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Model parameterization and assumptions 31	

The population-level model is listed in the main text in Eq. 1-4, with the expression for 32	

R0 listed in Eq. 5 and the thirteen parameters listed in Table 2. Seven parameters were 33	

modeled as temperature independent. The input rate of susceptibles (fS) and infecteds (fI) 34	

was determined by experimental conditions and the prevalence of infections in the stocks 35	

from which exposed individuals were introduced into the experiment (fS = 3.535 d-1 fI = 36	

0.465 d-1). Twelve of the ~170 individuals were harvested every three days; therefore, 37	

harvesting rate (h) was set to 0.0235 d-1. Environmental spore mortality was set to equal 38	



the rate at which we removed medium (3 of the 35L / 3 days): g = 0.0286 d-1. Infected 39	

corpse degradation rate (𝜃), which does not affect R0 but affects the timing of how 40	

quickly spores are released into the environment, was set to 0.1 d-1. This is the average 41	

degradation rate in an independent experiment that we conducted, where we visually 42	

assessed the time point at which the Daphnia gut was completely degraded (mean 43	

degradation rate = 0.108 d-1, standard deviation = 0.0659; Kirk et al. unpublished data). 44	

We note that this value (0.108 d-1) was averaged across nine experimental temperatures 45	

(5°C - 32°C) and that the experiment used Daphnia of varying sizes, and while 46	

degradation did increase with temperature, we did not use MTE to model it, as the 47	

parameter does not appear in the R0 equation (Eq. 5) and therefore does not affect the 48	

critical transition temperature to an epidemic. Maximum recruitment rate (y) was set to 49	

1.33 d-1 to allow for population abundances to remain around the carrying capacity K, 50	

which was set to 170 to mirror the approximate abundances in the experiment (Fig. S1). 51	

Finally, since we did not measure Daphnia length (which can be used to infer Daphnia 52	

size and mass) in the experimental populations, we assumed a length of 2.7mm for the 53	

large individuals that were sampled based on previous observations of our stock 54	

populations. We explored the effects of this assumption using further simulations and did 55	

not observe any large changes in model predictions (Fig. S2). 56	

To capture parameters that scaled with temperature we used five different 57	

parameterizations of MTE functions. Contact rate (c) was modeled using a Sharpe-58	

Schoolfield function (Schoolfield et al. 1981) with only an upper temperature threshold 59	

(Kirk et al. 2019, Fig. 1), and standardized to the volume of the container (35L) with 60	

Daphnia size set to 2700µm. The probability of infection after contact (s) arises from a 61	



Sharpe-Schoolfield model with upper and lower temperature thresholds that predicts the 62	

infection rate within the host, as well as how long the parasite remains in contact with the 63	

host (residence time of the parasite in the gut), which in turn is determined by Daphnia 64	

filtration rate (i.e. c), algae concentration, and the size of the Daphnia (Kirk et al. 2019, 65	

Fig. 1). Previously, we modeled natural mortality using a two-parameter Weibull 66	

distribution in which the hazard can change through time depending on the shape 67	

parameter (Kirk et al. 2018). Since we did not track individuals through time in this 68	

model, we here used a constant hazard rate (µ). To obtain this value for each temperature, 69	

we simulated our MTE Weibull model, using Sharpe-Schoolfield functions for both 70	

parameters, to predict the natural survival curve for an uninfected individual at each 71	

temperature. From this curve, we found the time point at which survival probability is 0.5 72	

(i.e. the median survival) and used this as the expected lifespan. Finally, we set natural 73	

mortality rate (µ) in our model to be 1 / predicted lifespan.  74	

We also used the Sharpe-Schoolfield function to model equilibrium parasite 75	

abundance within the host, which rises quickly from zero to ~160 parasite clusters near 76	

