Examination of the Dynamic Covalent Chemistry of [2+3]-Imine Cages

Tobias H.G. Schick, Frank Rominger and Michael Mastalerz*

Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany).

E-mail: michael.mastalerz@oci.uni-heidelberg.de

Table of Contents

1	NMR Spectra	S2
2	DOSY Experiments	S16
3	Mass Spectra	S18
4	Infrared Spectra	S20
5	Single-crystal X-ray diffraction data	S24
6	Cage Formation Experiments	S30
7	Cage-to-cage Scrambling	S36
8	Aldehyde Exchange	S42
9	Amine Exchange	S56
10	Estimating Thermodynamic Data for Amine Exchange	S65

Figure S1. ¹H NMR spectrum (CDCl₃, 300 MHz) of 1-(tert-butyl)-3,5- dimethylbenzene.*CHCl₃, [#]H₂O.

~ 8.48 ~ 8.30

-1.39

Figure S2. ¹H NMR spectrum of 5-(*tert*-butyl)isophthalic acid-d9 (MeOD, 300 MHz). $*H_2O$, *MeOH.

Figure S3. ¹H NMR spectrum (CDCl₃, 400 MHz) of (5-(*tert*-butyl)-1,3- dihydroxymethylenebenzene-d9. *CHCl₃.

Figure S4. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 1-d9. *CHCl₃.

Figure S5. ¹H NMR spectrum (CDCl₃, 400 MHz) of 1-(*tert*-butyl)-3,5-dimethylbenzene-d9. *CHCl₃.

Figure S6. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 1-(*tert*-butyl)-3,5-dimethylbenzene-d9.

Figure S7. HSQC NMR spectrum CDCl₃, (400/100 MHz) of 1-(*tert*-butyl)-3,5-dimethylbenzene-d9.

Figure S8. ¹H NMR spectrum of 5-(*tert*-butyl)isophthalic acid-d9 (MeOD, 300 MHz). *MeOH, ${}^{\#}H_{2}O$.

Figure S9. ¹³C NMR spectrum (MeOD, 150 MHz) of 5-(*tert*-butyl)isophthalic acid-d9.

Figure S10. HSQC NMR spectrum (MeOD, 600 MHz) of 5-(tert-butyl)isophthalic acid-d9.

Figure S11. ¹H NMR spectrum (CDCl₃, 400 MHz) of (5-(*tert*-butyl)-1,3-dihydroxymethylenebenzene-d9. *CHCl₃

Figure S12. ${}^{13}C$ NMR spectrum (CDCl₃, 100 MHz) of (5-(*tert*-butyl)-1,3-dihydroxymethylenebenzene-d9.

Figure S13. HSQC NMR spectrum (CDCl₃, 400 MHz) of (5-(*tert*-butyl)-1,3-dihydroxymethylenebenzene-d9.

Figure S14. ¹H NMR spectrum (CDCl₃, 400 MHz) of 1-d9. *CHCl₃.

Figure S15. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 1d-9.

Figure S16. HSQC NMR spectrum (CDCl₃, 400 MHz) of 1d-9.

Figure S17. ¹H NMR spectrum of cage 4 (CD₂Cl₂, 600 MHz). *CH₂Cl₂.

Figure S18. ¹³C NMR spectrum (CD₂Cl₂, 150 MHz) of cage 4.

Figure S19. HSQC NMR spectrum of cage 4 (C_6D_6 , 600/150 MHz).

Figure S20. ¹H NMR spectrum (CD₂Cl₂, 600 MHz) of cage 4-d9. *CH₂Cl₂.

Figure S21. ¹³C NMR spectrum (CD₂Cl₂, 150 MHz) of cage 4-d9.

Figure S22. HSQC NMR spectrum (CD₂Cl₂, 600 MHz) of compound 4-d9.

Figure S23. ¹H NMR spectrum (CDCl₃, 300 MHz) of cage 5. [#]CHCl₃*MeOH.

Figure S24. ¹³C NMR spectrum (CDCl₃, 100 MHz) of cage 5.

