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Appendix A 

Analysis of the 𝑛-step model for cancer 

A.1 Laplace transforms 

 We start with equation (1), the differential equations for 𝑃!(𝑎) (𝑖 = 0, 1, 2, …𝑛) 

and the initial condition: 𝑃"(0) = 1 and 𝑃#(0) = 𝑃$(0) =	. . . 𝑃%(0) = 0. Because 

differential equations are linear, Laplace transforms are useful. We define 

 𝑃/!(𝜎) = ∫ 𝑃!(𝑎)𝑒&'(𝑑𝑎
)
"  . for 𝑖 = 0, 1, 2, …𝑛.  (A.1) 

Then equation (1) becomes 

 𝜎𝑃/"(𝜎) − 1 = −𝑐"𝑃/"(𝜎) ,     (A.2a) 

 𝜎𝑃/!(𝜎) = 𝑐!&#𝑃/!&#(𝜎) − 𝑐!𝑃/!(𝜎),  for 𝑖 = 1, 2, …𝑛 − 1 (A.2b) 

 𝜎𝑃/%(𝜎) = 𝑐%&#𝑃/%&#(𝜎) .     (A.2c) 

From these, we have 

 𝑃/!(𝜎) =
#

'*+!
∏ +"

'*+"
!&#
,-"  ,  for 𝑖 = 0, 1, …𝑛 − 1 (A.3a) 

and  𝑃/%(𝜎) =
#
'
∏ +"

'*+"
%&#
,-"  .     (A.3b) 

 The general property 𝑃%(∞) = 𝑙𝑖𝑚'→":𝜎𝑃/%(𝜎); = 1 implies that all individuals 

should develop cancer if not killed by noncancer mortality factors.  
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A.2 Total mortality due to cancer and to other processes 

 Mortality due to noncancer processes is calculated as 𝑙(𝑎), the fraction of people 

who can survive until age 𝑎 multiplied by the instantaneous rate of noncancerous mortality 

𝑢 then integrated over all ages: 𝑀/ = ∫ 𝑢𝑙(𝑎)𝑑𝑎)
" . Using equation (3), this can be 

rewritten as follows:  

 𝑀/ = ∫ 𝑢>1 − 𝑃%(𝑎)?𝑒&0(𝑑𝑎
)
" = 1 − 𝑢𝑃/%(𝑢) = 1 − ∏ +"

0*+"
%&#
,-" , (A.4a) 

where we adopted the Laplace transform 𝑃/%(𝜎).  

Then the mortality due to cancer, namely the fraction of individuals who die of cancer is 

 𝑀1 = ∏ +"
0*+"

%&#
,-"  .      (A.4b) 

If we replace 𝑐, = 𝑘,𝑥 for 𝑗 = 0, 2, . . . , 𝑛 − 1, then equations (A.4a) and (A.4b) become 

equations (4a) and (4b) in the text.  

 

A.3. Mean longevity 

 Note that (−1) 2
2(
𝑙(𝑎, 𝑥) is the fraction of individuals that die from age 𝑎 within 

one time unit (Here to make the dependence on 𝑥 clear, we use 𝑙(𝑎, 𝑥) instead of 𝑙(𝑎)). 

Then the mean longevity is 

 𝑇D = ∫ 𝑎 E− 2
2(
𝑙(𝑎, 𝑥)F 𝑑𝑎)

" = ∫ 𝑙(𝑎, 𝑥)𝑑𝑎)
"   .  (A.5) 

The last term is rewritten from the middle term through the integration by parts and the 

boundary conditions: lim(→)𝑎𝑙(𝑎, 𝑥) = 0 and 𝑙(0, 𝑥) = 1. From equation (A.5), we 

have 

 𝑇D = ∫ >1 − 𝑃%(𝑎)?𝑒&0(𝑑𝑎
)
" = #

0
J1 − ∏ +"

0*+"
%&#
,-" K .  (A.6) 
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Note that this mean longevity is shorter than 1 𝑢⁄ , which is the mean longevity in the 

absence of cancer.  

 We can prove that the mean longevity 𝑇D given by equation (A.6) is a decreasing 

function of 𝑢 for 𝑛 = 1, 2, 3, . . .., based on the induction with respect to 𝑛. To indicate the 

dependence on 𝑛 explicitly, we write the mean longevity as 𝑇D%, which is given by equation 

(A.6).  

