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1. Derivation

Again, we note that N is the number of individuals
in the sample, R is the total offspring produced by all
in-sample individuals, T is the total exposure time con-
tributed by all in-sample individuals, ri is the number of
offspring produced by individual i, ti is the exposure time
of individual i, r̄i = R

T ti is the expected number of off-
spring that individual i would have produced if RS rates

were equal across all individuals in the population, r̂i = ri
R

is the share of reproduction held by individual i, and fi-
nally t̂i = ti

T is the share of exposure time contributed

by individual i. We begin with the definition of M̌(r, t)
introduced in the main text:

M̌(r, t) = N2

R2
1
N

N∑
i=1

(ri − r̄i)2 (1a)

= N2

R2
1
N

N∑
i=1

(ri − R
T ti)

2 (1b)

= N2

R2
1
N

N∑
i=1

(ri −Rt̂i)2 (1c)

Eq. 1(c) can then be expanded as follows (by linearity of
finite sums):

M̌(r, t) = N2

R2

[
1
N

N∑
i=1

(ri)
2 − 2 1

N

N∑
i=1

(rit̂iR) + 1
N

N∑
i=1

(Rt̂i)
2
]

(2)

Next, we note that the definition of a variance (McElreath
and Boyd, 2008, pp. 335) is: var(Y ) = E[Y 2]−E[Y ]2, and
the definition of a covariance (McElreath and Boyd, 2008,
pp. 336) is: cov(Y,X) = E[Y X] − E[Y ]E[X]. So, we can
write Eq. 2 in a more compressed notation as:

M̌(r, t) = N2

R2

[
(var(r) + R2

N2 )− 2(cov(r,Rt̂) + R2

N2 ) (3a)

+ (var(Rt̂) + R2

N2 )
]

= N2

R2

[
var(r) + var(Rt̂)− 2cov(r,Rt̂)

]
(3b)

Now, we note from McElreath and Boyd (2008, pp.
336) that the slope of the regression line of Y on X is:
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β(Y,X) = cov(Y,X)
var(X) . So we can write Eq. 3(b) as:

M̌(r, t) = N2

R2

[
var(r) + var(Rt̂)− 2β(r,Rt̂)var(Rt̂)

]
(4)

Here, we note the assumption that the conditional ex-
pected value of r given normalized exposure time t̂ is:
E[ri|t̂i = x] = Rx. In other words, we assume that repro-
ductive success, r, is on average proportional to exposure
time t with a proportionality constant equal to the mean
RS rate, RT : r ∼ R

T t, or equivalently: r ∼ Rt̂ . This means

that we can evaluate Eq. 4 when: β(r,Rt̂) = 1. This
yields:

M̌(r, t) = N2

R2

[
var(r) + var(Rt̂)− 2var(Rt̂)

]
(5a)

= N2

R2

[
var(r)− var(Rt̂)

]
(5b)

Eq. 5(b) indicates that M̌(r, t) can be understood as a
normalized variance in RS after subtracting out the vari-
ance in RS owed to variance in exposure time to risk of
RS.5

In fact, factoring out var(r) from both terms in brack-
ets in Eq. 5(b), yields Eq. 6(a). Then, noting that
var(E[Y |X])

var(Y ) = corr(Y,X)2 (see Bowsher and Swain, 2012,

SI pp. 3-4), and that var(E[r|t̂]) = var(Rt̂), we see that:

M̌(r, t) = N2

R2

[
var(r)

(
1− var(Rt̂)

var(r)

)]
(6a)

M̌(r, t) = N2

R2

[
var(r)

(
1− corr(r,Rt̂)2

)]
(6b)

Here, corr(Y,X)2 is the coefficient of determination, which
measures the fraction of variance in Y explained by the re-
gression of Y on X. Eq. 6(b) therefore shows that M̌(r, t)
can be understood as the standardized residual fraction of
variance in r that is not explained by the (slope=1) regres-10

sion of observed RS on the RS expected given the observed
exposure time data and an assumption of equal RS rates.