Figure S26. ¹H NMR spectrum (CD₂Cl₂, 600 MHz) of cage 5-d9. *CH₂Cl₂

Figure S28. HSQC NMR spectrum (CD₂Cl₂, 600 MHz) of compound 5-d9.

2. DOSY Experiments

DOSY NMR experiments were calibrated using known self-diffusion values for the solvents used (D_{solv}) .²⁶ The solvodynamic radii were estimated using the semi-empirical modification of the Stokes-Einstein equation proposed by Chen and Chen.²⁷ This equation was solved for r_s using values of r_{solv} and η from the literature.²⁸

D is the measured diffusion coefficient $(m^2 \cdot s^{-1})$

 k_B is Boltzmann constant (1.3806485 ·10 m²·kg·s⁻²·K⁻¹)

T is the temperature (K)

 r_{solv} is the hydrodynamic radius of the solvent (m)

 r_s is the hydrodynamic radius of the analyte (m)

 η is the viscosity of the solvent at temperature $T(\text{kg}\cdot\text{m}^{-1}\cdot\text{s}^{-1})$

Table S1: Estimation of the hydrodynamic radius of cage compounds (r_h) in the corresponding solvents using parameters from literature and diffusion coefficients measured by DOSY NMR.

Compound	T [K]	Solvent	$\frac{D_{solv} \cdot 10^{-9}}{[m^2 \cdot s^{-1}]}$	r _{solv} [nm]	η·10 ⁻³ [kg·m ⁻¹ ·s ⁻¹]	$D \cdot 10^{-10}$ [m ² ·s ⁻¹]	<i>r_h</i> [nm]
4	298	C_6D_6	2.18	0.270	0.603	4.89	0.73
5	298	CDCl ₃	2.45	0.260	0.542	6.31	0.63

Figure S29. DOSY NMR spectrum of compound 4 (C₆D₆, 298 K, 400 MHz).

Figure S30. DOSY NMR spectrum of compound 5 (CDCl₃, 298 K, 400 MHz).

3. Mass Spectra

Figure S31. MALDI-TOF MS (DCTB) of cage 4. The isotopic pattern of the signal at m/z = 961.323 in the zoomed spectrum is not visible since the signal was cut due to its high intensity.

Figure S32. MALDI-TOF MS (DCTB) of cage **4-d27**. The isotopic pattern of the signal at m/z = 988.817 in the zoomed spectrum is not visible since the signal was cut due to its high intensity.

Figure S33. MALDI-TOF MS (DCTB) of cage 5. The isotopic pattern of the signal at m/z = 755.549 in the zoomed spectrum is not visible since the signal was cut due to its high intensity.

Figure S34. MALDI-TOF MS (DCTB) of cage **5-d27**. The isotopic pattern of the signal at m/z = 782.690 in the zoomed spectrum is not visible since the signal was cut due to its high intensity.

4. Infrared Spectra

Figure S35. IR spectrum (ATR) of 1-(tert-butyl)-3,5-dimethyl-benzene-d9.

Figure S36. IR spectrum (ATR) of 5-(*tert*-butyl)isophthalic acid-d9.

Figure S37. IR spectrum (ATR) of (5-(*tert*-butyl)-1,3-dihydroxymethylenebenzene-d9.

Figure S38. IR spectrum (ATR) of compound 1-d9.

Figure S39. IR spectrum (ATR) of cage compound 4.

Figure S40. IR spectrum (ATR) of cage compound 4-d9.

Figure S41. IR spectrum (ATR) of cage compound 5.

Figure S42. IR spectrum (ATR) of cage compound 5d-9.

5. Single-crystal X-ray Diffraction Data

Crystal structure of compound 4-d27

Figure S43. Crystal structure of compound **4-d27**. Atoms of carbon are depicted in white and nitrogen in blue. Ellipsoid contour plot at a 50% probability level.

Crystals were obtained by slow evaporation of Benzene.