 When 𝑛 = 1, we have 

 𝑇D# =
#
0
N1 − +#

0*+#
O = #

0
∙ 0
0*+#

= #
0*+#

 ,   (A.7) 

which is a monotonically decreasing function of u.  

 Suppose that 𝑇D% is a monotonically decreasing function of u. Consider the 

equation with 𝑛 + 1: 

 𝑇D%*# =
#
0
J1 −∏ +"

0*+"
%
,-" K = #

0
J1 − +$

0*+$
∏ +"

0*+"
%&#
,-" K 

  = #
0
J1 − N1 − 0

0*+$
O∏ +"

0*+"
%&#
,-" K = 𝑇D% +

#
0*+$

∏ +"
0*+"

%&#
,-"  . (A.8) 

The last expression is a sum of two decreasing function of 𝑢. Hence, we can conclude that 

𝑇D%*# is a monotonically decreasing function of 𝑢.  

 Taken together we can conclude that 𝑇D% is a monotonically decreasing function of 

𝑢 for all 𝑛 = 1, 2, 3, ... 

 

A.4. Age-specific mortality due to cancer 

 Now we consider the mortality rate for individuals of age 𝑎. We consider many 

individuals who survive until age 𝑎. Then, ask what is the fraction of individuals that may 

die in a year (or one time unit)? Since the survivorship until age 𝑎 is 𝑙(𝑎, 𝑥), the number of 

individuals that die in unit time is (−1) 2
2(
𝑙(𝑎, 𝑥), which is the fraction among those born 
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in age 0. The fraction of this number among those survives until age 𝑎 is (−1) 23
2(

𝑙(𝑎, 𝑥)R , 

which is the instantaneous mortality at age 𝑎. From equation (3), we have 𝑙(𝑎, 𝑥) =

>1 − 𝑃%(𝑎)?𝑒0(, we have 

 (−1) 23
2(

𝑙(𝑎, 𝑥)R = (−1) 24#&5$(()8
2(

>1 − 𝑃%(𝑎)?R + 𝑢 . (A.9) 

The first term on the right-hand side is the instantaneous mortality due to cancer, which we 

denote by 𝑔1(𝑎). The second term is the instantaneous mortality due to processes other than 

cancer (e.g., food shortage, physical damage, infectious diseases, and all the other processes 

that kill an individual).  

 𝑔1(𝑎) =
+$%&5$%&(()
#&5$(()

 , 𝑔/(𝑎) = 𝑢 .  (A.10) 

The first equation is the same as equation (6) in the text. In simple situations, we have an 

explicit formula for 𝑃%&#(𝑎) and 𝑃%(𝑎). For example, when all the transition rates are 

equal, we have equations (2a) and (2b). Otherwise, we need to calculate them numerically.  

 The ratio of the first term to the sum of equation (A.10) gives the fraction of cancer 

as a mortality factor, as follows: 

 9'(()
9'(()*9((()

= +$%&5$%&(()
+$%&5$%&(()*04#&5$(()8

 .   (A.11) 

 

A.4.1 Age-specific cancer risk 𝑔1(𝑎) monotonically increases with age 𝑎 

 Equation (A.10) indicates that the age-specific cancer risk 𝑔1(𝑎) is proportional to 

the fraction of surviving individuals that are in state 𝑛 − 1, just one step before the cancer 

incidence state.  

 From equation (2a), we have 

 𝑃!(𝑎) = 𝑏!𝑎!𝑒&:;( ,     (A.12) 

where we set 𝑏! = (𝑘𝑥)! 𝑖!⁄ . Hence, we have 
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 𝑔1(𝑎) =
:;<$%&($%&

<#*<&(*..*<$%&($%&
 ,    (A.13) 

which is a monotonically increasing function of 𝑎. It increases from 𝑔1(0) = 0 to the 

asymptotic value 𝑔1(∞) = 𝑘𝑥.  

 

A.4.2. When the age-specific cancer mortality is very small (or small 𝑎) 

 If the fraction cancerous mortality is very small, we have a simple approximate 

formula equation (11) that provides a useful way to calculate step number from the cancer 

incidence data. In the model, an individual will certainly die of cancer if it is not killed by 

noncancerous processes. We hence focus on the behavior of the model with small 𝑎. Since 

𝑃"(0) = 1 and 𝑃#(0) = 𝑃$(0) = ⋯ = 𝑃%(0) = 0, the age-dependent cancerous 

mortality, 𝑔1(𝑎), given by equation (A.10) becomes 𝑔1(𝑎) ≈ 𝑐%&#𝑃%&#(𝑎) in this limit.  

