
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

 

This manuscript presents an neural network-based investigation of the 

combustion of methane. Using NN-based energy functions is an approach 

that receives considerable attention and may provide a more complete 

understanding of complex chemical processes. This is an interesting 

application to a challenging problem. What is not yet obvious is how 

quantitative the simulations are and how to best test, ascertain and 

validate this. 

 

Detailed comments: 

 

1. The reference calculations were carried out at the DFT level of 

theory. However, combustion processes involve high temperature, high 

pressure, or both with the possibility to populate excited electronic 

states. Is this taken into account? For recent work on this see 

Marquetand et al. https://arxiv.org/abs/1912.08484 

 

Also, at these conditions multiconfigurational effects will be 

important. A broader discussion of the expected uncertainties from 

using MN15 compared with more rigorous methods, such as MRCI+Q, is 

warranted. 

 

2. Considering the rates in Table S2 it is noted that for reactions 

involving production of OH two of them (O + CH4 and H + H2O) agree 

very favourably with experiment but for the third (CH3 + H2O) it 

differs by almost two orders of magnitude. Is there an explanation? 

Also, are the reaction conditions under which the experimental rates 

have been recorded comparable to those encountered in the simulations? 

Often, such experiments are carried out under relatively controlled 

conditions whereas here there are many spectator species present. 

 

3. There are other modern approaches to devise reactive force fields 

that can be used in dynamics simulations which should be cited. One of 

them uses permutationally invariant polynomials (Bowman et al., 

Intern. Rev. Phys. Chem. 2009, 28, 577–606); another one is adiabatic 

reactive MD (Nagy et al., J. Chem. Theory Comput. 2014, 10, 

1366–1375), and a third one is EVB pioneered by Warshel. 

 

4. The focus in the present work appears to be more on computability 

and less so on accuracy (e.g. level of theory of quantum chemistry, 

see point 1). Although the performance of the model has been assessed 

(Figure S3, Table S1), the performance is not comparable to other 



approaches such as SchNet, PhysNet (Unke et al., J. Chem. Theory 

Comput. 2019, 15, 3678– 3693, which should be cited), or FCHL 

(Christensen et al., JCP 152, 044107 (2020), which should be cited, 

too). Such NNs train routinely to MAE well below 1 kcal/mol on 

QM9. Hence, the question on the present work is how reliable the 

computations and the information derived from them are. 

 

5. Concerning the simulation conditions - are pressure, temperature, 

and number densities representative for combustion? 

 

6. One of the problems with other approaches in the field is total 

energy conservation. Is total energy conserved here? Demonstration of 

this by running an MD simulation without thermostat will be essential. 

 

7. In Figure 1: does the labeling in Panel B mean that a time interval 

from 0 to 1 ns is shown? Maybe it would be better to have these labels 

on the bottom of the Figure? Also, does the system reach equilibrium 

here? If not, it may be useful to mention this. 

 

8. It will be useful to have the same Figure as S3 for energies to see 

in particular the spread around the average. 

 

9. The authors mention specifically that the approach can be used for 

discovering new reactions on p. 9. What do they mean when writing 

"..we found a cyclopropane...which has not been reported to our 

knowledge.."? That in the combustion of CH4 by O2 formation of this 

product is novel? I would have intuitively assumed that this is not 

particularly surprising given the simulations conditions. The authors 

should elaborate more on why this is surprising. 

 

In summary, the present work is a potentially interesting application 

of molecular dynamics together with machine learned energy 

functions. What remains unclear is how accurate and quantitatively 

meaningful the present approach is given the relatively low level of 

theory used for the reference data. Combustion processes can involve 

electronically excited states and may require higher level methods and 

careful assessment of the present model in these regards is warranted 

before the manuscript can be further considered for publication in 

this journal. 

 

 

 

 



 

 

Reviewer #2 (Remarks to the Author): 

 

This is a nice paper that studies the reaction dynamics of realistic combustion systems using molecular 

dynamics with the state-of-art machine learning based potential energy surface (PES). The authors were able 

to conduct nano-second simulation on a reasonably large system, with quantum accuracy. 

These kinds of calculations were not possible before. 

As such, this is an important contribution to the study of combustion. 

 

At a more detailed level, the authors were able to construct the reaction network using the molecular 

dynamics simulation results. 

 

The paper lacked quantitative results, such as reaction rates, that can be calibrated against other results, e.g. 

experimental results. This is perhaps the one shortcoming that stands out the most. 