10°C, and then slowly decreases as temperature increases before approaching zero 77	

clusters near 30°C (Kirk et al. 2018, Fig. 1). Since equilibrium abundance of the parasite 78	

can take months to approach in the 10 - 13.5°C temperature range (Kirk et al. 2018), we 79	

modeled infection load in our experiment as a proportion of the equilibrium abundance. 80	

We used observed infection loads from our experiment to find the average proportion of 81	

equilibrium abundance in this temperature range: 0.182. This infection load temperature 82	

function was then used to predict the parasite-induced mortality rate (a), parasite 83	

shedding rate (l) and the number of spores in the host when it dies (w) for each 84	



temperature. Parasite-induced mortality rate (a) was set to the product of infection load 85	

and 5.12x10-6, the per-parasite added mortality previously estimated (Kirk et al. 2018). 86	

We note that because we did not track individuals through time, per-parasite added 87	

mortality is constant for an infected individual and cannot change through time, though it 88	

can change with the shape parameter in Kirk et al. (2018). For l and w, which both relate 89	

to parasite spores rather than parasite clusters, we assume that a spore cluster has twenty-90	

four spores, which is generally the average that we observe in the lab (between 16 and 32 91	

spores per clusters). For l, we assumed that when a parasite cluster bursts, half of the 92	

twenty-four spores are released into the environment while the other twelve remain in the 93	

host (to either re-infect or die), and that this bursting process occurs every seven days. 94	

We note that Refardt and Ebert (2006) estimate that the parasite may burst approximately 95	

every three days at room temperature, but we assume here that this takes significantly 96	

longer in our 10 – 13.5°C range since within-host parasite growth rate is depressed (Kirk 97	

et al. 2018). We refer readers to the main text for implications of modeling these rates as 98	

functions of temperature. 99	



 100	

Fig. S1. Daphnia magna abundances in experimental populations. Blue and red points and lines represent 101	
populations in constant 10.0°C and warming conditions respectively. Points represent the mean of three 102	
counts for each population, and error bars represent the maximum and minimum value from these three 103	
counts. 104	
 105	

Model sensitivity to assumptions 106	

We explored how sensitive our model results are to five different assumptions: 1) 107	

infection load proportion of equilibrium abundance, 2) Daphnia size, 3) spores per 108	

cluster, 4) cluster burst time, and 5) the number of spores released out of the host per 109	

cluster. Assumptions were tested by simulating our model 250 times (without 110	

demographic stochasticity) in which we allowed parameters to take a value from along 111	

uniform distributions (with replacement) in which the median is the value used for the 112	

main analysis, and upper and lower range limits are our best estimates at realistic ranges 113	

for the parameter values (see Table S1). While changing the assumptions incorporated 114	

more variation, our results were generally robust across the entire parameter space (Fig. 115	

S2).  116	



We also investigated the effects of sampling noise on our results, as we sampled a 117	

subset of the population (twelve individuals) on each sampling day. We simulated the 118	

model in a deterministic framework 250 times, and then used a binominal sampling 119	

process to randomly select twelve individuals every three days. This process captures the 120	

sampling noise observed in the warming samples well, but somewhat overestimates the 121	

sampled prevalence in the constant 10°C populations (Fig. S3). 122	

 123	
 124	
Table S1. Range of parameter values used in simulations to test model sensitivity to assumptions. 125	

 Lower range limit Main text value Upper range limit 

Parasite load as proportion of   

equilibrium parasite abundance 

0.132 0.182 0.232 

Parasite cluster burst time 4.5 d-1 7 d-1 9.5 d-1 

Spores per cluster 16 24 32 

Proportion of spores released 

into environment per cluster 

0.25 0.50 0.75 

Daphnia length 2500 µm 2700 µm 2900 µm 

 126	

 127	



 128	

 129	

Fig. S2. Sensitivity to model assumptions. Blue (top panel) and red lines (bottom panel) represent mean 130	
disease prevalence for constant 10.0°C and warming conditions, respectively, across 250 simulations that 131	
sample from the parameter space. The shaded red region in the bottom panel represents the 95% confidence 132	
interval under warming conditions.  The small shaded blue region in the top panel represents the 95% 133	
confidence interval, but is not visible due to the parameter assumptions having negligible effects on disease 134	
prevalence at 10°C. The yellow, dashed vertical line represents the temperature/time point at which the 135	
MTE model predicts R0 > 1 for warming conditions. 136	
 137	
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 138	