 The behavior of a function for small 𝑎 is known from the behavior of the Laplace 

transform when 𝜎 is very large. The Laplace transform of 𝑃%&#(𝑎) is given by equation 

(A.3b), which becomes 

 𝑃/%&#(𝜎) =
#
'
∏ +"

'*+"
≈ #

'$
∏ 𝑐,%&$
,-"

%&$
,-"    ,   (A.14) 

when 𝜎 ≫ 𝑐, for 𝑗 = 0, 1, 2, . . , 𝑛 − 2. Because the Laplace transform of 𝑎%&# is 

(𝑛 − 1)! 𝜎%⁄ , we have  

 𝑃%&#(𝑎) =
∏ +"
$%)
"*#

(%&#)!
𝑎%&# ,     (A.15) 

which is equation (11) in text.  
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Appendix B 

 We observed the following phenomenon in the standard model: the total cancerous 

mortality 𝑀1  was low in the original population where noncancerous mortality was high 

(𝑢 = 0.2). When the animals were suddenly placed in a benign environment with smaller 

noncancerous mortality (𝑢 = 0.0667), the total cancerous mortality was enhanced. After 

many generations, the genomic error rate decreased, and the total cancerous mortality 

decreased, although the noncancerous mortality remained low (𝑢 = 0.0667). However, the 

mitigated total cancer mortality 𝑀1  in the new benign environment was still larger than the 

original value of 𝑀1 .  

 In this appendix, we provide information regarding the extensions of the model in 

several different directions; we determined whether these results still hold, and whether the 

responses of the population become stronger or weaker. We examined the following four 

aspects: (i) the effect of 𝑞, which controls the shape of the cost function to reduce the 

genomic error rate; (ii) the effect of step number 𝑛; (iii) whether the transition rate becomes 

faster as cancer progresses; and (iv) whether the fertility has a peak in an intermediate age 

and is low for both very young and very old ages.  

 We focused on their effects on total cancerous mortality. To compare the results 

with the standard model, we used the following procedure: First, we adjusted the genomic 

error rate to produce the same value of 𝑀1  as in the original environment (𝑢 = 0.2). 

Second, we reduced noncancerous mortality to 𝑢 = 0.0667, and elucidated the increase in 

𝑀1 . Third, we assessed the evolutionary adjustment of the genomic error rate 𝑥. To 

calculate this, we set the original value of the genomic error rate as 𝑥 = 0.1, and we chose 

the magnitude of cost for reducing the error rate 𝑓" to make 𝑥∗ = 0.1 the ESS in the 

original environment with 𝑢 = 0.2. In the new environment with 𝑢 = 0.0667, this value is 

no longer the ESS. We calculated the ESS value 𝑥∗ that achieves the maximum fitness 
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𝐹(𝑥). It should be smaller than the original value. We then calculated the total cancerous 

mortality 𝑀1 . Note that there are three different values of 𝑀1 .  

 

B.1 Effect of power 𝑞 on the cost function for reducing the genomic error rate  

 The shape of the cost function for reducing the genomic error rate would determine 

the response of ESS 𝑥∗ to environmental changes. Power 𝑞 controls the way the cost 

increases as 𝑥 becomes close to zero.  

 For 𝑞 = 0.5, we adjusted 𝑓" for the ESS 𝑥 to be 0.1 when 𝑢 = 0.2, in order to 

make the total cancerous mortality equal to 𝑀1 = 0.0238, the latter being the same value as 

for 𝑞 = 1.1. Then, by using this 𝑓" and	𝑞 = 0.5, we obtained the ESS 𝑥∗ as illustrated in 

Fig. S1 (see the curve labeled as 𝑞 = 0.5). The response of the ESS 𝑥∗ to the 

noncancerous mortality 𝑢, indicated in the horizontal axis, is stronger than in the case of 

𝑞 = 1.1. We also performed a similar calculation for 𝑞 = 2.0. The curve labeled as 𝑞 =

2.0 in Fig. S1 indicates that the evolutionary response of the population to the changed 

environment is weaker for 𝑞 = 2.0 than for 𝑞 = 1.1.  