 

The writing of the paper can also be improved. The introduction reads more like a laundry list. This paper is not 

a review of machine learning based PES. So I suggest that the authors focus on what they are using, instead of 

trying to list all other possibilities. 

 

The data generation part seems a bit ad hoc. The accuracy of the model relies heavily on data. So this part is 

crucial. There are some rather systematic data generation procedures discussed in the literature in connection 

with machine learning based PES. The authors might want to look into those. 



Reviwer #1 

This manuscript presents an neural network-based investigation of the combustion of 

methane. Using NN-based energy functions is an approach that receives considerable 

attention and may provide a more complete understanding of complex chemical processes. 

This is an interesting application to a challenging problem. What is not yet obvious is how 

quantitative the simulations are and how to best test, ascertain and validate this. 

Detailed comments: 

 

1. The reference calculations were carried out at the DFT level of theory. However, 

combustion processes involve high temperature, high pressure, or both with the 

possibility to populate excited electronic states. Is this taken into account? For recent 

work on this see Marquetand et al. https://arxiv.org/abs/1912.08484. Also, at these 

conditions multiconfigurational effects will be important. A broader discussion of the 

expected uncertainties from using MN15 compared with more rigorous methods, such as 

MRCI+Q, is warranted. 

Reply: Thank you very much for your comments and suggestions. We would like to address 

the above question in the following. 

A. Combustion is a complex reaction, even a system as simple as methane oxidation 

contains hundreds of species and reactions. The complexity can increase even further when 

the changes of starting configuration (e.g., the stoichiometric ratio of reactants) and the 

external conditions such as temperature are considered. Researches such as the design of 

engines and fuels require a comprehensive understanding of the combustion mechanism. 

However, sophisticated studies of individual reactions cannot provide this information 

effectively. Thus, the current work mainly focuses on developing a computational protocol for 

the exploration and construction of complete reaction networks in combustion rather than 

rigorous studies of any individual chemical reactions. 

B. Electronic excitation can be important for some individual chemical reactions. However, 

for combustion reactions at high pressures, there are rapid energy exchanges between 

molecules resulting from high-frequency collisions, in which free radicals are considered to 

dominate combustion reactions (see, e.g., Cleaner Combustion Developing Detailed 

Chemical Kinetic Models, Springer, 2013) and the effect of electronic excitation tend to be 

less important. For example, most theoretical computations for combustion reactions do not 

consider excited electronic states, and the calculated reaction rates agree well with experiment 

measurements (e.g., Combustion and Flame 200, 125, 2019.; Combustion and Flame, 197, 

423, 2018.; Energy Fuels, 34, 949, 2020.). Currently, widely used databases of small 

molecule combustion mechanisms such as GRI_Mech and AramcoMech also did not include 

excited-state species. 

C. A typical reactive MD simulation contains thousands of atoms and involves hundreds or 

even thousands of chemical reactions and intermediate species. Current ab initio methods are 

generally unable to accurately calculate electronically excited states of chemical reactions for 

such complex reaction systems. 



D. Molecular dynamics simulations involving excited states are highly non-trivial. And 

there are large uncertainties in ab initio quantum chemistry computation for reaction rate 

constants involving excited species and electrons (see, e.g., Progress in Energy and 

Combustion Science, 48, 21, 2015.).  

E. Theoretical treatment of nonadiabatic dynamics using empirical approaches is still a 

great challenge, and currently these methods are still controversial in their applications.  

We will explore the methods developed by Prof. Marquetand and co-workers 

(https://arxiv.org/abs/1912.08484, Mach. Learn.: Sci. Techno. 1, 025009 2020) for possible 

application in combustion involving excited species and a comment on this aspect was added 

in the revised manuscript: 

“In addition, it is worth to point that while combustion is usually thought to be 

dominated by free radical reactions, recent studies have begun to examine the role of 

electronically excited state species in combustion. For example, the additional introduction of 

plasma was found to be effective in promoting combustion in experiments51. However, 

molecular dynamics simulations involving excited states are highly non-trivial. Based on 

artificial neural network models, several recent pioneering works have achieved the 

excited-state MD simulation for model systems52-55. We will consider the introduction of 

these algorithms into the simulation of combustion reactions in future work.” 

Referring to the accuracy of the MN15 DFT method used in the current study, the MN15 

functional was chosen because it is specifically designed to have broad accuracy for 

multi-reference and single-reference systems. When compared with 82 other density 

functionals, MN15 gives the second smallest mean unsigned error (MUE) for 54 inherently 

multiconfigurational systems (Chem. Sci., 7, 5032, 2016.).  The MN15’s training set 

contains the bond dissociation enthalpies of small organic molecules and these data have been 

calibrated by experimental measurements and high-level ab initio multireference methods 

(e.g. J. Phys. Chem. A 120, 4025, 2016.). 