Finally, the “law of total variance” (Blitzstein and
Hwang, 2019, pp. 434) states that: var(Y ) =
E[var(Y |X)]+var(E[Y |X]). Translating this into our vari-
ables, we have: var(r) = E[var(r|t̂)] + var(E[r|t̂]). Slight
rearranging, yields: E[var(r|t̂)] = var(r) − var(Rt̂). So M̌
can be understood as a standardized conditional variance:

M̌(r, t) = N2

R2

[
var(r)− var(Rt̂)

]
(7a)

= N2

R2

[
E[var(r|t̂)]

]
(7b)

2. Estimation of age-specific RS

2.1. Elasticity model

The basic derivation of M assumes that the risk of re-
production is independent of age—or equivalently, that all
years in the life course contribute equally to risk of repro-
ductive success. In some populations, especially human
populations, however, this assumption is likely to be vio-
lated. If we assume that the relationship between age and

expected reproductive success over a time interval can be
measured using an elasticity parameter, β ∈ (0, 1), where:

E[ri|ai, bi] = α(bβi − a
β
i ) (8)

then we can write a more general definition for M̌(r, t) as
M̌(r, a, b, β), where ai is the age of individual i at first
observation and bi the age at death or censor. This is:

M̌(r, a, b, β) = N

N∑
i=1

(
r̂i −

bβi −a
β
i∑N

j=1(bβj−a
β
j )

)2

(9)

Note that Eq. 9 reduces to the original expression for 15

M̌ given in the main text as β → 1, since b1i − a1
i is

by definition the same quantity as ti. In other words,
when there are no diminishing returns to age, then β = 1
and M̌(r, t) = M̌(r, a, b, β). In the basic formulation of
M̌ , if reproductive rates were equal, the expected number 20

of offspring produced by individual i would be equal to
r̄i = Rt̂i = R

T ti. In the generalized version of M̌ , if repro-
ductive rates were equal across all individuals within an
age-class, but the value of each year of life to the produc-
tion of offspring declines with age, then we instead have 25

r̄i = R
bβi −a

β
i∑N

j=1(bβj−a
β
j )

. Each individual’s share of exposure

time is adjusted to account for diminishing returns to age,
and then these age-adjusted exposure times are normalized
to yield a share parameter. Empirically, the parameters of
the model—α and β—can be estimated on a population- 30

by-population basis using the same data needed to esti-
mate M itself.

2.2. Gaussian Process model

In many cases, the assumption that the conditional
expected value of RS is proportional to exposure time is 35

problematic. In the main paper, we provide an initial re-
laxation of this restrictive assumption by assuming that
there may be decreasing marginal returns to age. There,
we derive a more general version of M̌ that uses an elas-
ticity parameter to estimate and account for variation in 40

RS introduced due to diminishing marginal returns to age.
However, for some wildly non-linear age-specific RS curves,
even this approach is insufficient to provide a good mea-
sure of the conditional expected value of RS given a set of
exposure time data. 45

Here, we derive a substantially more general—but also
more computationally expensive—approach that uses a
Gaussian Process (GP) model (Stan Development Team,
2019, pp. 136–146) to estimate the actual functional form
of the expected age-specific RS curve. We define such a 50

model below, provide a function to fit such a model in our
SkewCalc package, and provide some comparisons of this
metric’s performance versus the simpler models using sim-
ulated data. We show that the GP model is usually more
widely applicable, but we note that this comes with the 55

trade-offs of being computationally slower to implement
and requiring a larger sample size to effectively estimate.
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2.2.1. The model

Let there be K total age classes, and then let
logisitic(φ[k])—which has a lower limit at 0, and an upper
limit at 1—be the effective exposure-time contribution of
age class k, then:

E[r[i]|a[i], b[i]] = ω

b[i]∑
k=(a[i]+1)

logisitic(φ[k]) (10)

where ω is an RS rate per unit effective exposure time,
and where a[i] ∈ N is the age of individual i at time of60

first observation (a[i] = 0 if an individual is observed from
birth) and b[i] ∈ [N > a[i]] is the age of individual i at
death or censor.

We then estimate φ using a Gaussian process:

φ = µ+ σL(Ω)φ̂ (11)

where µ is an intercept parameter, σ is a standard devia-
tion parameter, φ̂ is a vector of unit-normal random effects,65

and L(Ω) gives a factor from the Cholesky decomposition
of the correlation matrix Ω.