 Then the decrease in the genomic error rate to the ESS value 𝑥∗ should result in a 

mitigated cancerous mortality. For example, for 𝑞 = 0.5, the ESS 𝑥 under 𝑢 = 0.0667 

is 𝑥∗ = 0.0424, which leads to the total cancerous mortality 𝑀1 = 0.0433. We found that 

the total cancerous mortality after evolutionary adjustment of 𝑥 is smaller than 𝑀1 =

0.0644, the latter being the one with the ESS 𝑥 for 𝑞 = 1.1.  

 We also performed the same calculation for 𝑞 = 2.0. The results for three different 

values of 𝑞 (𝑞 = 0.5, 1.1, and 2.0) are summarized in Table S1. These analyses indicate 

that a smaller 𝑞 allows a stronger evolutionary response of 𝑥 and larger reduction in total 

cancerous mortality 𝑀1 . 
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 However, we also found that, even this value 𝑀1 = 0.0644 is greater than 𝑀1 =

0.0238, the total cancerous mortality in the original environment with high mortality (𝑢 =

0.2). These results suggest that the cancerous mortality would be reduced by the 

evolutionary adjustment of the genomic error rate, and this response is stronger for a small 

𝑞. However, the reduced fraction of cancerous mortality was still larger than the value in the 

original population with a high noncancerous mortality.  

 

B.2 Effect of step number 𝑛  

 The step number 𝑛 differs between cancer types. In general, solid tumors tend to 

have a large 𝑛, whereas leukemia tends to have smaller 𝑛. In the standard case, we adopted 

𝑛 = 5, which corresponds to a solid tumor. In this section, we provide the results for the 

evaluation of the effect of step number on the outcome of the total cancerous mortality.  

 Consider the case in which the step number is the minimum value, 𝑛 = 1, 

implying that a single event leads to the development of malignant cancer in a patient. To 

facilitate the comparison with the standard case, we choose 𝑘 = 0.0488 so that the total 

cancerous mortality in the original environment (𝑢 = 0.2) is the same: 𝑀1 = 0.0238. We 

also maintained the same value of the original genomic error rate, 𝑥 = 0.1. Thus, we found 

𝑀1  increases when the mortality is improved to 𝑢 = 0.0667 with 𝑥 remaining 

unchanged. In Fig. S2a, the curve labeled as "before adaptation" indicates the value of 𝑀1  

when 𝑢 is reduced to the value in the horizontal axis, when the step number is 𝑛 = 1. The 

magnitude of the enhancement of 𝑀1  is smaller than in the case of 𝑛 = 5 (compare it with 

Fig. 4c). 

 Next, we consider the adaptive evolution of the genomic error rate 𝑥. To facilitate 

the situation to become comparable to the standard case, we adjusted 𝑓" so that the ESS is 

𝑥 = 0.1, the same value as in the standard case. Thus, 𝑓" = 0.0168. Subsequently, we 
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calculated the ESS value of the genomic error rate 𝑥 for different values of 𝑢. The results 

are indicated as the curve labeled as "after adaptation" in Fig. S2a. We can see that this curve 

is considerably lower than the corresponding curve in Fig. 4c for the standard case (𝑛 = 5).  

 We also performed a similar analysis for 𝑛 = 3. The results were between the 

results for 𝑛 = 1 and 𝑛 = 5 (see Fig. S2b). To compare the results, we focused on the 

values when 𝑢 = 0.0667, and listed the results in Table S2.  

 We can conclude that, when the step number 𝑛 is smaller, the total cancerous 

mortality becomes larger in the improved environment than the original value, but the 

magnitude of the enhancement was not as large as in the cases with larger 𝑛. This result is 

plausible because the enhancement of the total cancerous mortality would be caused by the 

people who reach older ages. 

 We also found that evolutionary adaptation should further reduce the total 

cancerous mortality, even for the cases with small step numbers.  

 This also suggests us that enhanced cancerous mortality observed for companion 

animals (probably for humans as well) should be more important for solid tumors (with large 

𝑛) than for leukemia (with small 𝑛).  

