 3. Size and time needed to represent a DNA sequence for NAF, XM, Jarvis, GeCo2, and GeCo3. For DS5, Jarvis uses the same configu-ration as in [65], for DS4 and DS3 it uses level 7. XM uses the default configuration. NAF uses the highest compression level (22). GeCo2and GeCo3 use mode 16 for DS5, except for BuEb, AgPh and YeMi which use the configurations of Table 1. For DS4 and DS3 the modelsare "-tm 3:1:1:1:0.8/0:0:0 -tm6:1:1:1:0.85/0:0:0 -tm9:1:1:1:0.85/0:0:0 -tm 12:10:0:1:0.85/0:0:0 -tm 15:200:1:10:0.85/2:1:0.85 -tm 17:200:1:10:0.85/2:1:0.85-tm 20:500:1:40:0.85/5:20:0.85", DS2 uses "-tm 3:1:1:1:0.70/0:0:0 -tm 8:1:1:1:0.85/0:0:0 -tm 13:10:0:1:0.85/0:0:0 -tm 19:500:1:40:0.85/5:20:0.85", andVirome uses "-tm 7:1:1:1:0.8/0:0:0 -tm 13:10:0:1:0.95/0:0:0 -tm 19:500:1:40:0.95/5:20:0.95". Denisova uses the same models as Virome but withinversions turned off. GeCo3 uses a learning rate of 0.03 and 64 hidden nodes for all sequences. The character ’*’ indicates the sequencewas not compressed due to an error and ’/’ due to out of memory. Results where the decompression produces different results than theinput file are appended by the character ’?’.
NAF XM Jarvis GeCo2 GeCo3

DS ID size time size time size time size time size time
Denisova 25.36 GB 25h22m * * / / 20.61 GB 23h18m 19.55 GB 71h19m
Virome 4.72 GB 6h01m * * / / 3.17 GB 8h45m 2.79 GB 24h32m1
Total 30.08 GB 31h23m * * / / 23.78 GB 32h04m 22.34 GB 95h51m
PiAbC 2.29 GB 2h45m * * / / 1.86 GB 4h02m 1.71 GB 9h21m
HoSaC 634.07 MB 38m * * / / 579.66 MB 53m12s 560.88 MB 2h14m
PaTrC 619.48 MB 37m * * / / 569.40 MB 51m40s 551.54 MB 2h08m
GoGoC 603.39 MB 36m * * / / 556.54 MB 49m57s 539.30 MB 2h04m

2

Total 4.15 GB 4h36m * * / / 3.57 GB 6h37m 3.36 GB 15h49m
Archaea 128.09 MB 7m 103.01 MB? 1h41m 96.66 MB 57m 103.70 MB 30m 97.87 MB 55m

Virus 85.51 MB 6m 63.93 MB? 1h35m 61.19 MB 1h35m 65.63 MB 29m 61.19 MB 55m3
Total 213.60 MB 14m 166.93 MB? 3h16m 157.84 MB 2h32m 169.34 MB 1h00m 159.07 MB 1h51m
Mito 35.93 MB 2m32s 28.12 MB? 47m11s 27.11 MB 16m1s 30.40 MB 11m26s 28.17 MB 21m31s

