OMTN, Volume 22

Supplemental Information

Circular RNA circRIMS1 Acts as a Sponge

of miR-433-3p to Promote Bladder Cancer

Progression by Regulating CCAR1 Expression

Feifan Wang, Mengjing Fan, Yueshu Cai, Xuejian Zhou, Shengcheng Tai, Yanlan Yu, Hongshen Wu, Yan Zhang, Jiaxin Liu, Shihan Huang, Ning He, Zhenghui Hu, and Xiaodong Jin

Primers						
circ-RIMS1 F	TACACACTGGAGCATAATGA					
circ-RIMS1 R	AGAGTTATATTTTTCTTGTTCTGTT					
Linear RIMS1 F	AGTTGTGGTATGATAAAGTGGGACA					
Linear RIMS1 R	TTCGAGGACGTCCATCTACTCT					
GAPDH F	GTCAAGGCTGAGAACGGGAA					
GAPDH R	AAATGAGCCCCAGCCTTCTC					
Myc F	GGCCCCCAAGGTAGTTATCC					
Myc R	GTTTCCGCAACAAGTCCTCTTC					
Birc5 F	GACCCACTTATTTCTGCCACATC					
Birc5 R	GAGTACAGAGGCTGGAGTGCATT					
CCAR1 F	CTGATGGCTAGCCCTAGTATGGA					
CCAR1 R	TGCCTTTCATGCCCACTAAAA					
CEP135 F	AGTTTGAGAGGGTTGTGGTGG					
CEP135 R	TGTATCCTTCTCGTGGGAGGT					
NEGR1 F	CCTCTTAACCCTCCAAGTACAGC					
NEGR1 R	CCAGCCATCAGCACTTTCAG					
Hsa-miR-433-3p	ATCATGATGGGCTCCTCGGTGT					
Hsa-miR-3064-5p	TCTGGCTGTTGTGGTGTGCAA					
Hsa-miR-301b-5p	GCTCTGACGAGGTTGCACTACT					
Hsa-miR-892b	CACTGGCTCCTTTCTGGGTAGA					
Hsa-miR-6803-5p	CTGGGGGTGGGGGGGCTGGGCGT					
Hsa-miR-4268	GGCTCCTCCTCAGGATGTG					
Hsa-miR-6852-5p	CCCTGGGGTTCTGAGGACATG					
Hsa-miR-331-3p	GCCCCTGGGCCTATCCTAGAA					
Hsa-miR-4316	GGTGAGGCTAGCTGGTG					
Hsa-miR-1468-5p	CTCCGTTTGCCTGTTTCGCTG					
miRNA reverse	All-in-One miRNA qRT-PCR detection kit,					
	GeneCopoeia, USA					
siRNAs Targeting sequence						
Si circ-RIMS1 1#	CTTAGTCAAACAGAACAAGAA					
Si circ-RIMS1 2#	GTCAAACAGAACAAGAAAAAT					
Si circ-RIMS1 3#	TAGTCAAACAGAACAAGAAAA					
Si CCAR1 1#	CCATCACTCCTTGGAGCAT					
Si CCAR1 2#	CCACACAAACTCCAGCAAA					
Si CCAR1 3#	CCAGCAAACTATCAGTTAA					
Si CEP135 1#	TGGGTGTATACCTATGTTAATGA					
Si CEP135 2#	TTGGAAAGACATAAAGAAGAAGT					
Si CEP135 3#	CAGCAGAAAGAGATAAACTAAGT					
Si NEGR1 1#	CTGTTCATCTATGATAGTCAACT					
Si NEGR1 2#	TACAAGATTGTTGCAATTTCAGA					
Si NEGR1 3#	ATCAAGTTAAACCATACACTATC					

Table S1. The sequences of primers and oligonucleotides used in this study

miRNAs mimics					
Hsa-miR-433-3p sense	AUCAUGAUGGGCUCCUCGGUGU				
Hsa-miR-433-3p anti-sense	UAGUACUACCCGAGGAGCCACA				
Hsa-miR-301b-5p sense	GCUCUGACGAGGUUGCACUACU				
Hsa-miR-301b-5p anti-sense	CGAGACUGCUCCAACGUGAUGA				
Hsa-miR-1468-5p sense	CUCCGUUUGCCUGUUUCGCUG				
Hsa-miR-1468-5p anti-sense	GAGGCAAACGGACAAAGCGAC				
Biotinylated probes					
Biotin-circ-RIMS1	GTTATATTTTTCTTGTTCTGTTTGACTAAGCTG				
Probes for RNA Fluorescence in situ hybridization					
Hsa_circ_0132246-CY3	TTTTCTTGTTCTGTTTGACTA				
Hsa-miR-433-3p-FITC	ACACCGAGGAGCCCATCATGAT				

Table S2. Detailed information of our own 20 bladder cancer patients is listed

Patient	Age at	Gender	Grade	Т	N	М	AJCC clinical
number	surgery						stage
1	53	Male	High	T4b	N2	M0	4
2	67	Male	High	T4a	N1	M0	4
3	40	Male	High	T2b	N3	M0	4
4	52	Male	Low	Tis	N0	M0	Ois
5	58	Female	Low	Tis	N0	M0	Ois
6	59	Female	High	T1	N0	M0	1
7	78	Male	Low	Tis	N0	M0	Ois
8	81	Male	High	T1	N0	M0	1
9	68	Female	Low	Tis	N0	M0	Ois
10	66	Male	High	T1	N0	M0	1
11	68	Male	High	T2a	N0	M0	2
12	73	Male	High	T4b	N1	M0	4
13	61	Female	Low	Tis	N0	M0	Ois
14	62	Female	High	T2	N0	M0	2
15	68	Male	High	T1	N0	M0	1
16	84	Female	High	T2a	N0	M0	2
17	88	Male	High	Tis	N0	M0	Ois
18	86	Male	High	T2	N0	M0	2
19	84	Male	High	T2	N0	M0	2
20	48	Male	High	T2b	N0	M0	2