Also, to cover the chemical space of the combustion reaction, the training set in our work 

is very large, and the active learning method was used to automatically expand the training set. 

This means that the MRCI+Q method, which is computationally intensive and requires expert 

experience (especially the choice of active space), is not computationally practical in our 

current study. 

In addition, most of QM software do not provide analytical gradient at the MRCI+Q 

level, but the gradient is crucial for training the neural-network potential energy surface. 

To test the accuracy of MN15 against MRCI+Q, we calculated the bond dissociation 

energy curves of the C-C and C-H bonds in ethane using both the MRCI+Q (8 active 

electrons and 8 active spaces.) and the MN15 methods, with the same 6-31G** basis set. The 

result (see figure below) shows that MN15 and MRCI+Q are in good agreement with each 

other. 



Fig. 1. Bond dissociation energy curves of the C-C and C-H bonds in ethane calculated by MN15 and 

MRCI+Q methods. 

 

2. Considering the rates in Table S2 it is noted that for reactions involving production of 

OH two of them (O + CH4 and H + H2O) agree very favorably with experiment but for 

the third (CH3 + H2O) it differs by almost two orders of magnitude. Is there an 

explanation? Also, are the reaction conditions under which the experimental rates have 

been recorded comparable to those encountered in the simulations? Often, such 

experiments are carried out under relatively controlled conditions whereas here there are 

many spectator species presents. 

Reply: Thank you for the comment.  

The experimental rates are not obtained from a single experimental source, but from 

fitting multiple sets of experimental data to the Arrhenius formula, which means that these 

values are averaged rates over many different experiments and thus have some uncertainties. 

Another source of error is the completeness of the sampling. For those reactions that appear 

less frequently in our MD simulation, the calculation of reaction rates from a single trajectory 

can cause large errors.  Ideally, one should run many trajectories with different initial 

conditions to obtain statistically more accurate rate constants.  

Usually, for the combustion reaction, it is already considered a good match when the 

difference between the predicted and experimental rates is around an order of magnitude. In 

fact, most rates calculated in this work are comparable in accuracy to other fast rate 

calculation methods based on statistical or machine learning approaches (see, i.e., 

Communications in Information and Systems, 19, 4, 2019.; J. Comput. Chem. 40, 1586, 

2019.). 

More importantly, the main advantage of the current work is not in the precise 

calculation of the individual reaction rate. However, by MD simulation, one can extract the 

reaction rates of many important reactions from the trajectory. Some of these rates might not 

be accurate enough to be used directly in kinetics modeling, but they can be highly useful in 

our overall understanding of the combustion reaction. 

These comments and explanations were added in the revised manuscript: 



“The main source of error might come from the uncertainties of parameters in the 

Arrhenius formula and the completeness of sampling. Ideally, one should run many 

trajectories with different initial conditions to obtain truly statistically accurate results. 

However, although these rates may not be accurate enough to be used directly in kinetic 

modeling, they can be effective in contributing to a comprehensive understanding of the 

combustion reaction.” 

 

3. There are other modern approaches to devise reactive force fields that can be used in 

dynamics simulations which should be cited. One of them uses permutationally invariant 

polynomials (Bowman et al., Intern. Rev. Phys. Chem. 2009, 28, 577–606); another one is 

adiabatic reactive MD (Nagy et al., J. Chem. Theory Comput. 2014, 10, 1366–1375), and 

a third one is EVB pioneered by Warshel. 

Reply: Thank you very much. We are sorry for our mistake. These works have been cited in 

the revised manuscript.  

 

4. The focus in the present work appears to be more on computability and less so on 

accuracy (e.g. level of theory of quantum chemistry, see point 1). Although the 

performance of the model has been assessed (Figure S3, Table S1), the performance is 

not comparable to other approaches such as SchNet, PhysNet (Unke et al., J. Chem. 

Theory Comput. 2019, 15, 3678– 3693, which should be cited), or FCHL (Christensen et 

al., JCP 152, 044107 (2020), which should be cited, too). Such NNs train routinely to 

MAE well below 1 kcal/mol on QM9. Hence, the question on the present work is how 

reliable the computations and the information derived from them are. 

Reply: Thank you for your suggestion, these works have been cited in the revised manuscript. 