 

B.3 Transition rate becomes faster as the step proceeds 

 In the standard case, the rate of transition between states is the same for all 

transitions. However, there are many reasons for the first few transitions to require a 

considerably longer waiting time than the later steps. To determine the effect of the 

accelerating rate of transition, we studied a model in which the transition rates follow a 

geometric sequence: 𝑘, = 𝑘"𝑟, (𝑗 = 0, 1, 2, . . . , 𝑛 − 1) where 𝑟 > 1. The standard case 

corresponds to 𝑟 = 1.  
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 When 𝑟 = 5, we adjusted the value of 𝑘" to make 𝑀1 = 0.0238 when 𝑥 =

0.1 and 𝑢 = 0.2. We found 𝑘" = 0.2205. Then we made 𝑢 smaller than 0.2 and found 

that 𝑀1  increased. In Fig. S3, the results are illustrated by a curve labeled as "𝑟 = 5" and 

"before adaptation". The curve labeled as "𝑟 = 1" and "before adaption" is the same as the 

one in Fig. 4c. We can see that the curve with 𝑟 = 5 (an accelerating transition speed) is 

below that with equal transition rates (𝑟 = 1).  

 We then considered the evolutionary change in 𝑥. We searched for 𝑓" that makes 

𝑥 = 0.1 as the ESS in the original environment (𝑢 = 0.2). It turned out to be 𝑓" = 0.032. 

We then calculated the ESS 𝑥∗ and the corresponding total cancerous mortality 𝑀1 . The 

results for different 𝑢 are indicated by a curve labeled as "𝑟 = 5" and "after adaptation". 

We found that it is below the curve labeled as "𝑟 = 1" and "after adaptation", which is the 

same as the one in Fig. 4c. Both before adaptation and after adaptation, 𝑀1  with 

accelerating transition rates (𝑟 = 5) was lower than that with equal transition rates (𝑟 = 1). 

The direction of these shifts is the same as the results for a smaller step number 𝑛 

(illustrated in Fig. S2). We can conclude that the accelerating rate of transition between states 

has an effect similar to the reduction in the step number.  

 

B.4 Fertility depends on the age 

 In the standard case discussed in the main text, fertility was assumed to be 

independent of age 𝑎. A more realistic assumption would be that fertility is low both in very 

young age and old age, and is high in the intermediate values of 𝑎. Herein, we assume that  

 𝑚"(𝑎) = 0   if 0 ≤ 𝑎 ≤ 1,   
 𝑚"(𝑎) = 𝑚A(;(𝑎 − 1)  if 1 < 𝑎 ≤ 2, 
 𝑚"(𝑎) = 𝑚A(;   if 2 < 𝑎 ≤ 6,   (B.1) 
 𝑚"(𝑎) = 𝑚A(; (10 − 𝑎) 4⁄  if 6 < 𝑎 ≤ 10, 
 𝑚"(𝑎) = 0   if 𝑎 > 10  . 
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This imitates the situation of companion dogs, which have the highest fertility from 2 years 

to 6 years of age. In equation (9), fertility is simply 𝑚" minus 𝑓" 𝑥B⁄ , the cost for reducing 

𝑥. If we simply replaced 𝑚" in equation (9) by function (B.1), the fertility was negative for 

some ages. To avoid this problem, we may replace 𝑚" − 𝑓" 𝑥B⁄  in equation (9) by the 

following quantity 

 𝑚"(𝑎) N1 −
C# A+,-⁄

;.
O .     (B.2) 

Note that this fertility expression is the same as the one in equation (9) if 𝑚"(𝑎) = 𝑚A(;, 

and it is either positive or zero if we use equation (B.1).  

 By using this 𝑚"(𝑎) and 𝑞, we searched for the value of 𝑓" that makes 𝑥 = 0.1 

to be the ESS under 𝑢 = 0.2. We found that 𝑓" needs to be very small (𝑓" = 0.0080). 

Nest, we calculated the ESS 𝑥 for a given value of 𝑢 (𝑢 < 0.2). The results are shown in 

Fig. S4a. The evolutionary response of genomic error rate was notable for the improved 

environment (i.e. smaller 𝑢), but the magnitude of the response was very small. This is 

because the natural selection acting to remove the cancerous mortality is weak, because most 

of cancerous mortality occurs in the advanced ages where the fertility is zero.  

 We also calculated the total cancerous mortality 𝑀1 . The 𝑀1  after adaptation is 

smaller than that before adaptation (Fig S4b). However, the magnitude of the reduction is 

very small.  

 The genomic error rate after adaption under 𝑢 = 0.0667 was 𝑥∗ = 0.0932, 

which is not much different from 𝑥∗ = 0.1, the ESS value under 𝑢 = 0.2. The total 

cancerous mortality was 𝑀1 = 0.1875, which is again close to the one before adaptation: 

𝑀1 = 0.2068. We can conclude that the evolutionary response of the population to the 

improved environment (i.e. smaller 𝑢) is weak and the cancerous mortality remains high, 

probably because the natural selection acting to remove cancer is weak.   
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Table S1 Effect of 𝑞 on the total cancerous mortality 𝑀1 . The other parameters 

were 𝑚" = 1.0, and 𝑛 = 5. 