The parameters µ and σ have weak priors:

µ ∼ Normal(0, 1) (12)

σ ∼ Exponential(1) (13)

and the correlation matrix, Ω, is defined by:

Ω[i,j] = ρ exp
(
− ξ (i− j)2

K2

)
(14)

where the priors are generally weak, but assume that adja-
cent age categories have correlated effective exposure time
contributions:

ρ ∼ Beta(12, 2) (15)

ξ ∼ Exponential(1) (16)

2.2.2. Testing with simulated data

Fig. 1 plots our tests with simulated data. In frame
(a) we plot simulated RS by age data. We generate sim-70

ulated RS data as a function of age using three mod-
els (proportional returns, diminishing returns, and highly
non-linear returns) for each of two skew values (no skew—
based on Poisson residuals, and high skew—based on over-
dispersed, Negative Binomial residuals). Orange points75

are unweighted years lived. Black points are effective years
lived after value-weighting age/exposure time using the
age-specific RS functions in frames (b) and (c). When
RS values are generated such that they are proportional
to age (left column), then value weighting has no effect80

on the structuring of variation in exposure time (but note
that points are jittered for clarity). However, when there

are diminishing returns to age (middle column) or radi-
cally non-linear returns to age (right column), then value-
weighting years-lived can change how variation in exposure 85

time and thus RS is structured.
Frames (b) and (c) show three age-specific RS

functions—either cumulative RS (left column) or instan-
taneous RS per year (right column). The first row shows
RS being proportional to age. The second row shows di- 90

minishing RS returns to age. The final row shows a highly
non-linear function linking RS and age; in this case, there
are two periods of fertility separated by a period of in-
fertility. The black curves in frames (b) and (c) are the
curves used to generate the simulated data; these curves 95

were identical in the generative model of RS without skew
(frame b) and with skew (frame c). Posterior estimates of
these same curves are plotted using elasticity control (in
purple) and GP control (in orange) for each data set. Be-
cause exposure time data is only modeled up to a propor- 100

tion, only the shape, not the y-axis location of the function
should be evaluated here.

If RS is proportional to age, then the basic M metric,
the M metric with elasticity control, and the M metric
with GP control, all recover the correct form of the value 105

function, and generate equivalent estimates in frame (d).
If marginal RS is diminishing with age, then the basic M
metric is upwardly biased, but the M metric with either
elasticity control or GP control recovers the correct form of
the value function and produces correct estimates in frame 110

(d). If RS is a highly non-linear function of age (as it is in
the two-phase function plotted in Fig. 1), then both the
standard M metric and the M metric with elasticity con-
trol fail to recover the correct form of the value function;
the M metric with GP control, however, still recovers the 115

correct form of the value function and produces correct
estimates in frame (d).

Frame (d) shows that estimates of M with GP control
behave correctly under each simulation model, as is indi-
cated by the locations of the density distributions being 120

invariant to the age-specific RS function used to generate
the data; the “no skew” density distributions include 0 (the
value that M should take when residual RS variance con-
ditional on effective exposure time is Poisson distributed),
and the “skew” density distributions are > 0 (the value 125

that M should take when residual RS variance conditional
on effective exposure time is over-dispersed relative to a
Poisson distribution). Estimates of M based on elasticity
control work well if the age-specific RS function is either
proportional to age or exhibits diminishing marginal re- 130

turns to age. Estimates of M based on the simple pro-
portionality assumption (i.e., the most basic formulation
of M) only work well if age-specific RS is actually propor-
tional to age.

[Figure 1 about here.] 135
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3. Bayesian estimation of M

Both M̌ and M as expressed in the main text are point
estimates that do not reflect the uncertainty inherent in
their calculations. When N is small, for example, esti-
mates are less credible; downstream analysis of skew in-140

dices should account for this uncertainty.
To estimate the posterior probability distributions of

M̌ and M given a specific data set, we first define the
posterior densities corresponding to t̂, which we will denote
here as t̃. The posterior of t̃ can be defined a few different
ways: not controlling for variable returns to age (Eq. 17),
controlling for variable returns to age using an elasticity
parameter (Eq. 18), or controlling for variable returns to
age using the GP method just described (Eq. 19):

t̃[i] =
t[i]∑N
j=1 t[j]

=
b[i]−a[i]∑N

j=1(b[j]−a[j])
(17)

t̃[i] =
bβ
[i]
−aβ

[i]∑N
j=1

(
bβ
[j]
−aβ

[j]

) (18)

t̃[i] =

∑b[i]

k=(a[i]+1)
logisitic(φ[k])∑N

j=1

∑b[j]

k=(a[j]+1)
logisitic(φ[k])

(19)

While a[i] and b[i] (or, alternatively, t[i]) will often be data,
they can just as easily be parameters reflecting missing
data or partially known data (i.e., data measured with
error). The parameter β, if used, should have a weak,145

positive-constrained prior, like: β ∼ Folded-Normal(0, 1).
Next, we define the posterior density corresponding to

r̂, which we will denote here as r̃. We give r̃ a Dirichlet
prior: r̃ ∼ Dirichlet(t̃κ), where t̃κ gives weak prior support
in proportion to exposure time, and κ itself has a weak150

prior: κ ∼ Log-Normal(0, 2.5).
Then, we model the generative process of reproductive

outcomes:

r ∼ Multinomial(R, r̃) (20)

These models are fit using a variant of Hamiltonian Monte
Carlo via Stan (Stan Development Team, 2017), which
samples fast and efficiently even for large outcome vectors.