HoSaY 5.17 MB 11s 3.88 MB? 3m25s 3.93 MB 1m45s 4.08 MB 1m15s 3.85 MB 2m21s4
Total 41.10 MB 2m43s 32.01 MB? 50m36s 31.04 MB 17m46s 34.48 MB 12m41s 32.03 MB 23m52s
HoSa 41.73 MB 2m06s 38.66 MB? 29m26s 38.66 MB 4m33s 38.79 MB 11m17s 37.56 MB 22m39s
GaGa 35.57 MB 1m38s 33.83 MB? 22m20s 33.70 MB 2m38s 33.75 MB 8m43s 33.26 MB 17m38s
DaRe 12.83 MB 32s 11.17 MB? 8m59s 11.17 MB 1m32s 11.44 MB 3m40s 10.97 MB 7m32s
OrSa 9.53 MB 21s 8.48 MB? 6m39s 8.45 MB 1m14s 8.60 MB 2m37s 8.34 MB 5m17s
DrMe 7.85 MB 15s 7.53 MB? 5m01s 7.49 MB 22s 7.47 MB 1m57s 7.36 MB 3m50s
EnIn 5.87 MB 12s 5.12 MB? 3m19s 5.09 MB 36s 5.14 MB 1m37s 5.02 MB 3m12s
ScPo 2.59 MB 4s 2.53 MB 55s 2.52 MB 11s 2.52 MB 44s 2.51 MB 1m21s
PlFa 2.02 MB 4s 1.92 MB 59s 1.92 MB 10s 1.93 MB 37s 1.90 MB 1m09s
EsCo 1.15 MB 2s 1.11 MB 13s 1.10 MB 4s 1.10 MB 24s 1.09 MB 39s
HaHi 948.69 KB 2s 914.87 KB 16s 899.47 KB 2s 899.17 KB 21s 889.51 KB 34s
AeCa 396.82 KB 1s 387.00 KB 3s 380.51 KB 1s 381.29 KB 13s 376.97 KB 18s
HePy 404.55 KB 1s 384.30 KB 4s 374.37 KB 1s 375.66 KB 13s 371.62 KB 19s
YeMi 17.35 KB 1s 16.84 KB 0s 16.87 KB 0s 16.80 KB 0s 16.79 KB 0s
AgPh 11.02 KB 1s 10.71 KB 0s 10.75 KB 0s 10.71 KB 0s 10.72 KB 0s
BuEb 4.81 KB 1s 4.64 KB 0s 4.70 KB 0s 4.69 KB 0s 4.69 KB 0s

5

Total 120.94 MB 5m22s 112.07 MB 1h18m14s 111.79 MB 11m24s 112.42 MB 32m23s 109.68 MB 1h04m28s

Table 4. Total referential compression ratio and speed in kB/s. GeCo3 uses 64 hidden nodes and has 0.03 learning rate. The configurationfor GeCo2-r and GeCo3-r (relative approach) is "-rm20:500:1:35:0.95/3:100:0.95 -rm 13:200:1:1:0.95/0:0:0 -rm 10:10:0:0:0.95/0:0:0". For GeCo2-hand GeCo3-h (conditional approach) the following models where added "-tm 4:1:0:1:0.9/0:0:0 -tm 17:100:1:10:0.95/2:20:0.95". iDoComp, GDC2and HRCM use the default configuration.
HRCM GDC2 iDoComp GeCo2-r GeCo3-r GeCo2-h GeCo3-h

DSR ID ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed
1 HSxPT 6.29 2,006 5.01 841 4.78 2,430 4.16 527 3.65 296 4.02 374 3.52 224
2 HSxPA 15.27 1,260 12.24 382 11.31 1,891 7.51 513 6,57 294 7.26 367 6.41 222
3 HSxGG 8.80 1,691 7.06 588 6.70 2,201 5.58 516 4.96 293 5.43 369 4.84 222
4 GGxHS 9.48 1,773 8.11 712 7.80 2,332 6.43 558 5.81 301 5.77 389 5.19 230

Total 9.96 1,635 8.11 580 7.66 2,195 5.92 529 5.26 296 5.62 375 4.99 225
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Figure 3. Relative ratio and cost of GeCo3 compared with NAF and GeCo2 for sequences in DS1 and DS2. Higher relative ratios represent greater compression
improvements by GeCo3. The cost is calculated assuming 13 cents per GB and the storage of three copies. The red dashed line shows the cost threshold. Cost points
above the line indicate that GeCo3 is more expensive. Denisova32h represents the results of running the Denisova sequence with 32 instead of 64 hidden nodes.

As hinted by Fig. 2, we also show that the cost of compress-
ing the Denisova sequence is improved when using 32 instead
of 64 hidden nodes. The reduction of hidden nodes leads to a
negligible drop in compression ratio (5.2% to 4.9% vs GeCo2),
but a substantial time decrease (3.1× to 2.4× vs GeCo2).