Figure S3. Effects of sampling noise. Blue and red lines represent 250 random samples from deterministic 139	
simulation of the model. Grey lines represent experimental data for constant 10.0°C (top panel) and 140	
warming populations (bottom panel) respectively. 141	
 142	
 143	
 144	
 145	
Observed versus predicted prevalence  146	
 147	
The goal of this work was not to specifically quantify model performance, but rather to 148	

leverage an experimental system to provide a proof of principle that the MTE approach 149	

can be used to predict warming-induced disease emergence. Nevertheless, below we 150	

provide observed versus model predicted values of disease prevalence for our four 151	

warming populations. We note that observed prevalence values are discretized at only six 152	
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different levels due to sampling (i.e. 0/12 infected, 1/12 infected… up to 5/12 infected), 153	

while the model predicts prevalence continuously as it is averaged across our 250 154	

stochastic simulations. R2 values ranged from 0.297 – 0.533 across the four warming 155	

populations.  156	

 157	
Figure S4. Experimentally observed versus model predicted values of prevalence for the four warming 158	
populations. R2 values are provided for each population. 159	

 160	

 161	

 162	

 163	

 164	

 165	



R0 formulation 166	

In our R0 formulation (equation 5 of the main text, reproduced as Eq. S1 here), the 167	

first term in parentheses represents the total number of spores produced per infected 168	

individual, on average.  169	

𝑅!(𝑇) = 	'
𝜆(𝑇)

𝜇(𝑇) + 𝛼(𝑇) + ℎ
+ 𝜔(𝑇) ∗

(𝜇(𝑇) + 𝛼(𝑇))
(𝜇(𝑇) + 𝛼(𝑇) + ℎ)

/'
𝜒(𝑇) ∗ 𝜎(𝑇) ∗ 𝑆"#

𝛾
/ 

Eq. S1 

 170	

In this first term, !(#)
%(#)&'(#)&(

 represents the number of spores shed by an infected 171	

individual during their lifetime, and 𝜔(𝑇) ∗ (%(#)&'(#))
(%(#)&'(#)&()

 represents the number of spores 172	

released by an infected individual after they die, weighted by the fraction of infected 173	

hosts that remain in the system until death and are not harvested prior. 174	

The second term in parentheses represents the probability a spore infects a new host 175	

as opposed to being lost via medium removal, and has two key assumptions: 176	

1) Spores that are ingested but do not infect the host are expelled, re-enter the water 177	

column, and remain viable; 178	

2) The rate of spore loss from the water column due to ingestion and subsequent 179	

infection is very small compared to spore loss via media removal; i.e., 𝜎𝜒𝑆 << 𝛾. 180	

Regarding assumption 1, to our knowledge, there have been no studies in this host – 181	

parasite system that investigate the proportion of spores that remain viable after passing 182	

through the host gut. However, evidence from a similar system with this same host and a 183	

bacterial parasite, Daphnia magna – Pasteuria ramosa, shows that the parasite is not 184	

killed if it fails to infect the host (King et al. 2013). Moreover, based on our observations 185	

working with this system, we believe that at least a large proportion of spores must 186	



remain viable after passing through the host gut. This is because an average sized 187	