However, the comparison in accuracy between our work and the above works should be 

viewed in perspective. This is because the QM9 dataset used in those works mainly contains 

small organic molecules that were energy minimized and the related works mainly focused on 

the energies of stable molecular species, not chemical reactions. While in our present work, 

we need to deal with the breaking and formation of chemical bonds, which are accompanied 

by much greater changes of energy and configurational space than those of stable molecular 

species. In fact, considering such a large range of changes in energy and force, the accuracy 

of the current study is already high. For example, the MAEs on the training and test sets are 

0.94 and 3.22 kcal/mol, respectively. And the performance of the current model is 

comparable to other models that were trained on datasets with similar value ranges. (see, e.g., 

Chem. Sci., 2019, 10, 8100). 

In addition, it should be pointed out that the reaction rates determined by the Arrhenius 

equation at high temperatures are not as sensitive to the accuracy of potential energy surface 

as those at low temperatures. Thus, the overall reaction networks generated from the MD 

simulation of combustion at high temperature shall not be seriously affected by the small 

errors in potential energy. 



In summary, we believe that the accuracy of our study is quite reliable in general. 

5. Concerning the simulation conditions - are pressure, temperature, and number densities 

representative for combustion? 

Reply: Compared to the methane combustion experiments, we increased the density (and thus 

the pressure) as well as the temperature to enhance the collision probability and sampling 

efficiency. Detailed values are provided in the manuscript. Increasing the reactant density and 

temperature are widely used strategies in reactive MD simulation because the time scale of 

the simulation is much shorter than that of experiments. In future work, we will try to 

combine neural network potential and enhanced sampling algorithms to bring the simulated 

conditions closer to the experiments. These comments were added in the revised manuscript. 

“Compared to the experiments, we increased the density (and thus the pressure) as well 

as the temperature to enhance the collision probability and sampling efficiency, which are 

widely used strategies in reactive MD simulation because the time scale of the simulation is 

much shorter than that of experiments. In future work, we will try to combine the NN 

potential and enhanced sampling algorithms to bring the simulated conditions closer to the 

experiments.” 

 

6. One of the problems with other approaches in the field is total energy conservation. Is 

total energy conserved here? Demonstration of this by running an MD simulation without 

thermostat will be essential. 

Reply: The total energy of the current model is conserved. We have trained system to predict 

both potential energy and its gradient, which means that the second-order derivatives of the 

potential energy surface are continuous. In the following, we show a 10ps NVE simulation 

result using the current model starting with a random frame extracted from the trajectory. As 

shown in the following figure, the total energy is conserved, only with little numerical errors. 

We didn’t perform a longer simulation because combustion is an exothermic reaction, thus 

the temperature of the system rises sharply in the NVE ensemble, soon exceeding the 

chemical space covered by the current training set.  

 



Fig. 2. The total energy of the system over time under the NVE ensemble. The total energy of the first 

snapshot (-4632920.5eV) was taken as the reference value. 

 

7. In Figure 1: does the labeling in Panel B mean that a time interval from 0 to 1 ns is 

shown? Maybe it would be better to have these labels on the bottom of the Figure? Also, 

does the system reach equilibrium here? If not, it may be useful to mention this. 

Reply: Thank you very much for your suggestion. We have modified Figure 1 according to 

this suggestion.  

After 1 ns of simulation, the system did not reach equilibrium. We didn't extend the 

simulation because in reactive MD simulations of combustion, the trajectory before 

equilibrium is often more important because it contains the ignition process and can provide 

richer reaction information. Whereas only oscillatory reactions between products are usually 

observed in the post-equilibrium trajectory. 

More than 75% of the methane and oxygen have been consumed and more than 150 

Water molecules and lots of carbon dioxide and carbon monoxide have been produced in the 

1ns simulation. Therefore, we think it's reasonable to analyze the trajectory of the period. 

We added a comment in the revised manuscript: 

“The potential energy of the system during the simulation is shown in Fig. S3. Although 

the system hasn't reach equilibrium, the trajectory already contains the ignition process and 

can provide richer reaction information.” 

 

8. It will be useful to have the same Figure as S3 for energies to see in particular the spread 

around the average. 

Reply: Thank you for this suggestion. A new figure which shows the change of potential 

energy during the simulation was added in the revised manuscript. 

 

9. The authors mention specifically that the approach can be used for discovering new 

reactions on p. 9. What do they mean when writing ". we found a cyclopropane...which 

has not been reported to our knowledge.."? That in the combustion of CH4 by O2 

formation of this product is novel? I would have intuitively assumed that this is not 

particularly surprising given the simulations conditions. The authors should elaborate 

more on why this is surprising. 

