Supporting Information

Short Time Dynamics of PDMS-g-PDMS Bottlebrush Polymer Melts Investigated by Quasi-Elastic Neutron Scattering

Karin J. Bichler^{1*}, Bruno Jakobi², Victoria García Sakai³, Alice Klapproth⁴, Richard A. Mole⁴, Gerald J. Schneider^{1,2*}

¹ Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States

² Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States

³ ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0QX, United Kingdom

⁴ Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, 2234, NSW, Australia

Intermediate scattering function, S(Q,t), as a function of time, t, for the sample with $M_n^{side \ chain} = 298 \ g/mol \ at \ low \ temperatures$

Figure S1: Intermediate scattering function, S(Q, t), vs. time, t, for the sample with $M_n^{side \ chain} = 298 \text{ g/mol}$ for four different temperatures. a) T = 75 K, b) T = 100 K, c) T = 125 K, and d) T = 150 K. Solid lines represent the data description with the model function for low temperatures, equation (3).

Intermediate scattering function, S(Q,t), as a function of time, t, for the sample with $M_n^{side \ chain} = 298 \ g/mol \ at \ high \ temperatures$

Figure S2: Intermediate scattering function, S(Q, t), vs. time, t, for the sample with $M_n^{side\ chain} = 298$ g/mol for two temperatures, a) T = 250 K and b) T = 300 K. Solid lines represent the data description with the model function for high temperatures, equation (5).

0.8 0.8 0.6 0.6 S(Q,t)S(Q,t)= 100 K 75 K $Q = 0.6 \text{ Å}^{-1}$ = 0.6 Å⁻¹ $Q = 0.8 \text{ Å}^{-1}$ 0.4 $Q = 0.8 \text{ Å}^{-1}$ 0.4 $Q = 1.0 \text{ Å}^{-1}$ $Q = 1.0 \text{ Å}^{-1}$ $Q = 1.2 \text{ Å}^{-1}$ $Q = 1.2 \text{ Å}^{-1}$ $Q = 1.4 \text{ Å}^{-1}$ $Q = 1.4 \text{ Å}^{-1}$ 0.2 0.2 $Q = 1.6 \text{ Å}^{-1}$ $Q = 1.6 \text{ Å}^{-1}$ $Q = 1.8 \text{Å}^{-1}$ $Q = 1.8 \text{ Å}^{-1}$ $M_n^{side\ chain} = 1800\ \mathrm{g/mol}$ $M_n^{side\ chain} = 1800\ g/mol$ b) a) 10^{-2} 10^{-1} 10^{0} 10-3 10^{-2} 10^{-1} 10^{0} 10 t (ns) t (ns) 0.8 0.8 0.6 0.6 S(Q,t)S(Q,t)= 150 K 25 K = 1.6 Å⁻¹ $Q = 0.6 \text{ Å}^{-1}$ $Q = 0.8 \text{ Å}^{-1}$ 0.4 = 1.4 Å⁻¹ 0.4 $Q = 1.0 \text{ Å}^{-1}$ = 1.2 Å⁻¹ $Q = 1.2 \text{ Å}^{-1}$ = 1.0 Å⁻¹ $Q = 1.4 \text{ Å}^{-1}$ $Q = 0.8 \text{ Å}^{-1}$ 0.2 0.2 $Q = 1.6 \text{ Å}^{-1}$ $Q=0.6~\mathrm{\AA^{-1}}$ $Q = 1.8 \text{ Å}^{-1}$ $Q = 1.8 \text{ Å}^{-1}$ $M_n^{side\ chain} = 1800 \text{ g/mol}$ side chain = 1800 g/mol d) c) 0 10-3 10^{-2} 10^{-1} 10^{-2} 10^{0} 10^{-1} 10^{-3} 10^{0} t (ns) *t* (ns)

Intermediate scattering function, S(Q,t), as a function of time, t, for the sample with $M_n^{side \ chain} = 1800 \ g/mol \ at \ low \ temperatures$

Figure S3: Intermediate scattering function, S(Q, t), vs. time, t, for the sample with $M_n^{side \ chain} = 1800 \text{ g/mol}$ for four different temperatures. a) T = 75 K, b) T = 100 K, c) T = 125 K, and d) T = 175 K. Solid lines represent the data description with the model function for low temperatures, equation (3).

Intermediate scattering function, S(Q,t), as a function of time, t, for the sample with $M_n^{side \ chain} = 1800 \ g/mol \ at \ high \ temperatures$

Figure S4: Intermediate scattering function, S(Q, t), vs. time, t, for the sample with $M_n^{side\ chain} = 1800$ g/mol for two temperatures, a) T = 250 K and b) T = 300 K. Solid lines represent the data description with the model function for high temperatures, equation (5).

Figure S5: Elastic incoherent structure factor, *EISF*, vs. momentum transfer, *Q*, for three selected temperatures, T = 100 K, T = 125 K, and T = 175 K for the PDMS-g-PDMS bottlebrush polymer with $M_n^{side\ chain} = 11500$ g/mol as an example for all three samples. Solid lines are the best description with the equation (7).

Figure S6: Stretching parameter, β_{ℓ} , vs. temperature, T, for the methyl group dynamics.