The posterior distributions of the skew indices are then155

calculated by applying the relevant function to the relevant
parameter vectors at each Monte Carlo sample.

4. SkewCalc details

We provide an R package (R Core Team, 2015)—
SkewCalc—that can calculate point estimates for160

the full set of functions described in this pa-
per: M̌(r, t) as Mraw index(r,t), M̌(r, a, b) as
Mraw index age(r,t,t0), M(r, t) as M index(r,t),
and M(r, a, b) as M index age(r,t,t0). Additionally, we
provide a function for Nonacs’ B as B index(r,t), and165

functions that can convert Nonacs’ B values into estimated
M values, Mraw index from B index(B,R,N) for the un-
adjusted variant and M index from B index(B,R,N) for
the adjusted variant. Additionally, the R package includes
a Bayesian model, fit using Stan (Stan Development 170

Team, 2017), that can estimate the posterior densities
of the above-listed measures from individual-level RS
and exposure time data: M index stan(r,t,t0). Each
function is documented with example tests, and further
details can be acquired by calling the function name with 175

a ? in R: e.g., ?M index stan.
The R package is installed with two lines of code:
library(devtools)

install github("Ctross/SkewCalc")

Further information about the SkewCalc package, includ- 180

ing a set of example workflows, is available at https:

//github.com/ctross/SkewCalc. Bug-reports, feature
requests, and other relevant comments should be made
through GitHub, where the package will be maintained.

5. Model fit diagnostics, empirical models 185

To check the fit of the Bayesian model on the em-
pirical data used to make Figure 2 of the main text, we
check traceplots, effective sample size, and r-hat. Trace-
plots (Figures 2, 3, and 4) generally indicate good MCMC
behavior—thorough mixing and apparent convergence of 190

multiple chains to the same posterior region. Estimated
effective sample size is greater than 300 across all models
and parameters, and r-hat values are less than 1.02 across
all models and parameters.

[Figure 2 about here.] 195

[Figure 3 about here.]

[Figure 4 about here.]

6. Model fit diagnostics, simulation models

To check the fit of the Bayesian model on the simulated
data used to make Figure 3 of the main text, we check tra- 200

ceplots, effective sample size, and r-hat. Traceplots (Fig-
ure 5) indicate good MCMC behavior for a sample of the
models fit in Figure 3 of the main text. We observe thor-
ough mixing and apparent convergence of multiple chains
to the same posterior region. 205

[Figure 5 about here.]
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7. Bayesian phylogenetic mixed-effects models

7.1. Model specification

Since phylogenetic methods and Markov Chain Monte
Carlo software have significantly improved in recent years,210

we use newly developed phylogenetic mixed-effect mod-
els (de Villemereuil and Nakagawa, 2014) implemented in
Stan (Stan Development Team, 2017) to conduct a sec-
ondary analysis of the K&N data. We use Stan templates
produced via brms (Bürkner, 2018) as a starting point, and215

then extend the basic Stan models generated with brms to
deal with missing data.

Let some skew metric Z in population j have the dis-
tribution:

Z[j] ∼ Normal(µ[j], σ) (21)

we then model:

µ[j] = α+ρ[S(j)]+γ[S(j)]+β̇[1]X̄[j]+. . .+β̈[1](X[j]−X̄[j])+. . .
(22)

where α is an intercept, S(j) is a function giving the
species index of population j, ρ is a vector of species-
specific random effects incorporating phylogenetic control,220

γ is a vector of species-specific random effects not incorpo-
rating phylogenetic control, β̇ are the set of regression co-
efficients for the between-species effects, and β̈ are the set
of regression coefficients for the within-species effects. We
denote the mean value of some covariate X in the species225

of population j as X̄[j], and the population-specific offset
from this species mean as (X[j] − X̄[j]).