Reply: We are sorry that we didn't make our point clearer. What we want to express is that 

finding new reactions is an important advantage of the present approach. For methane 

oxidation, a system that has been extensively studied by experiments, NN based reactive MD 

can still find hundreds of chemical reactions that have not been experimentally reported. This 

demonstrates that reactive MD can be a powerful tool to study combustion reactions.  



In previous works by Martinez and co-workers (Nature Chemistry 6, 1044,2014; ACS 

Cent. Sci. 5, 1532, 2019.), GPU based AIMD simulations were used to simulate the 

Urey-Miller experiment at the HF/3-21G level and a synthetic pathway of glycine was 

discovered. 

We believe that NN based reactive MD simulation is an efficient and accurate tool to 

find new molecules and chemical reactions. The synthetic pathway of cyclopropane found in 

our MD simulation was just as an example. In fact, although there has been a lot of research 

into methane combustion, including the construction of several reaction databases, there are 

no experimental reports on cyclopropane generated from combustion. While it might be 

possible that finding cyclopropane in our simulation is a coincidence, it still illustrates the 

ability of reactive MD simulation to discover new molecules and new reactions. 

We have modified this description in the revised manuscript to avoid ambiguity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Reviwer #2 

This is a nice paper that studies the reaction dynamics of realistic combustion systems 

using molecular dynamics with the state-of-art machine learning based potential energy 

surface (PES). The authors were able to conduct nano-second simulation on a reasonably 

large system, with quantum accuracy. 

These kinds of calculations were not possible before. As such, this is an important 

contribution to the study of combustion. 

At a more detailed level, the authors were able to construct the reaction network using 

the molecular dynamics simulation results. 

1. The paper lacked quantitative results, such as reaction rates, that can be calibrated 

against other results, e.g. experimental results. This is perhaps the one shortcoming that 

stands out the most. 

Reply: Thank you very much for your comments.  

We extracted the 10 most statistically significant reactions from the trajectory and 

calculated their rate constants (Table S2). Most of these rate constants agree well with the 

experiments and are comparable in accuracy to other fast rate calculation methods based on 

statistics or machine learning (see, i.e., Communications in Information and Systems, 19, 4, 

2019.; J. Comput. Chem. 40, 1586, 2019.). 

 

2. The writing of the paper can also be improved. The introduction reads more like a 

laundry list. This paper is not a review of machine learning based PES. So I suggest that the 

authors focus on what they are using, instead of trying to list all other possibilities. 

Reply: Thank you very much. The manuscript was revised according to this suggestion.  

 

3. The data generation part seems a bit ad hoc. The accuracy of the model relies heavily on 

data. So this part is crucial. There are some rather systematic data generation procedures 

discussed in the literature in connection with machine learning based PES. The authors might 

want to look into those. 

Reply: Thank you very much for this suggestion.  

In the current work, we have used the active learning algorithm to automatically expand 

the training set. In order to generalize this method for all hydrocarbon fuels and enhance its 

user-friendliness, we are trying to combine this method with the DP-GEN software which can 



greatly simplify the preparation process of the dataset. We are also trying to make a basic 

reference data set for all hydrocarbon fuels.  

Relevant works are ongoing in our lab.  

Further clarification on this issue was added in the revised manuscript:  

“Recently, Zhang et al. developed the DP-GEN50 (Deep potential Generator) software 

platform which can automatically construct the reference dataset and train the NN model. The 

concurrent learning algorithm employed by this platform can make the redundancy of the 

reference set as small as possible. We are trying to integrate the algorithms developed in this 

work into the DP-GEN platform.”  



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed a number of points. However, several points 

remain to be clarified. 

 

1. In the introduction the authors write that "Although empirical 

reactive force fields[..]however, their accuracy and reliability are 

of significant concern." It should be noted that the reactive force 

fields by Bowman and coworkers, or Meuwly and coworkers are usually 

within 1 kcal/mol or even better of the reference data which is 

typically at the MP2 or more often MRCI or CCSD(T) levels of 

theory. So this statement clearly needs context and not all reactive 

force fields should be discussed in this overarching fashion. 

 

2. While pointing out the inaccuracies of some existing reactive force 

fields may be justified, the authors themselves then "excuse" their 

treatment of the systems at the DFT level by pointing out in their 

reply letter that "..the current work mainly focuses on developing a 

computational protocol for the exploration...rather than rigorous 

studies of any individual chemical reactions." This raises the 

question whether by "inaccurately" describing individual chemical 

reactions much insight into the complex reaction network can be gained 

they consider. Again, this point needs considerably more careful 

context. 