CCDC-number : 2016234

 Table S2:
 Crystal data and structure refinement for 4-d27.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	C ₉₀ H ₁₀₈ N ₆ 1273.82 200(2) K 1.54178 Å orthorhombic Pnna 4				
Unit cell dimensions	a = 29.9197(13) Å α = 90 deg. b = 21.7163(8) Å β = 90 deg. c = 12.1918(4) Å γ = 90 deg				
Volume	7921.6(5) Å ³				
Density (calculated)	1.07 g/cm^3				
Absorption coefficient	0.47 mm ⁻¹				
Crystal shape	plate				
Crystal size	0.089 x 0.066 x 0.019 mm ³				
Crystal colour	colourless				
Theta range for data collection	3.0 to 52.6 deg.				
Index ranges	-28≤h≤30, -22≤k≤11, -12≤l≤9				
Reflections collected	19298				
Independent reflections	4513 (R(int) = 0.0720)				
Observed reflections	$2610 (I > 2\sigma(I))$				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	1.39 and 0.79				
Refinement method	Full-matrix least-squares on F ²				
Data/restraints/parameters	4513 / 79 / 493				
Goodness-of-fit on F ²	1.06				
Final R indices (I>2sigma(I))	R1 = 0.061, WR2 = 0.126				
Largest diff. peak and hole	0.14 and -0.15 eÅ ⁻³				

Crystal structure of compound 4

Figure S44 Crystal structure of compound **4**. Atoms of carbon are depicted in white and nitrogen in blue. Ellipsoid contour plots at a 50% probability level.

Crystals were obtained by diffusion of methanol into a chloroform solution of cage 4.

CCDC-number : 2016637

Empirical formula	C66H84N6	
Formula weight	961.39	
Temperature	200(2) K	
Wavelength	1.54178 Å	
Crystal system	triclinic	
Space group	Pī	
Z	2	
Unit cell dimensions	a = 13.1663(8) Å	$\alpha = 71.914(4) \text{ deg.}$
	b = 14.0425(8) Å	$\beta = 88.948(5) \text{ deg.}$
	c = 18.3518(10) Å	$\gamma = 85.804(5) \text{ deg.}$
Volume	3216.7(3) Å ³	
Density (calculated)	0.99 g/cm^3	
Absorption coefficient	0.44 mm ⁻¹	
Crystal shape	brick	
Crystal size	0.106 x 0.105 x 0.00	68 mm ³
Crystal colour	colourless	
Theta range for data collection	2.5 to 67.2 deg.	
Index ranges	-14≤h≤15, -16≤k≤1	6, - 21≤l≤12
Reflections collected	29468	
Independent reflections	11058 (R(int) = 0.02)	539)
Observed reflections	6567 (I > $2\sigma(I)$)	
Absorption correction	Semi-empirical from	n equivalents
Max. and min. transmission	1.82 and 0.65	
Refinement method	Full-matrix least-sq	uares on F ²
Data/restraints/parameters	11058 / 0 / 664	
Goodness-of-fit on F ²	1.04	
Final R indices (I>2sigma(I))	R1 = 0.075, WR2 =	0.191
Largest diff. peak and hole	0.62 and -0.31 eÅ ⁻³	

 Table S3:
 Crystal data and structure refinement for 4.

Crystal structure of compound 5

Figure S45 Crystal structure of compound **5**. Atoms of carbon are depicted in white and nitrogen in blue. Ellipsoid contour plots at a 50% probability level.

Crystals were obtained by slow evaporation of chloroform.

CCDC-number : 2016235

Table S4: Crystal data and structure refinement for 5.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	$C_{48}H_{66}N_8$ 755.08 200(2) K 1.54178 Å trigonal P_{ii} 4 $a = 11.9345(3)$ Å $\alpha = 90$ deg.
	$b = 11.9345(3) \text{ Å} \beta = 90 \text{ deg.}$
X7 1	$c = 40.593(2) \text{ Å}$ $\gamma = 120 \text{ deg.}$
volume	$500/.2(4) A^{3}$
Density (calculated)	1.00 g/cm^3
Absorption coefficient	0.46 mm ⁻¹
Crystal shape	
Crystal size	$0.142 \ge 0.082 \ge 0.055 \text{ mm}^3$
Crystal colour	colourless
Theta range for data collection	2.2 to 63.7 deg.
Index ranges	-12≤h≤13, -13≤k≤13, -47≤l≤28
Reflections collected	30462
Independent reflections	4294 (R(int) = 0.0803)
Observed reflections	2623 (I > $2\sigma(I)$)
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.48 and 0.73
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4294 / 667 / 338
Goodness-of-fit on F ²	1.72
Final R indices (I>2sigma(I))	R1 = 0.175, wR2 = 0.391
Absolute structure parameter	0.7(3)
Largest diff. peak and hole	1.14 and -0.69 eÅ ⁻³