The parameters α, β̇, and β̈ have simple priors:

α ∼ Normal(0, 5); (23)

β̇ ∼ Normal(0, 5); (24)

β̈ ∼ Normal(0, 5); (25)

The priors on the parameter vector γ have a slightly
more complex, multi-level structure:

γ ∼ Normal(0, σγ); (26)

The priors on the parameter vector ρ have a still more
complex, multi-level structure:

ρ ∼ Multivariate Normal((0, . . . , 0)′,Ω); (27)

where:
Ω = Diag(σρ)ΨDiag(σρ) (28)

and where Ψ, a correlation matrix, is defined using the
normalized phlyogenetic distance D[i,j] between groups i
and j as:

Ψ[i,j] = exp(−ζD[i,j]) (29)

A positive-constrained prior is given to ζ:

ζ ∼ Folded Normal(0, 1) (30)

Likewise, positive-constrained priors are given to σ, σγ ,
and σρ:

σ ∼ Folded Cauchy(0, 1) (31)

σγ ∼ Folded Cauchy(0, 1) (32)

σρ ∼ Folded Cauchy(0, 1) (33)

Missing data are treated as parameters (McElreath,
2016). Non-missing, continuous covariate data are first
standardized. Then, any missing continuous data points 230

are replaced in the model by parameters with Normal(0,1)
prior distributions. Any missing binary data points are
replaced in the model by parameters with Beta(1,1) prior
distributions.

7.2. Phylogenetic tree 235

A consensus phylogeny for all species in the sample was
downloaded from the 10ktrees website Version 3 (Arnold
et al., 2010). For steps 1 and 2, we followed K&N in setting
all branch lengths equal (to 1) (Figure 6a) and for our
phylogenetic mixed-effects models we used the full tree 240

with numerical branch length (Figure 6b.)

[Figure 6 about here.]

7.3. Model fit diagnostics

To check the fit of the Bayesian model on the empiri-
cal data used to make Figure 4 of the main text, we check 245

traceplots, effective sample size, and r-hat. Traceplots of
the multivariate models (Figures 7a, 7b, 7c, and 7d) gen-
erally indicate good MCMC behavior—thorough mixing
and apparent convergence of multiple chains to the same
posterior region. Estimated effective sample size in the 250

multivariate models is greater than 900 across all slope
parameters, and r-hat values are less than 1.02 across all
slope parameters in the multivariate models.

[Figure 7 about here.]

8. Full K&N reanalysis results 255

Here, we present the full description of the results, in-
cluding the robustness checks described in the main text.

8.1. Univariate associations

Table 1 presents the univariate associations between
different measures of skew and demographic and reproduc- 260

tive variables. The results for λ and MMP are not qualita-
tively different from Table 1 in K&N, excepting some devi-
ation explained by the use of a slightly different phylogeny
and different treatment of outliers. Results for B were not
presented by K&N, but are presented here. Using species 265

means, M was moderately correlated with λ (ρ=0.32), and
MMP (ρ=0.30), and strongly correlated with B (ρ=0.91),
due to the consistently small sample sizes of males.
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[Table 1 about here.]

In our analysis, there was no significant association be-270

tween B or M and male group size. There was, however,
a significant association between female group size and B.
Since B and M were not available for as many species as
λ or MMP, we repeated the analyses after restricting the
dataset to species where all measures were available (Table275

2). The results from these analyses are not qualitatively
different from the main analysis.

[Table 2 about here.]

8.2. Multivariate associations

Table 3 shows the results of multiple regression mod-280

els testing the associations between different skew indices
and other variables (Table 2 in K&N). Here, MMP and B
show significant negative relationships with male number.
When restricting the sample to species for which all skew
indices were available (Table 4), all skew measures except285

M show a significantly negative effect of male group size
on skew. Female group size shows a significant negative
relationship with maximum mating proportion and B.

[Table 3 about here.]

[Table 4 about here.]290

8.3. Intra-specific analysis

K&N reported step-wise multiple regression models
showing significant relationships between male group size
and both λ and MMP, and no relationships between the
suite of considered skew measures and female group size or295

expected estrous overlap. We were able to reproduce these
results; moreover, our analysis finds no significant relation-
ship between M and male group size, female group size, or
expected estrous overlap (Tables 5 and 6), in comparable
models.300

[Table 5 about here.]

[Table 6 about here.]

Restricting the dataset to cases where all skew in-
dices were available (Tables 7 and 8) did not qualitatively
change these results; male number continues to have a sta-305

tistically significant relationship with λ and MMP. There
is a marginally significant relationship with B, but no sig-
nificant relationship with M .

[Table 7 about here.]