 

3. While electronic excitation per se may not be that common, reactive 

recombination to form excited states is clearly a possibility. This 

should be mentioned. One example has been recently given for O+O 

recombination (Pezzella et al. (2020)) in which ground and excited 

state O2 was formed upon recombination. As the reactivity of 

electronically excited O2 can be several times larger towards 

carbo-hydrates, including electronically excited state in this example 

is clearly essential. What is the situation in the present work? 

 

4. Again, in their reply the authors point out the limitations of 

current electronic structure methods for treating excited states of 

large numbers of systems. This should be mentioned more explicitly in 

the manuscript. There are actually recent reactive MD studies of 

nonadiabatic processes involving several electronic states, see Koner 

et al., Varandas et al., Schinke et al. and others, all on 

high-quality PESs. 

 

5. Point 2 from reviewer 1 is only incompletely answered. How 

different are the reaction conditions for the reactions generating OH 

from those used in the present simulations? 

 

6. The authors refer to Arrhenius forms for the rate coefficients. In 

hypersonics, often a modified Arrhenius with an explicitly T-dependent 

prefactor is used. As this manuscript deals with combustion, such 

modified forms might offer some advantage and should be mentioned and 

discussed. 

 

7. The reply to point 5, reviewer 1 is rather vague. The authors 



should state what density was used instead of reporting "..increased 

[the] density.." and similar for all other system variables. A short 

discussion of the differences between experimental reaction conditions 

and those used in the simulations is clearly necessary. 

 

8. The figure from their reply letter on the energy conservation 

should be included at least in the SI. A larger scale for the energy 

has to be given and the simulation time needs to be considerably 

extended. Drifts in the total energy can not be seen from a 10 ps time 

series. Would the simulation leading to Figure 1 be suitable for that? 

 

9. While it is certainly true that finding new reactions is an 

attractive possibility of such a computational model, it should be 

stated explicitly that the accuracy of the model determines whether or 

not conclusions about how likely and feasible such new reactions are 

valid. To validate this, one such "new reaction" - e.g. the one 

forming cyclopropane - that was found must be investigated at a higher 

level of theory. From the reaction profile it should then be 

determined whether or not "finding this new reaction" is an artifact 

of the model because its accuracy is not appropriate or whether the 

"new reaction" is indeed feasible at the reaction conditions chosen in 

the simulations. Only then the conclusion from the reply letter 

"..demonstrates that reactive MD can be a powerful tool to study 

combustion reactions." is likely to be valid. 

 

10. In Figure 1 it is interesting to note that all concentrations are 

either monotonically increasing or decreasing. Is there an explanation 

for this? 

 

Minor point: the formatting of the references needs attention, 

e,g. Ref.33 has no page numbers, ditto for Ref. 16. 

 

In summary, this work is a potentially useful way forward to 

investigate complex reactions in combustion. However, at several 

places the accuracy of the model needs to be more critically 

scrutinized, established, or demonstrated. Without critical validation 

it remains unclear whether or not the conclusions are sufficiently 

supported. 



Reviewer #1   
 

The authors have addressed a number of points. However, several points remain to be 

clarified. 

 

1. In the introduction the authors write that "Although empirical reactive force 

fields[..]however, their accuracy and reliability are of significant concern." It should be 

noted that the reactive force fields by Bowman and coworkers, or Meuwly and coworkers are 

usually within 1 kcal/mol or even better of the reference data which is typically at the MP2 or 

more often MRCI or CCSD(T) levels of theory. So this statement clearly needs context and 

not all reactive force fields should be discussed in this overarching fashion. 

 
Reply: Thank you for this comment. By “empirical reactive force fields”, we mean the 

ReaxFF force field and does not include accurate potential energy surfaces (PES) of Bowman, 

Meuwly, etc. The ReaxFF is widely used in the simulation of combustion while those more 

accurate PES haven't been designed for combustion simulations of large molecular systems 

(WIREs Comput Mol Sci. 2019;9:e1386.). While the accuracy and reliability are of significant 

concern. In a recent work by Head-Gordon and co-workers (J. Phys. Chem. A 2020, 124, 27, 

5631.), the performance of several common parametrizations of the ReaxFF force field 

against DFT and CCSD(T) were benchmarked. The results show that the ReaxFF potentials 

fail both quantitatively and qualitatively to describe reactive events relevant to hydrogen 

combustion systems, while the DFT results show good agreement with that of CCSD(T). 