6. Cage Formation Experiments

Figure S46. Stacked ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the isolated precipitates (reaction a, b, c, e, f, g). ⁺CHCl₃, [#]1,4-Dioxane, *THF.

Figure S47. Stacked ¹H NMR spectra (CD_2Cl_2 , 300 MHz) from the mother liquor (reaction a, b, c, d, e, f, g, h). *Cage compound 4, #1,3,5-trimethoxybenzene as standard.

Figure S48. Stacked ¹H NMR spectra (CD_2Cl_2 , 300 MHz) from the isolated precipitate (reaction a, b, c, e, f, g). ^{#1},4-Dioxane, ⁺THF.

Figure S49. Stacked ¹H NMR spectra (CD_2Cl_2 , 300 MHz) from the isolated solid form the mother liquor (reaction a, b, c, d e, f, g, h). *Cage compound **4**, #1,3,5-Trimethoxybenzene as standard.

Figure S50. Stacked ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the isolated precipitates (reaction c, f, g). #1,4-Dioxane, +THF.

Figure S51. Stacked ¹H NMR spectra (CD_2Cl_2 , 300 MHz) from the isolated solid form the mother liquor (reaction a, b, c, d e, f, g, h). *Cage compound **5**, [#]1,3,5-Trimethoxybenzene as standard.

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 chemical shift /ppm

Figure S52. Stacked ¹H NMR spectra (CD_2Cl_2 , 300 MHz) from the isolated precipitate (reaction c, f, g). [#]1,4-Dioxane, *THF.

Figure S53. ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the isolated solid form the mother liquor (reaction a, b, c, d, e, f, g, h). *Cage compound **5**, [#]1,3,5-Trimethoxybenzene as standard.

7. Cage-to-Cage Scrambling

Figure S54. MS MALDI (TOF, DCTB) spectra of the reactions a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d before addition of water.

Figure S55. MS MALDI (TOF, DCTB) spectra of the reactions a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7days after addition of water.

With TFA

Figure S56. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d.

Figure S57. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d.

Figure S58. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d.

Figure S59. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d.

With TFA

Figure S60. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d.

Figure S61. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d.

8. Aldehyde Exchange

Figure S62. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction solution after 7d.

Figure S63. ¹H NMR spectra (CD₂Cl₂, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the isolated precipitates (reaction a, b, c, e, f, g; reaction time: 7d).

Figure S64. ¹H NMR spectra (CD₂Cl₂, 300 MHz from the isolated precipitates (reaction a, b, c, e, f, g; reaction time: 7d). Integrals of Signals at δ = 7.27 ppm and δ = 1.37 ppm are given.

Figure S65. ¹H NMR spectra (CD₂Cl₂, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the isolated solid from the mother liquor (reaction a, b, c, d, e, f, g, h; reaction time: 7d)..

Figure S66. ¹H NMR spectra (CD₂Cl₂, 300 MHz;) from the mother liquor (reaction a, b, c, e, f, g; reaction time: 7d). Integrals for signals at δ = 7.27 ppm and δ = 1.37 ppm are given.

With TFA

Figure S67. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction solution after 7d.

Figure S68. ¹H NMR spectra (CD₂Cl₂, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the isolated precipitate (reaction a, b, c, e, f, g; reaction time: 7d).

Figure S69. ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the isolated precipitates (reaction a, b, c, e, f, g; reaction time: 7d). Integrals of signals at δ = 7.27 ppm and δ = 1.37 ppm are given.

