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Supplementary Figure 1. Quality control metrics for included data. Violin plots of quality 
metrics (detected genes and RNA counts for each cell) showing each of the original datasets 
used for integration. a.  Quality control metrics (QC) for Reyfman et al. data 1. b. QC for the 
Human Cell Landscape lung data. c. QC for Madissoon et al. data 2. 
 



 

Supplementary Figure 2. Details on integration, annotation and UMAP layout. a. 
dbMAP embeddings of each individual batch-corrected study prior to integration and label 
transfer. b. dbMAP embedding of the Human Lung Integrated Cell Atlas. Cells were colored 
by their study of origin. Cell clusters were not particularly enriched for cells from a particular 
study, and overall integration is able to account for the weighted information from each study.  
c. Labels learned by transfer learning from Travaglini et al. annotations 
(https://doi.org/10.1101/742320). Annotation of resulting clusters and cell-type assignment 
was partly guided by these annotations. d. UMAP layout was computed on top 50 Principal 
Components after Principal Component Analysis (PCA), the default adopted workflow. 
Overall cluster configuration is similar between UMAP and dbMAP embeddings, being 
clearer that dbMAP is advantageous for the visualization of rare populations and 
differentiation trajectories, taking as example B cells, which are mapped in its differentiation 
trajectory into plasma cells, whereas UMAP embeds these clusters as completely apart 
populations. Clusters are annotated by cell type annotation. 
  



 
Supplementary Figure 3. Visualization of library size for the corrected data clusters. 
a. Left: Major cell types from the integrated atlas (alveolar, vessel, macrophages, 
fibroblasts/muscle, T cells, B and plasma cells, and mast cells) as visualized in the dbMAP 
embedding. Right: ridge plot showing the frequency distribution of detected genes per cell 
for each cell belonging to the major cell types identified. b. Violin plot representing the 
frequency distribution of detected genes per cell for each cell belonging to alveolar cell 
subclusters. 
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Supplementary Figure 4. Dotplot of clusters gene expression markers. Dot plot 
visualization of top 2 highest scoring markers per cell type. Larger circles mean a larger 
fraction of cells from a specific cell type express that gene, even though at exceptionally low 
rates. Darker circles mean the average gene expression for that gene in a specific cell-type 
is higher.  

 

 

 

  



 

 

Supplementary Figure 5. Panel of dbMAP embedded gene expression of 10 cell-type 
markers. Visualization of gene expression in dbMAP embeddings of the lung atlas. SFTPC: 
alveolar cells. C1QA: macrophages. FCN1: monocytes. GZMH: T cells. CLDN5: endothelial 
and lymph vessels cells. MS4A1: B Cells. IGLC2: Plasma cells. LUM: Fibroblasts. TFF3: 
lymph vessel and alveolar ciliated cells. TPSB2: Mast cells. It is possible to generate similar 
plots for 20,000 genes on the atlas online database. 

 

  



 

 

Supplementary Figure 6. Heatmap of cell-type markers. Heatmap of top two gene 
expression markers for each cell type cluster. For visualization, the cell number was 
downsampled by a factor of 100. Top annotations represent cell types. 
 
  



 

Supplementary Figure 7. Basal cell progeny, UMAP comparison and additional gene 
expression visualization of the alveolar epithelia. a. Basal cell differentiation dynamics. The 
star marks the start cell used in computations. Left: pseudotime ordering of single-cells. Note 
that for the basal cell progeny, pseudotime increases sharply as cells leave the start 
neighborhood. Right: differentiation potential of single-cells for the basal progeny. Note that 
cells belonging to the club-AT1 precursor cluster, some AT-signaling and pro-ciliated cells 
present with high differentiation potential, as in results from the AT2 progeny. b. UMAP 
embedding of alveolar cells. Cells are colored by their assigned cluster within the dbMAP 
analysis. Clusters are identified by overlaying annotations. c. Terminal state probabilities for the 
four identified terminal states: AT1, AT2, ciliated and mucous. d. Visualization of ACE2 (red) 
and TMPRSS2 (green) co-expression (yellow) in the dbMAP embedding of alveolar cells. As 
shown, AT1 cells most significantly co-express these genes, with fewer AT2 cells doing so. e. 
Visualization of ACE and AGT expression in the alveolar cells dbMAP embedding. f. Likewise, 
visualization of BDKRB2 expression. 
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Supplementary Tables 

 

Supplementary Table 1. Quality control inclusion criteria for cells from analyzed 
studies. Cells were filtered by a minimum and maximum threshold of detected reads and 
detected genes so as to avoid overrepresentation of doublets, scRNAseq experimental 
artifacts that lead to the recognition of multiple cells as one (i.e., two cells in a single droplet). 
Cells with high mitochondrial gene expression are associated with low-quality reads and were 
removed from analysis. Each sample from Reyfman et al. 1 and Human Cell Landscape data 
was filtered separately, while Madissoon et al. 2 data was of extreme high-quality and 
presented very low batch-effects, therefore being filtered by a jointly defined threshold. 
Travaglini et al. (https://doi.org/10.1101/742320). data was used for annotation purposes 
only, and also filtered to a jointly defined threshold. 