We've revised the manuscript accordingly to avoid ambiguity. 

 

2. While pointing out the inaccuracies of some existing reactive force fields may be justified, 

the authors themselves then "excuse" their treatment of the systems at the DFT level by 

pointing out in their reply letter that "..the current work mainly focuses on developing a 

computational protocol for the exploration...rather than rigorous studies of any individual 

chemical reactions." This raises the question whether by "inaccurately" describing individual 

chemical reactions much insight into the complex reaction network can be gained they 

consider. Again, this point needs considerably more careful context. 

 
Reply: Thank you very much for your suggestion. But this is not what we tried to express. 

DFT is still the most widely used quantum chemistry method for studying chemical 

reactions and its accuracy has been widely accepted by the quantum chemistry community.  

Although DFT is in general not considered as accurate as more rigorous methods such as 



MRCI or CCSD(T), but these more accurate methods are currently not suitable for studying 

complex chemical reactions of large systems such as the combustion process in the current 

work.   

Also, DFT methods often produce results that are comparable in accuracy to these more 

accurate results but at a fraction of the computational cost. For example, we demonstrated that 

our DFT calculation (with the MN15 functional) for model reaction systems is comparable in 

accuracy to MRCI+Q and CCSD(T) (Fig 1 and 3 in this response). The MN15 functional was 

chosen in our calculation because it is specifically designed to have broad accuracy for 

multi-reference and single-reference systems. When compared with 82 other density 

functionals, MN15 gives the second smallest mean unsigned error (MUE) for 54 inherently 

multiconfigurational systems (Chem. Sci., 7, 5032, 2016.). And its training set contains the 

bond dissociation enthalpies of small organic molecules, these data have been calibrated by 

experimental measurements and high-level ab initio multireference methods (e.g. J. Phys. 

Chem. A 120, 4025, 2016.).  

Fig. 1. Bond dissociation energy curves of the C-C and C-H bonds in ethane calculated by MN15 and 

MRCI+Q methods (8 active electrons and 8 active spaces.). The result shows that MN15 and MRCI+Q 

are in good agreement with each other. 

 

3. While electronic excitation per se may not be that common, reactive recombination to form 

excited states is clearly a possibility. This should be mentioned. One example has been 

recently given for O+O recombination (Pezzella et al. (2020)) in which ground and excited 

state O2 was formed upon recombination. As the reactivity of electronically excited O2 can 

be several times larger towards carbo-hydrates, including electronically excited state in this 

example is clearly essential. What is the situation in the present work? 

 
Reply: We agree that under certain reaction conditions, reactive recombination which can 

form excited states can be important. And we briefly discussed the work of Pezzella et al. in 

the revised manuscript. We carefully analyzed the trajectories and did not found O+O 

recombination in our simulation. Such a recombination reaction could occur at relatively low 

collision energies, but not that common at high temperatures such as in combustion. 

 

4. Again, in their reply the authors point out the limitations of current electronic structure 

methods for treating excited states of large numbers of systems. This should be mentioned 

more explicitly in the manuscript. There are actually recent reactive MD studies of 



nonadiabatic processes involving several electronic states, see Koner et al., Varandas et al., 

Schinke et al. and others, all on high-quality PESs. 

 

Reply: Thank you for the suggestion. The limitations of current electronic structure methods 

for treating excited states are now mentioned more explicitly in the revised manuscript. And 

the recent works of Koner et al., Varandas et al, and Schinke et al. are mentioned and cited in 

the revised manuscript. 

 

5. Point 2 from reviewer 1 is only incompletely answered. How different are the reaction 

conditions for the reactions generating OH from those used in the present simulations? 

 
Reply: Firstly, experimental reaction conditions generating OH are performed at about 2250 

K while the current simulation work is performed at 3000 K.  Secondly, the rate constants in 

the GRI-Mech 3.0 database are not obtained from a single experimental measurement.  They 

are actually obtained by combining and optimizing data from multiple experimental and 

theoretical works. For example, the rate constants of the ⋅CH3 + H2O → CH4 + ⋅OH reaction 
was obtained by Cohen et al. (Int. J. Chem. Kin. 23, 397.) using theoretical optimizations 

based on the experimental results of Madronich et al (20th Symp. (Int.) Combust., 1984, 703.). 