(a) 

𝑞 = 0.5 Original 
environment 

Improved 
environment 

After adaptation 

𝑢 0.2 0.0667 0.0667 

𝑥 0.1 0.1 0.0424 

𝑀1  0.0238 0.2068 0.0433 

𝑘 = 1.8, 𝑓" = 0.36. 

 

(b) 

𝑞 = 1.1 Original 
environment 

Improved 
environment 

After adaptation 

𝑢 0.2 0.0667 0.0667 

𝑥 0.1 0.1 0.0507 

𝑀1  0.0238 0.2068 0.0644 

𝑘 = 1.8, 𝑓" = 0.044.  

 

(c) 

𝑞 = 2.0 Original 
environment 

Improved 
environment 

After adaptation 

𝑢 0.2 0.0667 0.0667 

𝑥 0.1 0.1 0.0599 

𝑀1  0.0238 0.2068 0.0900 

𝑘 = 1.8, 𝑓" = 0.0031.  
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Table S2 Effect of step number 𝑛 on the total cancerous mortality 𝑀1 . The other 

parameters were 𝑚" = 1.0, and 𝑞 = 1.1. 

 

(a) 

𝑛 = 1 Original 
environment 

Improved 
environment 

After adaptation 

𝑢 0.2 0.0667 0.0667 

𝑥 0.1 0.1 0.0602 

𝑀1  0.0238 0.0681 0.0422 

𝑘 = 0.0488, 𝑓" = 0.0168.  

 

(b) 

𝑛 = 3 Original 
environment 

Improved 
environment 

After adaptation 

𝑢 0.2 0.0667 0.0667 

𝑥 0.1 0.1 0.0520 

𝑀1  0.0238 0.164 0.0577 

𝑘 = 0.808, 𝑓" = 0.0360. 

 

(c) 

𝑛 = 5 Original 
environment 

Improved 
environment 

After adaptation 

𝑢 0.2 0.0667 0.0667 

𝑥 0.1 0.1 0.0507 

𝑀1  0.0238 0.2068 0.0644 

𝑘 = 1.8, 𝑓" = 0.044.  
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Fig. S1 The ESS genomic error rate 𝑥∗ for different q. The horizontal axis represents 

noncancerous mortality 𝑢. Three curves are the ESS 𝑥∗ for different values of q. As the 

environmental condition is improved, the noncancerous mortality 𝑢 decreases, and the ESS 

𝑥∗ becomes smaller. The magnitude of this evolutionary response is stronger for a small 𝑞 

than for a large 𝑞. The parameters and the method to obtain these curves are explained in 

Appendix B.  
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Fig. S2 The total cancerous mortality 𝑀1  for different smaller step numbers 𝑛. The 

horizontal axis represents noncancerous mortality 𝑢. We show the response of 𝑀1  to the 

reduced 𝑢 for step numbers smaller than in the standard case. (a) Step number is 𝑛 = 1. (b) 

Step number is 𝑛 = 3. Explanations are provided in Appendix B.  
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Fig. S3 The total cancerous mortality for accelerating transition rates. The two curves labeled 

as "𝑟 = 1" are the same as those in Fig. 4c. The other two curves labeled as "𝑟 = 5" are the 

results when the transition rate becomes faster as the step proceeds. The procedure of 

calculation is explained in Appendix B. Parameters are as follows: 𝑘" = 0.2205 and 𝑓" =

0.032. Other parameters are the same as in the standard case: 𝑚" = 10, 𝑞 = 1.1, and 

𝑛 = 5. 
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Fig. S4 The evolutionary responses when the fertility depends on age. (a) The ESS genomic 

error rate 𝑥∗ for different noncancerous mortality 𝑢. When 𝑢 became smaller, the ESS 

genomic error rate 𝑥∗ decreased, but the magnitude of reduction was considerably smaller 

than that in the standard case (see Fig. 4b). (b) Total cancerous mortality 𝑀1  after 

adaptation of genomic error rate. 𝑀1  also decreased by the evolutionary adaptation, but the 

magnitude of reduction was smaller than that in the standard case of age-independent 

fertility. See Appendix B for explanations.  

 

 