 
 

Reyfman et al. 

Sample 1 2 3 4 

Detected reads > 500 & < 15,000 > 1,000 & < 15,000 > 500 & < 10,000 > 500 & < 10,000 

Detected genes >500 & < 3,500 >500 & < 3,500 > 300 & < 2,500 > 300 & < 3,500 

% Mitochondrial Genes  < 20  < 10  < 10  < 10 

     

Sample 5 6 7 8 

Detected reads > 500 & < 20,000 > 500 & < 15,000 > 500 & < 15,000 > 1,000 & < 2,000 

Detected genes > 300 & < 4,500 > 300 & < 5,000 > 300 & < 4,500 >  500 & <  1,000 

% Mitochondrial Genes  < 20  < 10  < 10  < 11 

     

 

Madissoon et al. 

Detected reads 

 

>1,800 & < 35,000 

 

Detected genes 

 

> 600 & < 5,000 

 

% Mitochondrial Genes 

 

< 10 

 

     

 

Human Cell Landscape 

Sample 1 2 3 4 

Detected reads > 500 & < 1,800 > 500 & < 1,800 > 400 & < 2,000 > 200 & < 2,000 



Detected genes > 250 & < 1,000 > 200 & < 1,000 > 100 & < 1,000 > 100 & < 1,000 

% Mitochondrial Genes < 20 < 20 < 20 < 20 

     

Sample 

 

5 6 

 

Detected reads 

 

> 200 & < 1,800 > 200 & < 1,800 

 

Detected genes 

 

> 100 & < 1,000 > 100 & < 1,000 

 

% Mitochondrial Genes 

 

< 20 < 20 

 

     

 

Travaglini et al. 

Detected reads 

 

> 1,000 & < 40,000 

 

Detected genes 

 

> 600 & < 5,000 

 

% Mitochondrial Genes 

 

< 10 

 

 

 

 

  



Supplementary Table 2. Parameters used for dbMAP embedding for individual studies and 
the integrated atlas, as well as those used for UMAP embedding of the atlas. dbMAP takes 
four main parameters. During diffusion, a number N of structure components are computed 
accounting for each cell K nearest neighbors. After automatic scaling and selection of 
relevant components by eigengap analysis, a UMAP layout is generated with M as the 
effective minimum distance between embedded points and S as the effective scale of 
embedded points. Importantly, visualization parametrization can be fine-tuned by the user 
for its specific dataset due to the fast UMAP layout computation of the structure components, 
for example by changing the learning rate, although results overall are robust to small 
changes in these parameters. 

 

  Integrated Atlas Reyfman et al. Madissoon et al. Human Cell 

Landscape 

UMAP         

n_PCs 50 N/A N/A N/A 

min.dist 0.5 

spread 1 

          

dbMAP          

Computed DCs (N) 300 300 200 300 

Selected DCs (automated) 191 207 147 169 

k-nearest-neighbors (K) 50 50 15 30 

min.dist (M) 0.3 0.3 0.6 0.3 

spread (S) 2 2 1 1.5 

Learning rate 2 1.2 1 1 

 

 

 

 

 



Supplementary Table 3. Coloring thresholds for plots obtained for each gene showed in the 
analysis. Plots were first visualized with a high threshold, which was decreased as little as 
possible, so as to visualize gene expression throughout the color scale. The combined 
thresholds used for the dotplots from figures 3, 4, 5 and 6 are also shown. 

 

 

 

 

 

 

 

 

 

  

Plotting colorscale thresholds ACE2 TMPRSS2 PIKFYVE TPCN2 CTSL KNG1 KLKB1 BDKRB2 ACE BDKRB1 

DimPlots < 0.1 < 3 < 1 < 0.25 < 2 
< 

0.02 
< 0.1 < 0.3 

< 

0.1 
< 0.06 

DotPlot Fig. 3 None   

DotPlot Fig. 4   < 6 

  AGT REN AGTR1 SERPINE1 PLAT FGG SFTPC 

  

DimPlots < 1 < 1 < 0.2 < 0.1 < 0.3 < 2 < 8 

DotPlot Fig. 5 < 3   

DotPlot Fig. 6    < 5 



 

 

 

 

 

Key Resources Table.  Summary of all data and software used. 

 

 
 
 
 
 
 

Key Resources Table 

scRNAseq of human lung Sequencing technology Accession 

Reyfman et al. 10X Genomics v2 
GEO GSE122960 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122960  

Madissoon et al. 10X Genomics v2 
NCBI BIOPROJECT PRJEB31843 

https://www.tissuestabilitycellatlas.org/ 

Human Cell Landscape Microwell-seq 
GEO GSE134355 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134355  

Softwares and algorithms     

R 3.6.2 R Core https://www.r-project.org/  

Seurat 3.1.5 Stuart and Butler et al.  https://satijalab.org/seurat/ 

dbMAP v0.1 Sidarta-Oliveira and Velloso https://github.com/davisidarta/dbMAP 
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