Deep learning enables sleep staging from
photoplethysmogram for patients with suspected sleep

apnea

Korkalainen H'2, Aakko J3, Duce B*®, Kainulainen S'2, Leino A2, Nikkonen S!2,
Afara I O%, Myllymaa S'2, Toyras J126, Leppanen T2

I Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
? Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
3 CGI Suomi Oy, Helsinki, Finland
4 Sleep Disorders Centre, Princess Alexandra Hospital, Brisbane, Australia
5 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane,
Australia
6 School of Information Technology and Electrical Engineering, The University of Queensland,

Brisbane, Australia

1 Supplementary material

In this study, we developed a combined convolutional and recurrent neural network to auto-
matically identify sleep stages from a photoplethysmogram signal obtained with a finger pulse
oximeter. The complete neural network structure includes a time distributed layer of the con-
volutional neural network (CNN) which is then followed by a dropout layer and a bidirectional
gated recurrent unit (GRU) layer. The neural network was trained using sequences of hundred
30-second epochs of the PPG signals downsampled to 64 Hz and overlap of 75% was used be-
tween consecutive sequences in the training set. The sequence forming protocol was repeated
until the complete PPG signals were utilized.

The following sections include the Python implementation of the models using Keras and an
example of how the model can be formed and compiled with the functions.

1.1 Python functions of the neural network

Below, the functions used to form the neural network are presented.

The combined convolutional and recurrent neural network developed in the study:
H Korkalainen , J Aakko et al. ”"Deep learning enables sleep staging from
photoplethysmogram for patients with suspected sleep apnea”

Contact information: henri.korkalainen@Quef. fi

from keras.layers import Input, ConvlD, BatchNormalization

from
from
from
from

keras.layers import Activation, MaxPoolinglD, GlobalAveragePoolinglD

keras.layers import Dense, GaussianDropout, TimeDistributed

keras.layers import Bidirectional, GRU

keras.models import Model

def build_base_cnn_model (input_size = 1920, input_channels = 1,

init_conv_kernel_size = 21, ksize = 5,
conv_stride_first = 5,
conv_stride_rest = 1,
maxpool_size = 2, maxpool_stride = 2,
act_function = "relu", fs =64):
input_size = length of a single PPG-epoch
input_channels = number of PPG channels
init_conv_kernel_size = kernel size for the first convolution layer
ksize = kernel size for the rest convolutional layers
conv_stride_first = stride for the first convolution layer
conv_stride_rest = stride for the remaining convolution layers
maxpool_size = pool size for the mar—pooling
mazpool_stride = stride size for the mar—pooling
act_function = activation function
fs = the sampling frequency
inputl = Input(shape = (input_size, input_channels), name = "input")
X = ConvlD(fs, kernel_size = init_conv_kernel_size,
strides = conv_stride_first) (inputl)

X = BatchNormalization() (x)

X = Activation(act_function) (x)

= ConvlD(fs, kernel_size = init_conv_kernel_size,

strides = conv_stride_rest) (x)

X = BatchNormalization() (x)

X = Activation(act_function) (x)

X = ConvlD(2xfs, kernel_size = ksize, strides

= MaxPoolinglD(pool_size = maxpool_size, strides = maxpool_stride) (x)

conv_stride_rest) (x)

x = BatchNormalization() (x)

X = Activation(act_function) (x)

X = ConvlD(2xfs, kernel_size = ksize, strides = conv_stride_rest)(x)

x = BatchNormalization() (x)

X = Activation(act_function) (x)

= MaxPoolinglD(pool_size = maxpool_size, strides = maxpool_stride) (x)

X = ConvlD(4xfs, kernel_size = ksize, strides = conv_stride_rest)(x)

X = BatchNormalization() (x)

X = Activation(act_function) (x)

= ConvlD(4xfs, kernel_size = ksize, strides

conv_stride_rest) (x)

x = BatchNormalization() (x)
x = Activation(act_function) (x)

out = GlobalAveragePoolinglD () (x)
model = Model (inputs = inputl, outputs = out)
return model

def build_cnn_to_rnn_model (input_size = 1920, input_channels = 1, n_categories = 3,
seq_length = None,init_conv_kernel_size = 21, ksize =5,
conv_stride_first = 5, conv_stride_rest = 1,

maxpool_size = 2, maxpool_stride = 2,
gru_units_multiplier = 4,rdo = 0.5, do = 0.3, gdo = 0.3,

act_function = "relu", fs = 64):
input_size = length of a single PPG-epoch
input_channels = number of PPG channels
n_categories = number of different sleep stages
seq_length = number of epochs in the input.
With seq_length = ’None’ the model accepts any sequence length
init_conv_kernel_size = kernel size for the first convolution layer
ksize = kernel size for the rest convolutional layers
conv_stride_first = stride for the first convolution layer
conv_stride_rest = stride for the remaining convolution layers
mazxzpool_size = pool size for the maz—pooling
mazpool_stride = stride size for the mar—pooling
gru_units_multiplier x fs = number of GRU units
rdo = recurrent dropout size
do = (forward) drop oul size
gdo = Gaussian dropout size
act_function = activation function

fs = the sampling frequency

seq_input = Input(shape=(seq_length, input_size, input_channels))

base_model = build_base_cnn_model (input_size = input_size,
input_channels = input_channels,
init_conv_kernel_size = init_conv_kernel_size,
ksize = ksize,
conv_stride_first = conv_stride_first,
conv_stride_rest = conv_stride_rest,
maxpool_size = maxpool_size,
maxpool _stride = maxpool_stride,
act_function=act_function,

fs = fs)
encoded_sequence = TimeDistributed(base_model) (seq_input)
encoded_sequence = GaussianDropout (gdo) (encoded_sequence)
encoded_sequence = Bidirectional (GRU(gru_units multiplierxfs,

return_sequences = True,

recurrent_dropout = rdo,
dropout = do))(encoded_sequence)

out = TimeDistributed(Dense(n_categories, activation = "softmax"))(encoded_sequence)

model = Model (inputs = seg_input, outputs = out)

return model

1.2 Compiling the neural network

Below, an example of how the model can be formed and compiled is presented. The input
must be a 4D tensor with shape (number of sequences, length of a single sequence, sampling
frequency * 30 s, number of channels).

cnnrnn = build_cnn_to_rnn_model (input_channels = n_channels,
n_categories = n_stages, act_function = "relu",
do = 0.3, rdo = 0.5, gdo = 0.3)

cnnrnn.compile(loss = ’'categorical_crossentropy’, optimizer =

adam’, metrics = [’accuracy’])