Figure S70. ¹H NMR spectra (CD₂Cl₂, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the isolated solid from the mother liquor (reaction a, b, c, d, e, f, g, h; reaction time: 7d)..

Figure S71. ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the mother liquor (reaction a, b, c, e, f, g; reaction time: 7d). Integrals for signals at δ = 7.27 ppm and δ = 1.37 ppm are given.

Figure S72. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction solution after 7d.

Figure S73. ¹H NMR spectra (CDCl₃, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the isolated precipitate (reaction b, c, f, g; reaction time: 7d).

Figure S74. ¹H NMR spectra (CDCl₃, 300 MHz) from the isolated precipitates (reaction a, b, c, e, f, g; reaction time: 7d). Integrals of signals at δ = 7.59 ppm and δ = 1.40 ppm are given.

Figure S75. ¹H NMR spectra (CDCl₃, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the solid from the mother liquor (reaction a, b, c, d, e, f, g, h; reaction time: 7d).

Figure S76. ¹H NMR spectra (CDCl₃, 300 MHz) from the mother liquor (reaction a, b, c, e, f, g; reaction time: 7d). Integrals of signals at δ = 7.59 ppm and δ = 1.40 ppm are given.

With TFA

Figure S77. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction solution after 7d.

Figure S78. ¹H NMR spectra (CDCl₃, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the isolated precipitate (reaction b, c, f, g; reaction time: 7d).

Figure S79. ¹H NMR spectra (CDCl₃, 300 MHz) from the isolated precipitates (reaction a, b, c, e, f, g; reaction time: 7d). Integrals of signals at δ = 7.59 ppm and δ = 1.40 ppm are given.

Figure S80. ¹H NMR spectra (CDCl₃, 300 MHz; region δ =11.0 ppm – 6.00 ppm) from the solid from the mother liquor (reaction a, b, c, d, e, f, g, h; reaction time: 7d).

Figure S81. ¹H NMR spectra (CDCl₃, 300 MHz) from the mother liquor (reaction a, b, c, e, f, g; reaction time: 7d). Integrals of signals at δ = 7.59 ppm and δ = 1.40 ppm are given.

9. Amine Exchange

Without TFA

Table S5. Summary where scrambling was detected from the recorded data.

entry	solvent	Exchange of amine	Cage found in	1	Exchange of amine observed in ¹ H NMR	
		MALDI MS	mother liquor	solid	mother liquor	solid
a	МеОН	v	 ✓ 	v	✓ (11%)	×
b	EtOH	v	×	~	×	×
c	MeCN	v	×	~	×	×
d	CH_2Cl_2	\checkmark	v	_1	✓ (36%)	×
e	CHCl ₃	\checkmark	v	~	×	×
f	THF	\checkmark	×	~	×	×
g	1,4-Dioxane	\checkmark	×	~	×	×
h	Toluene	~	~	_1	×	×

¹ cage stayed in solution.

Figure S82. MS MALDI (TOF, DCTB) spectra of the reactions a, b, c, d, e, f, g, h taken out of the reaction mixture after 7d. An exchange of amines can be observed with all solvents.

Figure S83. ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the isolated precipitate (reaction a, b, c, e, f, g; reaction time: 7d).

Figure S84. ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the mother liquor residue (reaction a, b, c, d, e, f, g, h; reaction time: 7d). Relative integrals are given.

with TFA

Table S6. Summary where scrambling was detected from the recorded data.

entry solvent		Exchange of aldebydes		in	Exchange of aldehydes observed in ¹ H NMR		
		observed in MALDI MS	mother liquor	solid	mother liquor	solid	
a	МеОН	v	✓ ²	~	v	×	
b	EtOH	~	~	~	×	×	
c	MeCN	~	\checkmark^2	~	✓ (71%)	✓ (17%)	
d	CH_2Cl_2	~	~	~	✓ (55%)	✓ (59%)	
e	CHCl ₃	~	~	~	✓ (29%)	×	
f	THF	✓ ³	×	~	×	×	
g	1,4-Dioxane	~	×	~	×	×	
h	Toluene	~	~	_1	✓ (33%)	_1	

¹ cage stayed in solution. ² in traces. ³ very unclean.