These results use the average costs, though given the vari-
ability of electricity prices, CPU power efficiency and storage
costs, the analysis would need to be done for each specific case.

Discussion
In essence, this article considers the GeCo2 as a base, collecting
its specific DNA models, and augments the mixture of models
by using a neural network. The primary outcome is a new ef-
ficient tool, GeCo3. The results show a compression improve-
ment at the cost of longer execution times and equivalent RAM.

For the evaluated datasets, this approach delivers the best
results for the most significant and the highest repetitive se-
quences. One of the reasons for this is that for small sequences,
the network spends a significant percentage of time adjusting.
Moreover, we show the importance of selecting and deriving
the appropriate network inputs as well as the influence of the
number of hidden nodes. These can be used to increase com-
pression at the cost of higher execution times.

Compared to other state-of-the-art compressors, this ap-
proach is typically slower, but achieves better compression ra-
tios both in reference-free and referential compression. Nev-
ertheless, the compression times can be reduced by decreasing
the number of hidden nodes while still improving the ratio.

The GeCo3 reference-free results, show an improvement of
25%, and 6% over NAF and GeCo2, respectively. In reference-
based compression, GeCo3 is able to provide compression gains
of 11%, 35%, 38%, and 50% over GeCo2, iDoComp, GDC2, and
HRCM, respectively.

The time trade-off and the symmetry of compression-
decompression establish GeCo3 as a non-appropriate tool for
on-the-fly decompression. Tools such as NAF [68] are effi-
cient for this purpose, namely because the computational de-
compression speed is very high, which for industrial usage is
mandatory. The purposes of tools such as GeCo3 are in another
domain, namely long-term storage and data analysis.

In particular, the results suggest that long-term storage of
extensive databases, for example, as proposed in [98], would
be a good fit for GeCo3.

The steady rise of analysis tools based on DNA sequence
compression is showing its potential, with increasing applica-
tions and surprising results. Some of the applications are the
estimation of the Kolmogorov complexity of genomes [99], re-
arrangements detection [100], sequence clustering [101], mea-
surement of distances and phylogenetic trees computation
[102], and metagenomics [12].

The main advantage of using efficient (lossless)
compression-based data analysis is non-overestimation.
Many analysis algorithms include multiple thresholds that
use a consensus value for what is considered balanced and
consistent, leaving space for overestimation. The problem is
that using a consensus or average parameter for a specific
analysis may overtake the limit of the estimation balance.
Since data compression needs the appropriate decompressor
to ensure the full recovery of the data, the compressor
acts under a boundary that ensures that the limit is never
overpassed (Kolmogorov complexity). This property is critical
in data analysis because the data in use may be vital and
sensitive, mainly when multiple models are used. Without a
channel information limit and an efficient mixing model, the
information that is embedded in the probabilities estimation
of each model transits to the model choice.

The mixing method used to achieve these results assumes
only that probabilities for the symbols are available. Because
of this, it permits to be easily exported to other compressors or
compressed-based data analysis tools that use multiple models.
GeCo3 shows what compression improvements and execution
times can be expected when using neural networks for the mix-
ture of experts in DNA sequence compression.

This paper highlights the importance of expert mixing. Mix-
ing has applications in all areas where there is the uncertainty
of outcomes, and many expert opinions are available. This
ranges from compression to climate modeling and, in the fu-
ture, possibly the creation of legislation. While more tradi-
tional methods, such as weighted majority voting, are more ef-
ficient and can achieve accurate results, neural networks show
promising results. With the development of specialized hard-
ware instructions and data-types to be included in general-
purpose CPUs [103, 104], neural networks should become an
even more attractive option for expert mixing.