The rate constant of the ⋅O + CH4 → CH3 + ⋅OH reaction was optimized by Tsang et al. on 
the basis of multiple works (J. Phys. Chem. Ref. Data 15, 1087.).  Since there are no 

available experimental rate constants directly measured at 3000 K, we just used these two 

reaction rates given by the GRI-Mech 3.0 database at 3000 K (consistent with the temperature 

of MD) for comparison. 

 
 

6. The authors refer to Arrhenius forms for the rate coefficients. In hypersonics, often a 

modified Arrhenius with an explicitly T-dependent prefactor is used. As this manuscript deals 

with combustion, such modified forms might offer some advantage and should be mentioned 

and discussed. 

 
Reply: In our study, we calculated the rate constants by using a statistical method (Ref. 50 and 

Ref. 51.) and did not use the Arrhenius form to evaluate the rates. The T-dependent pre-factor 

Arrhenius formular is used by the GRI_Mech database to extrapolate the rate coefficients 

based on experiments and theoretical calculations. We mentioned it in the revised manuscript. 
 

 

7. The reply to point 5, reviewer 1 is rather vague. The authors should state what density was 

used instead of reporting "..increased [the] density.." and similar for all other system 

variables. A short discussion of the differences between experimental reaction conditions and 

those used in the simulations is clearly necessary. 

 

Reply: Thank you for this suggestion, we added a discussion on the difference between 

experimental and simulation conditions in the revised manuscript. 



 

8. The figure from their reply letter on the energy conservation should be included at least in 

the SI. A larger scale for the energy has to be given and the simulation time needs to be 

considerably extended. Drifts in the total energy can not be seen from a 10 ps time series. 

Would the simulation leading to Figure 1 be suitable for that? 

 

Reply: We extended the NVE simulation to 100 ps. As shown in the following figure, 

the total energy is conserved and the energy fluctuation is relatively small. We didn’t extend 

to longer NVE simulation because it leads to unphysical high temperature as the simulation 

time increases due to the exothermic nature of the combustion as shown in the following 

figure. We also included this figure in the SI. 

 

 

Fig. 2. Time dependences of the total energy (the relative value to the first snapshot) and temperature 

during the MD simulation under NVE ensemble. 

 

9. While it is certainly true that finding new reactions is an attractive possibility of such a 

computational model, it should be stated explicitly that the accuracy of the model determines 

whether or not conclusions about how likely and feasible such new reactions are valid. To 

validate this, one such "new reaction" - e.g. the one forming cyclopropane - that was found 

must be investigated at a higher level of theory. From the reaction profile it should then be 

determined whether or not "finding this new reaction" is an artifact of the model because its 

accuracy is not appropriate or whether the "new reaction" is indeed feasible at the reaction 

conditions chosen in the simulations. Only then the conclusion from the reply letter 

"..demonstrates that reactive MD can be a powerful tool to study combustion reactions." is 

likely to be valid. 

 



Reply: First, the current reactive MD based on the MN15 DFT functional has correctly 

reproduced almost all experimentally verified reactions (more than 100) in this combustion. 

The reactions that generate cyclopropene are not particularly different from other reactions 

already reproduced.   

Based on the referee’s suggestion, we also calculated the reaction energies of some 

typical reactions along the path toward the production of cyclopropene at the 

CCSD(T)/aug-ccpvtz level. These calculated CCSD(T) energies agree well with the MN15 

energies, as shown in the following table. In view of the combustion reactions at high 

temperatures (3000K), the differences of a few kcal/mol in reactions energies are considered 

small and will not materially affect the results and conclusions. 

 

 
Fig. 3. Reaction energies of seven typical reactions along the path to the production of cyclopropene at 

both the MN15 and CCSD(T) level. 

 

10. In Figure 1 it is interesting to note that all concentrations are either monotonically 

increasing or decreasing. Is there an explanation for this? 

 

Reply: These curves were smoothed to make them look better and clearer. In the revised 

manuscript, we mentioned this in the caption of Figure 1.  

 

Minor point: the formatting of the references needs attention, e,g. Ref.33 has no page 

numbers, ditto for Ref. 16. 

 
Reply: We are sorry for this mistake and these two references were corrected in the revised 

manuscript.  

 

In summary, this work is a potentially useful way forward to investigate complex reactions in 

combustion. However, at several places the accuracy of the model needs to be more critically 

scrutinized, established, or demonstrated. Without critical validation it remains unclear 

whether or not the conclusions are sufficiently supported. 

 



Reply: We believe that we have fully addressed the concerns about the accuracy of our 

computational model and any remaining doubt about the reliability of our results is cleared.  

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed all open points satisfactorily and the work is recommended for publication. This 

is a fine piece of work. 