Figure S85. MS MALDI (TOF, DCTB) spectra of the reactions a, b, c, d, e, f, g, h taken out of the homogeneous reaction mixture after 7d.

Figure S86. ¹H NMR spectra (CD₂Cl₂, 300 MHz) from the isolated precipitate (reaction a, b, c, d, e, f, g; reaction time: 7d.

Figure S87. ¹H NMR spectra (CD_2Cl_2 , 300 MHz) from the solid from the mother liquor (reaction a, b, c, d, e, f, g, h; reaction time: 7d). Relative integrals are given.

Without TFA

Table S7. Summary where scrambling was detected from the recorded data.

entry	solvent	Exchange of amines	Cage found in	ı	Exchange of amines observed in ¹ H NMR	
		MALDI MS	mother liquor	solid	mother liquor	solid
a	MeOH	 	~	✓	×	✓ (47%)
b	EtOH	×	~	_1	×	_1
c	MeCN	×	v	~	×	✓ (7%)
d	CH_2Cl_2	×	v	_1	×	_1
e	CHCl ₃	×	\checkmark	_1	×	_1
f	THF	×	v	~	×	×
g	1,4-Dioxane	×	\checkmark	X	×	×
h	Toluene	×	✓	_1	×	_1

¹ cage stayed in solution.

Figure S88. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction solution after 7d. An exchange of amines can be observed with methanol.

Figure S89. ¹H NMR spectra (CDCl₃, 300 MHz). from the isolated precipitate (reaction a, c, f, g; reaction time: 7d).

Figure S90. ¹H NMR spectra (CDCl₃, 300 MHz) from the isolated solid from the mother liquor (reaction a, b, c, d, e, f, g, h; reaction time: 7d).

with TFA

Table S8. Summary where scrambling was detected from the recorded data.

entry	solvent	Exchange of amines	Cage found	lin	Exchange of observed in	of amines n ¹ H NMR
		MALDI MS	Mother liquor	solid	Mother liquor	solid
a	МеОН	v	V	v	×	✓ (100%)
b	EtOH	×	v	_1	×	_1
c	MeCN	×	v	✓	×	✓ (13%)
d	CH_2Cl_2	×	~	_1	×	_1
e	CHCl ₃	×	~	_1	×	_1
f	THF	×	~	v	×	×
g	1,4-Dioxane	×	v	×	×	_1
h	Toluene	×	v	_1	×	_1

¹ cage stayed in solution.

Figure S91. MS MALDI (TOF, DCTB) spectra of the reaction a, b, c, d, e, f, g, h taken out of the homogeneous reaction solution after 7d. An exchange of amines can be observed in methanol.

Figure S92. ¹H NMR spectra (CDCl₃, 300 MHz) from the isolated precipitate (reaction a, c, f, g; reaction time: 7d).

Figure S93. ¹H NMR spectra (CDCl₃, 300 MHz) from the mother liquor residue (reaction a, b, c, d, e, f, g, h; reaction time: 7d).

10. Estimating Thermodynamic Data for Amine Exchange

In dichloromethane-*d*2

Scheme S1 Dynamic transformation of cage 5 to 4 and vice versa with TFA as a catalyst.

Table S9.Integrals of diagnostic signals of compound 2, 3, 4, 5 found in the reaction

	¹ H NMR integrals					Normed integrals			
	Cage 4	Cage 5	Amine 2	Amine 3		Cage 4	Cage 5	Amine 2	Amine 3
entry	<i>δ</i> =7.28	<i>δ</i> =7.58	<i>δ</i> = 3.84	<i>δ</i> =2.71		<i>δ</i> =7.28	<i>δ</i> = 7.58	<i>δ</i> =3.84	δ = 2.71
	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm
	(3H)	(6H)	(6H)	(6H)		(1H)	(1H)	(1H)	(1H)
А	0.25	1.00	1.21	0.77		0.08	0.17	0.20	0.13
В	0.29	1.00	1.71	0.84		0.10	0.17	0.29	0.14
С	0.47	1.00	4.32	1.87		0.16	0.17	0.72	0.31
D	0.46	1.00	5.70	2.18		0.15	0.17	0.95	0.36
Е	0.48	1.00	8.82	4.36		0.16	0.17	1.47	0.73
F	0.91	1.00	1.73	0.77		0.30	0.17	0.29	0.13
G	0.20	1.00	1.48	1.17		0.07	0.17	0.25	0.20
Н	0.14	1.00	1.21	1.16		0.05	0.17	0.20	0.19