One of the possible reasons this approach has higher com-
pression than GeCo2 is due to the mixing output not being
constrained by the inputs. By comparing the histograms in
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Figure 4. Comparison of histograms using the EnIn (Entamoeba invadens) and OrSa (Oryza sativa) genome sequences and the GeCo2 and GeCo3 as data compressors.
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Fig. 4 for the sequence EnIn and OrSa (two of the sequences
with higher gains), we can verify that GeCo3 appears to cor-
rect the models’ probabilities greater than 0.8 to probabilities
closer to 0.99. Therefore, in some way, it is betting more if
at least four in five chances are accomplished. Referential his-
tograms are presented in Supplementary Section 7 (Referential
histograms); these are similar to the ones presented here.

Another improvement is due to the higher percentage of
symbols inferred correctly. For dataset five (DS5), GeCo3 has
an average improvement of 1.5% in the number of symbols in-
ferred correctly, where only the smallest sequence has a lower
hit rate than GeCo2. Supplementary Section 2 (Percentage of
symbols guessed correctly), presents the table of hit rate per
sequence.

For referential compression, we show a complexity profile
in Fig. 5. This profile reveals that GeCo3 consistently outputs a
lower number of bits per symbol. The gains appear to be larger
in places of higher sequence complexity, namely in the higher
Bps regions. These regions are typically where rapid switching
between smaller models should occur, suggesting that the neu-
ral network mixer can adapt faster than the approach used in
GeCo2. Supplementary Section 5 (Referential complexity pro-
files), presents two additional complexity profiles with similar
nature.

Finally, the training is maintained during the entire se-
quence. Because, we found that doing early stopping leads to
worse outcomes. This characteristic might be due to the advan-
tages of over-fitting for non-stationary time series reported in
[105].

Additional improvements on the compression of large
FASTQ data, for example, from the Virome and Denisova

datasets can be achieved with complementary techniques
based on reordering or metagenomic composition identifica-
tion. Specifically, the reads of these datasets can be splited
according to their composition using fast assembly-free and
alignment-free methods, namely extensions of Read-SpaM
[106], in order to take advantage of the similarity read prox-
imity to improve substantially the compression.

Whichever the technology and application, the core method
that we provide here, namely for combining the specific DNA
models with neural networks, enables a substantial improve-
ment in the precision of DNA sequence compression-based
data analysis tools and provides a significant reduction of stor-
age associated with DNA sequences.

Availability of source code and requirements
• Project name: GeCo3
• Project home page: http://github.com/cobilab/geco3
• RRID: SCR_018877
• biotools: geco3
• Operating system(s): Platform independent
• Programming language: C
• Other requirements: C compiler(e.g. gcc)
• License: GNU GPL

Availability of supporting data and materials
Supplementary material includes the information to install the
benchmark compressors, download and compress the data.

http://github.com/cobilab/geco3
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Additional supporting data and materials are available at the
GigaScience database (GigaDB) [107].
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Dear Editor:

We are pleased to submit the manuscript entitled “Efficient DNA sequence compression
with Neural Networks” for consideration for publication in GiGaScience as a Technical
note.

The increasing production of genomic data has led to an intensifying need for models
that can cope efficiently with DNA sequences lossless representation both for storage and
compression-based data analysis.

Only a few recent articles propose the use of Neural Networks for DNA sequence com-
pression. However, they fall short when compared with specific DNA compression tools,
such as GeCo2. This limitation is given by the absence of models specifically designed
to DNA sequences, for example, the high level of substitutions, rearrangements, contam-
ination, and data heterogeneity.

In this work, for the first time, we combine the power of Neural Networks with spe-
cific DNA models, proposing a new efficient DNA sequence compressor (GeCo3) both
for reference-free and reference-based compression.

We benchmark GeCo3 in eight extensive, fair and diverse datasets achieving a substan-
tial improvement over the state-of-the-art, specifically of 2.4%, 6%, 4%, and 5.9% for
reference-free, and 12.4%, 11.7%, 10.8% and 10.1% for reference-based compression.
The cost is computational time (2.4× slower that GeCo2) that is minimized for sequences
in the GigaByte or higher scales. The RAM is constant, and the tool scales efficiently,
independently from the sequence size.

The tool and results are accompanied by a portable code package, requiring only the
probabilities of the models as inputs, providing easy exportation to other data compressors
or compression-based data analysis tools.
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