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This Supplemental Material contains:

1. a quantitative analysis of the all-atom MD simula-
tions of the three proteins investigated in this work

2. additional figures about the CG representations
that minimise the mapping entropy

3. an analysis of the relation between the size and mo-
bility of residues and the conservation probability
of their atoms

4. an assessment of the results’ stability with respect
to the duration of the MD trajectory.

Parameters and analysis of the all-atom MD
simulations

MD simulations in this work are performed using Gro-
macs 2018 package [1, 2] and the Amber99sb-ildn force
field [3], with a timestep δt = 2 fs. We apply the LINCS
algorithm to constrain all the bonds involving hydrogen
atoms [4], and treat long-range electrostatics by means
of the Particle Mesh Ewald method [5].

We first equilibrate each protein structure at 300 K in
the canonical (NV T ) ensemble by means of a stochastic
velocity rescaling thermostat [6], relying on a coupling
constant τT = 0.1 ps. Subsequently, a further equili-
bration simulation sets the pressure of each system at
P = 1 bar, achieved by superimposing to the thermostat
a Parrinello-Rahman barostat (τP = 2 ps) [7]. We then
extract from the NPT equilibration run of each protein
a configuration whose volume V is compatible to the av-
erage volume 〈V 〉, the latter being calculated from the
corresponding NPT run. Such configurations are em-
ployed as initial conditions for production simulations of
200 ns in NV T .

Fig. S1 describes the simulations in terms of RMSD
and Root Mean Square Fluctuation (RMSD). Both quan-
tities are computed with respect to a reference conforma-
tion, that we choose to be the first frame of the trajectory.

We observe that TAM shows rather abrupt transitions
in both graphs: from the point of view of RMSD this
suggests the presence of local conformational rearrange-
ments that occur over the time scales of few nanoseconds,
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while such a behavior for RMSF implies that there are
huge differences between atoms that are contiguous in
the protein sequence.

As for AKE, we select two reference conformation for
the RMSD calculation: in addition to the first frame,
we compute it also with respect to its closed structure
(1AKE): it is possible to notice that peaks in one time
series correspond to local minima in the other, thus sug-
gesting the presence of intermediate configurations be-
tween the two. Therefore AKE explores some confor-
mations that share some similarity with the structure of
1AKE, although a full conformational transition is never
observed. This flavour of the closed conformation may
explain our algorithm’s capability of identifying residues
important for stabilizing 1AKE.

Finally, the RMSD of AAT with respect to its first
frame seems to increase steadily, while staying well be-
low the value of 0.3 nm for all the 200 ns of trajectory.
This behavior, combined with the low values of RMSF
shown below, is index of a very compact structure that is
still far from reaching equilibrium. The region with the
peak in local fluctuations is the one involved in the con-
formational rearrangement of AAT: these atoms spend
the entire duration of the MD simulation wiggling in the
solvent, probably carrying very few information content
from the point of view of energetics. This can be the
main reason behind the fact that this region is heavily
coarse-grained by the optimisation procedure.

Additional figures on optimised mappings

Here we report some additional data about the solu-
tions we obtain from our optimisation procedure. In par-
ticular, Fig. S2 shows, for all investigated proteins, a set
of 100 transitions (see Fig. 2 in the main text) between
the three couples of optimal mappings identified through-
out the optimisation algorithm presenting the lowest val-
ues of Σ. Fig. S3 displays, in analogy with Fig. 4 in the
main text, the distribution of conservation probabilities
for Adenylate Kinase and α− 1 antitrypsin.

We also investigated possible correlations between an
atom’s conservation probability Pcons and its mobility,
which is well described by the RMSF extracted from the
MD trajectory (Fig. S1). From Fig. S4 we can observe
a weak degree of correlation: in particular, atoms with a
high value of Pcons usually have a large mobility as well.
On the contrary, though, not all atoms with large RMSF

mailto:raffaello.potestio@unitn.it


2

FIG. S1: RMSD (top) and RMSF (bottom) for the three protein of interest. RMSD values are always calculated
with respect to the first frame of the trajectory. For adenylate kinase we display also the RMSD with respect to the

PDB of the closed conformation (4AKE wrt 1AKE, monomeric structure). LID and NMP domains are also
highlighted in the RMSF plot.

FIG. S2: Values of the mapping entropy Σ [kJ/mol/K] of mappings connecting optimal solutions. In each plot, one
per protein under examination, 100 transitions have been sampled between the three next-to-lowest-Σ pairs of

optimal mappings at N = Nαβ . Black dots indicate initial and final endpoints for paths constructed by swapping
pairs of atoms between them (coloured dots). In each plot, horizontal lines represent the mean (violet) and

minimum (green) Smap obtained from the corresponding distribution of random mappings presented in Fig. 1 of the
main text. The behaviour illustrated in Fig. 2 of the main text is preserved.

are conserved with high probability, since highly mobile
atoms can either be involved in several interactions, or be
exposed on the protein’s surface and wiggle in the solvent
without having contacts with other residues.