Daphnia filters ~1ml of medium per hour (Kirk et al. 2019), meaning that the dense 188	

populations we maintain under lab conditions (~200 hosts/2L at 20C) should filter 189	

through all of their medium in their mesocosm every 10 hours. If spores not causing 190	

infection were destroyed upon ingestion, this scenario would lead to very low levels of 191	

spores in the medium resulting in little or no infection in the population, which is not 192	

concordant with the high levels of infection prevalence we regularly observe in our stock 193	

populations (47% prevalence, ref: this study). Moreover, we know that new viable spores 194	

are released after host cell lysis within the anterior of the Daphnia gut. These spores then 195	

must pass through the remainder of the gut before entering the environment, implying 196	

that passage through the gut does not kill spores. Finally, microsporidian spores are 197	

generally durable, and have been shown to survive months of winter in other Daphnia – 198	

microsporidian systems (Ebert 2005).  199	

With the assumption that ingested spores that do not cause infection remain viable 200	

after passing through the gut, the probability that a spore causes an infection is  201	

[𝜎𝜒𝑆 (𝜒𝑆 + 𝛾)⁄ ] ∗ ∑ [(1 − 𝜎)𝜒𝑆 (𝜒𝑆 + 𝛾)⁄ ])*
)+,                   Eq. S2 202	

where 𝜒	is the filtrate rate, 𝜎 is the probability that an ingested spore causes infection, S is 203	

the abundance of susceptible hosts, and 𝛾 is the rate of medium exchange. This equation 204	

represents the sum of the probabilities that a spore infects a host upon its first ingestion 205	

(𝑖 = 1), or that it passes through the gut on its first ingestion and infects a host the 206	

second time it is ingested (𝑖 = 2), or that it passes through the host gut for the first two 207	

ingestions and infects a host on its third ingestion (𝑖 = 3), and so on.  Via the formula for 208	

the sum for a geometric power series the equation becomes 209	



 210	

[𝜎𝜒𝑆 (𝜒𝑆 + 𝛾)⁄ ] ∗ [1 − (1 − 𝜎)𝜒𝑆 (𝜒𝑆 + 𝛾)⁄ ]-.           Eq. S3 211	

which simplifies to 212	

𝜎𝜒𝑆 (𝜎𝜒𝑆 + 𝛾)⁄                   Eq. S4 213	

We therefore assume there are only two ultimate fates for a spore: either it is ingested 214	

and infects (at rate 𝜎𝜒𝑆) or it is removed from the system via medium exchange (at rate 215	

𝛾). Additionally, spores could of course also die in the environment, but microsporidian 216	

spores are highly durable and we assume their death rate is negligible over the timescale 217	

of the experiment as we have noted in the main text.  218	

Under the approximation that 𝜎𝜒𝑆 ≪ 𝛾, we arrive at the expression for the second 219	

parenthesis for R0: 𝜎𝜒𝑆 𝛾⁄ , but as an approximation rather than exactly correct. 220	

This assumption that 𝜎𝜒𝑆 ≪ 𝛾 is strongly supported for our system, as we know that 𝜎 is 221	

very small (Kirk et al. 2019). For example, at 12°C, 𝜎𝜒𝑆=0.000018 d-1, while 𝛾 is 222	

constant across temperature and equals 0.0286 d-1. This means that spore loss from 223	

medium exchange (𝛾) is nearly 1600x larger than spore loss from infection (𝜎𝜒𝑆) at this 224	

temperature, and the assumption that 𝜎𝜒𝑆 ≪ 𝛾 is valid. Because of this, if we look at the 225	

temperature range of the experiment (10°C -13.5°C), there is no discernible difference 226	

between predictions from the simpler R0 expression (Eq. 5) that assumes spore loss only 227	

from medium removal (black line; Fig. S2) compared to a more complicated expression 228	

that explicitly accounts for removal of spores from infection (dashed blue line; Fig. S5). 229	



 230	

Fig. S5. Comparing R0 expressions in relation to temperature, with (black line) and without 231	
(dashed blue line) the assumption that spore loss from infection is negligible compared to spore 232	
loss from medium removal. The temperature range of our experiment was 10.0°C – 13.5,  233	
 234	
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