Characteristics	Number of cases	circRIMS1 expression in tumor tissue		P Value
		Low	High	
Age (year)				
<60	6	3	3	> 0.9999
≥60	14	7	7	
Gender				
Female	6	5	1	0.1409
Male	14	5	9	
T stage				
Tis-T ₁	10	8	2	0.0230
T ₂ -T ₄	10	2	8	
N stage				
N0	16	10	6	0.0867
$N_1 + N_2 + N_3$	4	0	4	
Grade				
Low	5	5	0	0.0325
High	15	5	10	

Table S3. Correlation of circRIMS1 expression with clinicopathologic features of our own bladder cancer patients

The bold P value is less than 0.05, which has statistically significant.

Table S4. Detailed information of 60 bladder cancer cas	ses for CCAR1 IHC	assay
---	-------------------	-------

Patient	Age at	Gender	Grade	Т	N	М	AJCC
number	surgery						clinical stage
1	76	Male	High	T2	N1	M0	4
2	67	Male	High	Tis	N0	M0	Ois
3	82	Male	High	Т3	N0	M0	3
4	82	Male	High	T2	N0	M0	2
5	62	Male	High	T2	N0	M0	2
6	80	Male	High	T2	N0	M0	2
7	50	Male	High	Т3	N0	M0	3
8	59	Male	High	Т3	N0	M0	3

9	66	Male	High	T2	N0	M0	2
10	76	Male	High	Т3	N0	M0	3
11	67	Male	High	T2	N0	M0	2
12	83	Male	High	T1	N0	M0	1
13	81	Male	Low	T2	N0	M0	2
14	75	Male	High	Т3	N1	M0	4
15	71	Male	High	T4	N1	M0	4
16	75	Male	High	Т3	N0	M0	3
17	72	Female	High	T2	N0	M0	2
18	66	Female	High	T2	N0	M0	2
19	67	Male	High	T2	N1	M0	4
20	58	Male	High	T1	N0	M0	1
21	77	Male	High	T1	N0	M0	1
22	68	Male	High	Т3	N0	M0	3
23	61	Male	High	T1	N0	M0	1
24	58	Female	High	Т3	N0	M0	3
25	73	Male	High	T1	N0	M0	1
26	42	Female	High	Т3	N0	M0	3
27	57	Male	High	T2	N0	M0	2
28	55	Male	High	Т3	N0	M0	3
29	75	Male	Low	T1	N0	M0	1
30	73	Male	High	Т3	N0	M0	3
31	77	Male	High	Т3	N1	M0	4
32	57	Male	High	Tis	N0	M0	Ois
33	78	Male	High	T1	N0	M0	1
34	74	Male	High	T1	N0	M0	1
35	72	Female	Low	Tis	N0	M0	Ois
36	65	Female	High	Т3	N0	M0	3
37	59	Male	Low	T4	N0	M0	3
38	75	Male	High	Т3	N0	M0	3
39	55	Male	High	Т3	N0	M0	3
40	57	Male	High	Т3	N0	M0	3
41	61	Male	High	Т3	N1	M0	4
42	79	Male	High	Т3	N0	M0	3
43	77	Male	High	T1	N0	M0	1
44	48	Male	High	Tis	N0	M0	Ois
45	72	Female	Low	Tis	N0	M0	Ois
46	85	Female	High	Т3	N0	M0	3
47	76	Male	High	T1	N0	M0	1
48	61	Male	Low	T1	N0	M0	1
49	75	Male	High	Tis	N0	M0	Ois
50	66	Female	Low	Tis	N0	M0	Ois
51	84	Male	High	Т3	N0	M0	3

52	75	Male	High	T2	N1	M0	4
53	78	Male	Low	Tis	N0	M0	Ois
54	44	Male	High	Т3	N0	M0	3
55	77	Female	High	Т3	N0	M0	3
56	71	Male	High	Т3	N0	M0	3
57	62	Male	High	T2	N0	M0	2
58	59	Male	Low	Т3	N0	M0	3
59	64	Male	Low	T2	N1	M0	4
60	67	Male	High	T1	N0	M0	1

Table S5. Corre	lation o	of CCAR1	expression	with	clinicopathologic	features	of 60	bladder
cancer patients								

Characteristics	Number of cases	CCAR1 expression	P Value	
		Low score	High score	
Age (year)				
<60	14	5	9	0.3604
≥60	46	25	21	
Gender				
Female	10	6	4	0.7306
Male	50	24	26	
T stage				
Tis-T ₁	20	15	5	0.0127
T ₂ -T ₄	40	15	25	
N stage				
N_0	52	27	25	0.7065
N_1	8	3	5	
Grade				
Low	10	8	2	0.0797
High	50	22	28	

The bold P value is less than 0.05, which has statistically significant.

Figure S1. The efficiency of siRNAs for CCAR1, CEP135 and NEGR1 in T24 and EJ. **a-c** The alterations of CCAR1, CEP135 and NEGR1 in T24 and EJ cells stably transfected with N.C. or siRNAs were determined by western blotting respectively.

Figure S2. CCAR1 is regulated by miR-433-3p. **a.** The protein level of CCAR1 of bladder cancer cells transfected miR-433-3p sponge (or N.C. sponge) or pre-miR-433-3p (or N.C.) were respectively evaluated by western blotting. **b.** T24 and EJ cells were transfected with NC or sh-circRIMS1 or cotransfected with sh-circRIMS1 and miR-433-3p sponge. CCAR1 level was detected by western blotting.