[Table 8 about here.]310
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(a) Simulated RS by age data. Orange points are unweighted years lived. Black points are effective
years lived after value-weighting using the age-specific RS functions in frames (b) or (c).
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(b) Age-specific RS curves (data, no skew).
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(c) Age-specific RS curves (data, skew).
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(d) Estimates of M from each data set using each of the three versions of age-adjustment.

Figure 1: In frame (a) we plot simulated RS by age data. We generate simulated RS data as a function of age using three models (proportional
returns, diminishing returns, and highly non-linear returns) for each of two skew values (no skew—based on Poisson residuals, and high skew—
based on over-dispersed, Negative Binomial residuals). These three models are shown in frames (b) and (c). The black curves in frames (b)
and (c) are the curves used to generate the simulated data; these curves were identical in the generative model of RS without skew (frame
b) and with skew (frame c). Estimates of these same curves are plotted using elasticity control (in purple) and GP control (in orange) for
each data set. Because exposure time data is only modeled up to a proportion, only the shape, not the y-axis location of the function should
be evaluated here. If RS is proportional to age, then the basic M metric, the M metric with elasticity control, and the M metric with GP
control, all recover the correct form of the value function, and generate equivalent estimates in frame (d). If marginal RS is diminishing with
age, then the basic M metric is upwardly biased, but the M metric with either elasticity control or GP control recovers the correct form
of the value function and produces correct estimates in frame (d). If RS is a highly non-linear function of age—as it is in the two-phase
function plotted in frames (b) and (c)—then both the standard M metric and the M metric with elasticity control fail to recover the correct
form of the value function; the M metric with GP control, however, still recovers the correct form of the value function and produces correct
estimates in frame (d).
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Figure 2: Traceplots of parameters underlying M estimates in the Kipsigis data.
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Figure 3: Traceplots of parameters underlying M estimates in the Afrocolombian data.
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Figure 4: Traceplots of parameters underlying M estimates in the Emberá data.
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Figure 5: Traceplots of parameters underlying M estimates in the central panel in the main text Figure 3, with mid-level skew and mid-level
mean RS, for three values of sample size.
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Figure 6: Phylogenetic data used in our analyses.
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Figure 7: Traceplots of parameters from the multivariate phylogentic mixed-effects models.
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Table 1: Univariate associations following K&N Table 1.

Variable Metric Slope SE DF T P
N males Lambda -0.79 0.13 25 -5.99 <0.01

N females Lambda -0.46 0.14 24 -3.33 <0.01
N copulations Lambda -0.2 0.1 22 -1.95 0.06
Breed. Seas. Lambda 0.03 0.19 22 0.15 0.88
Dur. estrous Lambda 0.13 0.14 20 0.88 0.39

Exp. estr. overlap Lambda 0 0.07 20 -0.01 1
Obs. estr. overlap Lambda 0 0.01 19 -0.09 0.93

Synchrony Lambda -0.08 0.38 12 -0.22 0.83
Male dispersal Lambda -0.36 0.25 3 -1.46 0.24

N males MMP -0.77 0.12 28 -6.59 <0.01
N females MMP -0.34 0.14 27 -2.45 0.02

N copulations MMP -0.25 0.06 22 -3.91 <0.01
Breed. Seas. MMP -0.01 0.17 23 -0.07 0.95
Dur. estrous MMP 0.12 0.13 21 0.92 0.37

Exp. estr. overlap MMP 0.01 0.07 21 0.12 0.91
Obs. estr. overlap MMP 0 0 20 -0.43 0.67

Synchrony MMP -0.3 0.32 13 -0.92 0.37
Male dispersal MMP -0.57 0.14 2 -4.14 0.05

N males B -0.1 0.1 20 -1 0.33
N females B -0.13 0.05 19 -2.4 0.03

N copulations B 0 0.04 18 -0.1 0.92
Breed. Seas. B -0.11 0.07 16 -1.57 0.14
Dur. estrous B 0.02 0.05 14 0.43 0.67

Exp. estr. overlap B 0 0.02 14 0.11 0.92
Obs. estr. overlap B 0 0 13 0.95 0.36

Synchrony B -0.02 0.13 8 -0.12 0.91
Male dispersal B 0.04 0.07 1 0.59 0.66

N males M -0.28 0.19 23 -1.44 0.16
N females M -0.14 0.17 22 -0.85 0.4

N copulations M -0.02 0.11 19 -0.19 0.85
Breed. Seas. M -0.41 0.25 20 -1.63 0.12
Dur. estrous M 0.12 0.14 18 0.81 0.43

Exp. estr. overlap M 0.09 0.1 17 0.86 0.4
Obs. estr. overlap M 0 0.01 17 -0.1 0.92

Synchrony M 0.18 0.44 11 0.4 0.7
Male dispersal M 0.21 0.37 3 0.57 0.61
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Table 2: Univariate associations with the sample restricted to species for which all four skew indices were available.