From the inspection of Fig. S4 we can underline the no-

table case of residue ARG13 of TAM. While the terminal
nitrogen NH2 is almost always included in the optimised
mapping (Pcons = 0.96), NH1 possesses a negligible con-
servation probability (Pcons = 0.04). Interestingly, in
one of the two optimised solutions in which NH2-ARG13
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FIG. S3: Adenylate Kinase [(a),(b) and (c)], and α− 1 antitrypsin [(d), (e) and (f)]: probability of conserving sites
over the optimised solutions as a function of the number N of retained sites. The residues containing those atoms

that are conserved with the highest probability have been explicitly indicated in figure.

is absent, we observe the presence of NH1-ARG13, thus
suggesting that one of the two nitrogens always has to be
retained, NH2 being the preferred one.

In Fig. S5 we report average values and standard de-
viations of Pcons for each atom of selected amino acids in
our proteins of interest. We consider the 3, 13 and 7 argi-
nine residues of TAM, AKE and AAT, respectively. We
expand this analysis including glutamic acid monomers
for TAM (3 residues), lysine amino acids for AKE (18
residues) and MET amino acids for AAT (10 residues).
In all the inspected cases the algorithm is more likely to
conserve terminal atoms than elements of backbone or of
the first part of the side chain, such as the beta carbon
(CB). More importantly, the standard deviation of Pcons
increases consistently with the distance from the back-
bone chain. A possible explanation for this phenomenon
could lie in the fact that terminal atoms of amino acids
with long side chains can be considered either extremely
relevant or completely negligible for the mapping. In par-
ticular, when the residue takes part to highly energetic
structural fluctuations, like ARG88 in AKE, at least one
of its terminal atoms, which are usually the main actors
of such interactions, is very likely conserved.

As for the non-terminal elements of the monomer, we

observe lower standard deviations: one or two of them
might be retained, but the specific choice is less crucial
from the point of view of the mapping, since they are less
likely to be directly involved in residue-residue interac-
tions.

Finally, it is interesting to analyse the occurrence of
pair correlations between atoms belonging to the pool of
optimised mappings, that is to say, if forcing a specific
atom to be retained can modulate the presence/absence
of a different one. Specifically, we consider the proba-
bility of an atom j to be part of the optimised solutions
given that an atom i is retained. We make use of the
following non-symmetric conditional probability matrix:

CPij =

∑
M∈{Mopt} σj σi∑
M∈{Mopt} σi

(1)

where σi and σj are the atom selection operators defined
in Eq. 2 of the main text, and {Mopt} is the set of opti-
mised mappings.

Fig. S6 displays the CP matrix for the three proteins
investigated, calculated on the optimised mappings with
N = Nαβ . The CP matrix restricted to the NMP do-
main of AKE is also presented. In all cases we observe
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FIG. S4: Atom-wise comparison between RMSF and Pcons (calculated at N = Nα) for the three proteins of interest.
We highlighted in green the most conserved atoms, for which the RMSF is always non negligible. We also pinpoint

in red highly mobile atoms that are almost never included in the optimised solution.

FIG. S5: Plot of average Pcons with its standard deviation for each atom of arginine residues for the three
considered proteins [(a),(b) and (c)]. We add GLU atoms [(d)] for TAM, LYS atoms [(e)] for AKE and MET atoms

[(f)] for AAT. Values on the y-axis (Pcons) change between the plots. With the exception of figure (a), values on
y-axis always range from 0.0 to 0.4.

the presence of vertical patterns in the correlation ma-
trix, whose intensity coincides, but for slight modula-
tions, to the corresponding conservation probability pro-
file Pcons presented in Fig. 3 of the main text. This
means that the probability of retaining atom j is only
marginally affected by the presence of a different atom i,
and CPij ≈ Pcons(j) ∀ i, so that no significant correlation
exists between pairs of retained atoms.

An analysis focussing over the entire molecular struc-
ture, however, could divert the attention from the pres-
ence of local correlations, occurring between spatially
proximal groups of atoms. Moreover, it is interesting to

analyse how such correlations, if any, depend on the rigid-
ity of the structure. As such, in Fig. S7 we zoom on two
regions of the CP matrix of TAM: in the first heatmap,
we consider two of the most rigid residues of the protein,
namely CYS12 and CYS28, which are connected one to
the other by a disulfide bridge. No statistically signifi-
cant modulation of the conservation probability Pcons is
observed in this case, which suggests that the choice of
which atom to preserve in a given residue is not affected
by the presence of others in the same and neighbouring
amino acid. The second plot shows the CP matrix of an
extremely flexible domain of TAM, the first two residues
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FIG. S6: Conditional probabilities CPij for TAM(top left), AKE (top right), AAT (bottom left) and on the NMP
domain of AKE (bottom right). Black (resp. white) vertical lines represent atoms that are never (resp. always)

conserved.

at its N-terminal (ALA1-PHE2): also in this case no
major effect is seen on the conservation probability of
a given atom due to the presence of another one; a few
exceptions are given by those atoms of PHE2 that are,
in general, poorly conserved but show an increased con-
servation probability when atoms of ALA1 are present,

specifically the conservation probability of PHE2-Cα in-
creases in presence of ALA1-C and ALA1-Cβ . Another
case of big deviation between Pcons and CPij is given by
ALA1-N and ALA1-Cα, that are retained in a mutually
exclusive fashion. It seems that one of them is enough to
capture the energy fluctuations of the residue.
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Of course, it is important to underline that this analy-
sis is strongly affected by the statistical noise originating
from the limited number of optimised solutions and by
the intrinsic multi-body nature of the mapping entropy.

