Supplemental Figures and Tables

Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control

Hang Zhu^{1*}, Ying Tan^{2*}, Wenjun Du³, Yang Li¹, Sam Toan⁴, David Mui⁵, Feng Tian¹, Hao

Zhou¹

¹Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China ²Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

³*Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China* ⁴*Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812,*

USA

⁵Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

*These authors contributed equally to this work.

Correspondence to:

Dr. Hao Zhou^a (e-mail: zhouhao301@outlook.com; zhouhao@plagh.org) and Dr. Feng Tian^a (e-mail: tianfeng@126.com)

^aChinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.

Running title: PGAM5 induces cardiac I/R injury

Supplemental Figures

Supplemental Figure 1. PGAM5 is upregulated in sI/R-treated cardiomyocytes. (A) Determination of PGAM5 transcript levels by qPCR in primary cardiomyocytes exposed to sI/R. (B) Western blot analysis of PGAM5 and phospho-MLKL expression in cardiomyocytes exposed to sI/R. (C-D) Quantitative analysis of PGAM5 and phospho-MLKL levels in sI/R-treated cardiomyocytes using western blot data. Experiments were repeated three times with similar results. Data are shown as the means \pm SEM, n = 3 independent cell isolations per group. *p<0.05.

Supplemental Figure 2. PGAM5 overexpression induces cardiomyocyte necroptosis. Adenoviruses encoding PGAM5 (Ad-PGAM5) or β -gal (Ad- β -gal; control) were transfected into cardiomyocytes isolated from wild-type C57BL/6N mice. (A-B) Western blot analysis of PGAM5 expression. (C) Cell death assessment by LDH release assay. (D-F) Representative images of TUNEL and caspase-3 double staining. Experiments were repeated three times with similar results. Data are shown as the means \pm SEM, n = 3 independent cell isolations per group. *p<0.05.

Supplemental Figure 3. PGAM5 overexpression induces pro-inflammatory gene expression in cardiomyocytes. (A-B) Analysis of IL-6 and MCP1 transcript levels by qPCR in Ad-PGAM5- and Ad- β -gal-transfected cardiomyocytes isolated from WT C57BL/6N mice. Experiments were repeated three times with similar results. Data are shown as the means \pm SEM, n = 3 independent cell isolations per group. *p<0.05.

Supplemental Figure 4. PGAM5 overexpression is associated with impaired cardiomyocyte contractility and relaxation. (A-F) Analysis of mechanical properties of single, WT C57BL/6N cardiomyocytes transfected with Ad-PGAM5 or Ad- β -gal. +dL/dt: maximal velocity of shortening; -dL/dt: maximal velocity of relengthening; TPS: time-to-peak shortening; TR90: time-to-90% relengthening. Experiments were repeated three times with similar results. Data are shown as the means \pm SEM, n = 70–80 cells from 2 mice per group. *p<0.05.

Supplemental Figure 5. PGAM5 overexpression induces mitochondrial dysfunction in cardiomyocytes. Adenoviruses encoding PGAM5 (Ad-PGAM5) or β -gal (Ad- β -gal; control) were transfected into cardiomyocytes isolated from WT C57BL/6N mice. (A-B) Representative images of cardiomyocytes loaded with the mitochondrial membrane potential indicator JC-1. (C-D) Representative images depicting mitochondrial ROS (mtROS) production (MitoSOX red staining) by cultured cardiomyocytes. (E) mPTP opening rate was estimated by analyzing arbitrary mPTP opening time. Experiments were repeated three times with similar results. Data are shown as the means \pm SEM, n = 3 independent cell isolations per group. *p<0.05.

Supplemental Figure 6. PGAM5 overexpression induces mitochondrial fission in cardiomyocytes. Adenoviruses encoding PGAM5 (Ad-PGAM5) or β -gal (Ad- β -gal; control) were transfected into cardiomyocytes isolated from WT C57BL/6N mice. (A-C) Representative images of mitochondrial morphology. The average length of mitochondria and the number of cardiomyocytes with fragmented mitochondria were recorded. (D-F) Western blot analysis of p-Drp1^{S616} and p-Drp1^{S637} expression in cardiomyocytes. (G) Co-immunoprecipitation assays indicating interaction of endogenous Drp1 and PGAM5. Experiments were repeated three times with similar results. Data are shown as the means \pm SEM, n = 3 independent cell isolations per group. *p<0.05.

Supplemental Figure 7. Mitophagy is not controlled by PGAM5 in cardiomyocytes. (A-B) Western blot analysis of phospho-Fundc1^{S13} expression in cardiomyocytes transfected with Ad-PGAM5 or Ad- β -gal. (C) Western blot analysis of phospho-Fundc1^{S13} expression in control or CK2-knockdown cardiomyocytes transfected with Ad-PGAM5. (D-E) The mt-Kemia reporter assay was used to detect mitophagic activity. Experiments were repeated three times with similar results. Data are shown as the means \pm SEM, n = 3 independent cell isolations per group. *p<0.05.

Name	Catalogue number	Dilution factor
PGAM5	Abcam, #ab131552	1:1000
Drp1	Abcam, #ab184247	1:1000
p-Drp1-Ser637	Abcam, #ab193216	1:1000
OPA1	Abcam, #ab157457	1:1000
Mfn2	Abcam, #ab124773	1:1000
β-actin	Abcam, #ab8226	1:1000
MLKL	Abcam, #ab184718	1:1000
p-MLKL	Abcam, #ab196436	1:1000
Pro-caspase-3	Abcam, #ab13847	1:1000
Cleaved caspase-3	Abcam, #ab49822	1:1000
p62	Abcam, #ab109012	1:1000
Tom20	Abcam, #ab78547	1:1000
Lamp1	Abcam, #ab208943	1:1000
Funde1	Abcam, #ab224722	1:1000
Bcl2	Cell Signaling Technology, #3498	1:1000
Bax	Cell Signaling Technology, #14796	1:1000
Caspase-9	Cell Signaling Technology, #9504	1:1000
p-Drp1-Ser616	Cell Signaling Technology, #3455	1:1000

Supplemental Table 1: Antibody information for western blot and immunofluorescence

Supplemental Table 2: Primers for qPCR

Gene	Forward Prime	Reverse Prime
IL-6	5'-CAGACTCGCGCCTCTAAGGAGT-3'	5'-GATAGCCGATCCGTCGAA-3'
MCP1	5'- GGATGGATTGCACAGCCATT-3'	5'-GCGCCGACTCAGAGGTGT-3'
PGAM5	5'-ATCTGGAGAAGACGAGTTGACA-3'	5'-CCTGTTCCCGACCTAATGGT -3'
ND-1	5'-ATGGTCAGTCTGTCATGGTGGAAC-3'	5'- GCATAGCACAAGCAGCGACAAC-3'
COX-1	5'- GAAGAGACAGTGTTTCATGTGGTGT-3'	5'- TCCTGGGCCTTTCAGGAATA-3'

Complex-IV5'-CAGGATTCTTCTGAGCGTTCTATCA-3'5'-AATTCCTGTTGGAGGTCAGCA-3'GAPDH5'-ACGGCAAATTCAACGGCACAGTCA-3'5'-TGGGGGGCATCGGCAGAAGG-3'