Variable Metric Slope SE DF T P
N males Lambda -0.78 0.12 23 -6.22 <0.01

N females Lambda -0.48 0.13 22 -3.66 <0.01
N copulations Lambda -0.16 0.11 20 -1.51 0.15
Breed. Seas. Lambda -0.04 0.19 20 -0.22 0.83
Dur. estrous Lambda 0.08 0.18 18 0.44 0.67

Exp. estr. overlap Lambda -0.03 0.08 18 -0.31 0.76
Obs. estr. overlap Lambda 0 0.01 15 -0.23 0.82

Synchrony Lambda -0.39 0.49 11 -0.8 0.44
Male dispersal Lambda -0.36 0.25 3 -1.46 0.24

N males MMP -0.74 0.09 24 -7.82 <0.01
N females MMP -0.42 0.1 22 -4.28 <0.01

N copulations MMP -0.21 0.07 19 -3.03 0.01
Breed. Seas. MMP -0.06 0.17 20 -0.37 0.71
Dur. estrous MMP 0.07 0.15 18 0.48 0.63

Exp. estr. overlap MMP -0.03 0.07 18 -0.36 0.72
Obs. estr. overlap MMP 0 0.01 15 -0.35 0.73

Synchrony MMP -0.37 0.4 11 -0.92 0.38
Male dispersal MMP -0.57 0.14 2 -4.14 0.05

N males B -0.1 0.1 20 -1 0.33
N females B -0.13 0.05 19 -2.4 0.03

N copulations B 0 0.04 18 -0.1 0.92
Breed. Seas. B -0.11 0.07 16 -1.57 0.14
Dur. estrous B 0.02 0.05 14 0.43 0.67

Exp. estr. overlap B 0 0.02 14 0.11 0.92
Obs. estr. overlap B 0 0 13 0.95 0.36

Synchrony B -0.02 0.13 8 -0.12 0.91
Male dispersal B 0.04 0.07 1 0.59 0.66

N males M -0.28 0.19 23 -1.44 0.16
N females M -0.14 0.17 22 -0.85 0.4

N copulations M -0.02 0.11 19 -0.19 0.85
Breed. Seas. M -0.41 0.25 20 -1.63 0.12
Dur. estrous M 0.12 0.14 18 0.81 0.43

Exp. estr. overlap M 0.09 0.1 17 0.86 0.4
Obs. estr. overlap M 0 0.01 17 -0.1 0.92

Synchrony M 0.18 0.44 11 0.4 0.7
Male dispersal M 0.21 0.37 3 0.57 0.61
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Table 3: Multiple regression models following K&N Table 2.

Variable Metric Slope SE DF T P
N males Lambda -0.38 0.19 12 -2.01 0.07

N females Lambda -0.38 0.25 12 -1.56 0.14
N copulations Lambda -0.1 0.12 12 -0.83 0.42
Breed. Seas. Lambda 0.2 0.14 12 1.46 0.17

Exp. estr. overlap Lambda 0.06 0.06 12 0.95 0.36
Male dispersal Lambda 0.54 0.27 12 2.01 0.07

N males MMP -0.46 0.16 13 -2.88 0.01
N females MMP -0.12 0.17 13 -0.69 0.5

N copulations MMP -0.19 0.07 13 -2.74 0.02
Breed. Seas. MMP 0.07 0.1 13 0.73 0.48

Exp. estr. overlap MMP 0.05 0.05 13 1.04 0.32
Male dispersal MMP 0.34 0.23 13 1.52 0.15

N males B -0.3 0.12 9 -2.46 0.04
N females B -0.22 0.15 9 -1.45 0.18

N copulations B 0.17 0.08 9 2.01 0.08
Breed. Seas. B 0.03 0.08 9 0.32 0.76

Exp. estr. overlap B 0.03 0.05 9 0.68 0.51
Male dispersal B 0.36 0.15 9 2.31 0.05

N males M -0.79 0.46 10 -1.72 0.12
N females M -0.46 0.61 10 -0.75 0.47

N copulations M 0.5 0.35 10 1.43 0.18
Breed. Seas. M 0.01 0.35 10 0.04 0.97

Exp. estr. overlap M 0.03 0.19 10 0.18 0.86
Male dispersal M 1.24 0.65 10 1.9 0.09
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Table 4: Multiple regressions with the sample restricted to species for which all four skew indices were available.