Application of the protocol to the last 100 ns of MD
trajectories

Here we briefly summarise the results of the measure-
ment and minimisations of mapping entropy in all three
proteins under examination, taking as sampled structures
the configurations extracted from the last 100 ns of MD
trajectories. Frames are separated by 10 ps in order to
consider 104 configurations, as we do in the work pre-
sented in the main text. 5 × 103 of them are already
included in the 200 ns sampling, while the other half of
them consists of new snapshots. The data that follow
represent a first assessment of how the results of the pro-
tocol illustrated in this paper depend on the extent of
the sampling.

Fig. S8, S9 and S10 show the results of the calcula-
tions performed as in the main text, applied to the set
of shorter trajectories. We restrict ourselves to the case
N = Nα. From Fig. S9 we can observe that the range
of Σ values covered by the optimised and random map-
pings is shifted towards lower ones with respect to those
reported in Fig. 1 of the main text. Consistently with
the latter, the Cα mapping is on the far right region of
the distribution of random mappings, as it was the case
employing 200 ns of sampling.

Regarding the subset of atoms that are more conserved
by the optimisation procedure, we deem it useful to high-
light the changes protein by protein:

• [TAM]: the terminal atoms in the arginine residues
ARG6 and ARG13 are conserved with medium-
to-high values of Σ (Pcons(CZ,ARG13) = 0.58,
Pcons(NH2,ARG6) = 0.46, Pcons(CZ,ARG6) =
0.42). These values are lower than the ones ob-
served with 200 ns of conformational sampling. In-
terestingly, the atoms retained with higher prob-
abilities in the terminal regions of these arginine
residues are not the ones identified in the main text.
Overall, the atoms with highest Pcons are the termi-
nal oxygens of GLU24 (Pcons(OE1,GLU24) = 0.71,

Pcons(OE2,GLU24) = 0.69);

• [AKE]: from Fig. S8 we can see that, as in
the case reported in the main text, the exter-
nal portion of the LID domain is heavily coarse-
grained. Looking at specific atoms, ARG88 is re-
tained with values of Pcons (Pcons(NH2,ARG88) =
0.79, Pcons(CZ,ARG88) = 0.65) even higher than
those obtained with 200 ns of sampling. Instead,
ARG36 and LYS57 are well conserved but with-
out the peaks in probability that we observed in
the main text. This result may suggest that, in
the full simulation, ARG88 is always involved in
highly energetic medium-to-large scale rearrange-
ments, while the other two residues play a less
prominent role in the last 100 ns;

• [AAT]: while the residue ARG101 does not pos-
sess atoms with Pcons higher than 0.21, MET358
terminal atoms are well conserved throughout the
optimised solutions (Pcons(SG,MET358) = 0.25 ,
Pcons(CE,MET358) = 0.25). In the case of AAT
100 ns of MD sampling seem to be too few to ex-
tract relevant information from the trajectory.

The evaluation of the dependence of mapping entropy
values on the duration and other features of the employed
MD trajectories is a fundamental step to critically assess
advantages and limitations of the method. It is reason-
able to expect that, as it is the case with any approach
that relies on MD simulations as input data, a variation
of the latter induces a variation of the results. This vari-
ation can be made use of to investigate the features of
the input, e.g. in the present case different mappings
can emerge from trajectories sampling different struc-
tural basins.

Although this is only a preliminary analysis, the re-
sults described above suggest that several features of the
optimised mappings are retained even when we employ a
different set of configurations. The usage of the last 100
ns of the trajectories has shown small variations, coherent
with the different duration of the input and the stochas-
tic nature of the optimisation procedure, as well as an
overall consistent pattern of results, which demonstrates
the solidity of the approach.
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FIG. S8: Probability Pcons that a given atom is retained in the optimal mapping for each analysed protein,
expressed as a function of the atom index. Atoms are ordered according to their number in the PDB file. These

probabilities are obtained using, for each of the three proteins under examination, a number of retained sites equal
to the number of Cα atoms, and performing thermal averages on the second half (100 ns) of the MD trajectory

employed in this study.

FIG. S9: Distributions of the values of mapping entropy Σ [kJ/mol/K] for random mappings (light blue
histograms) and optimised solutions (green histograms) for each analysed protein. These data are obtained using,
for each of the three proteins under examination, a number of retained sites equal to the number of Cα atoms, and

performing thermal averages on the second half (100 ns) of the MD trajectory employed in this study.
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FIG. S10: Pcons of conserving atoms calculated taking into account only the last 100 ns of the MD simulations. A
visual comparison with Fig. 4 in the main text (for TAM) and Fig. S3 (for AKE and AAT) can show the differences

between the two cases.
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