Variable Metric Slope SE DF T P
N males Lambda -0.48 0.17 10 -2.89 0.02

N females Lambda -0.5 0.22 10 -2.27 0.05
N copulations Lambda 0.06 0.13 10 0.49 0.63
Breed. Seas. Lambda 0.18 0.13 10 1.47 0.17

Exp. estr. overlap Lambda 0.06 0.07 10 0.91 0.38
Male dispersal Lambda 0.49 0.24 10 2.06 0.07

N males MMP -0.55 0.11 10 -4.77 <0.01
N females MMP -0.32 0.15 10 -2.1 0.06

N copulations MMP 0.01 0.09 10 0.06 0.95
Breed. Seas. MMP 0.08 0.09 10 0.97 0.35

Exp. estr. overlap MMP 0.04 0.05 10 0.9 0.39
Male dispersal MMP 0.35 0.16 10 2.13 0.06

N males B -0.3 0.12 9 -2.46 0.04
N females B -0.22 0.15 9 -1.45 0.18

N copulations B 0.17 0.08 9 2.01 0.08
Breed. Seas. B 0.03 0.08 9 0.32 0.76

Exp. estr. overlap B 0.03 0.05 9 0.68 0.51
Male dispersal B 0.36 0.15 9 2.31 0.05

N males M -0.79 0.46 10 -1.72 0.12
N females M -0.46 0.61 10 -0.75 0.47

N copulations M 0.5 0.35 10 1.43 0.18
Breed. Seas. M 0.01 0.35 10 0.04 0.97

Exp. estr. overlap M 0.03 0.19 10 0.18 0.86
Male dispersal M 1.24 0.65 10 1.9 0.09
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Table 5: Intra-specific analysis: male number and female number.

Variable Metric Slope SE DF T P
N males Lambda -0.18 0.05 14 -3.44 <0.01

N females Lambda 0.05 0.03 14 1.66 0.12
N males MMP -0.17 0.04 14 -3.74 <0.01

N females MMP 0.05 0.03 14 1.7 0.11
N males B -0.08 0.04 9 -1.88 0.09

N females B 0.02 0.03 9 0.9 0.39
N males M -0.17 0.15 9 -1.17 0.27

N females M 0.05 0.09 9 0.51 0.62
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Table 6: Intra-specific analysis: male number and expected estrous overlap.

Variable Metric Slope SE DF T P
N males Lambda -0.18 0.05 14 -3.57 <0.01

Exp. estr. overlap Lambda 0.02 0.01 14 1.72 0.11
N males MMP -0.16 0.04 14 -3.88 <0.01

Exp. estr. overlap MMP 0.02 0.01 14 1.76 0.1
N males B -0.08 0.04 9 -1.95 0.08

Exp. estr. overlap B 0.01 0.01 9 0.94 0.37
N males M -0.17 0.14 9 -1.24 0.25

Exp. estr. overlap M 0.02 0.04 9 0.56 0.59
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Table 7: Intra-specific analysis: male number and female number, in cases where all skew indices were available.

Variable Metric Slope SE DF T P
N males Lambda -0.2 0.06 9 -3.5 0.01

N females Lambda 0.07 0.03 9 1.93 0.09
N males MMP -0.18 0.05 9 -3.87 <0.01

N females MMP 0.06 0.03 9 2.08 0.07
N males B -0.08 0.04 9 -1.88 0.09

N females B 0.02 0.03 9 0.9 0.39
N males M -0.17 0.15 9 -1.17 0.27

N females M 0.05 0.09 9 0.51 0.62
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Table 8: Intra-specific analysis: male number and expected estrous overlap, in cases where all skew indices were available.

Variable Metric Slope SE DF T P
N males Lambda -0.19 0.05 9 -3.59 0.01

Exp. estr. overlap Lambda 0.03 0.01 9 1.96 0.08
N males MMP -0.18 0.04 9 -3.96 <0.01

Exp. estr. overlap MMP 0.02 0.01 9 2.1 0.07
N males B -0.08 0.04 9 -1.95 0.08

Exp. estr. overlap B 0.01 0.01 9 0.94 0.37
N males M -0.17 0.14 9 -1.24 0.25

Exp. estr. overlap M 0.02 0.04 9 0.56 0.59
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