Table S10.Calculation of equilibrium concentration of compounds 4, 3, 5, 2 in the reactionssolution.

	used molar amounts for synthesis				Calculated molar amounts from ¹ H NMR spectrum			
entry	Aldehyde	Amine	Amine		Cage	Amine	Cage	Amine
	1	2	3		4	3	5	2
	μmol	μmol	μmol		μmol	μmol	μmol	μmol
A	13.6	8.40	8.90	-	1.51	2.86	3.02	5.38
В	13.6	11.6	8.90		1.66	3.16	2.87	8.27
С	13.6	17.3	8.90		2.20	4.23	2.34	12.9
D	13.6	20.1	8.90		2.17	4.18	2.36	15.8
Е	13.6	25.7	8.90		2.22	4.27	2.31	21.3
F	11.2	4.80	12.6		2.71	1.82	1.49	5.78
G	9.00	9.60	12.1		1.15	3.84	2.88	6.90
н	4.80	9.60	13.2		0.96	2.73	3.44	2.88

$$K = \frac{[cage \mathbf{5}] * [amine \mathbf{2}]^2}{[cage \mathbf{4}] * [amine \mathbf{3}]^2}$$
(I)

$$\Delta G_{eq} = -RT * \ln \left(K_{eq} \right) \tag{II}$$

Table S11. Calculated equilibrium constants $(K_{eq.})$ and Gibbs free energy (ΔG_{eq}) using equation I and II and the concentration of compound 2, 3, 4, 5.

entry	K _{eq}	∆G_{eq} kJ∙mol⁻¹
A	7.09	-4.77
В	11.8	-6.02
С	9.92	-5.59
D	15.5	-6.67
E	25,8	-7.92
F	5.53	-4.17
G	8.07	-5.09
<u>н</u>	3.98	-3.36

Cage **4** -> Cage **5**

The average equilibrium constant for transformation of cage **4** to cage **5** is $K_{eq} = 11.0$ and thus $\Delta G_{eq} = -5.83 \text{ kJ} \cdot \text{mol}^{-1}$.

Figure S94. ¹H NMR spectra (CD₂Cl₂, 300 MHz) for reactions A–H with integrated signals.

In toluene_{-d8}

Scheme S2 Dynamic transformation of cage 5 to 4 and vice versa with TFA as a catalyst.

Table S12. Integrals of diagnostic signals of compound 2, 3, 4, 5 found in the reaction solution. ¹calculated as leftover after the reaction from the formation of cage 5.

	¹ H NMR integrals					Normed integrals			
	Cage 4	Cage 5	Amine 2	Amine 3		Cage 4	Cage 5	Amine 2	Amine 3
entry	δ = 8.71 ppm	δ = 7.86 ppm	δ = 3.74 ppm	δ = 2.18 ppm		δ = 8.71 ppm	δ = 7.86 ppm	δ = 3.74 ppm	δ = 2.18 ppm
	(3H)	(6H)	(6H)	(6H)		(1H)	(1H)	(1H)	(1H)
А	1.00	1.04	0.31	0.00 ¹		0.17	0.17	0.05	0.00 ¹
В	1.00	0.84	0.98	0.00 ¹		0.17	0.14	0.16	0.00 ¹
C	1.00	4.41	1.81	0.00 ¹		0.17	0.74	0.30	0.001

Table S13. Calculation of equilibrium concentration of compounds 4, 3, 5, 2 in the reactions solution. ¹calculated as leftover after the reaction from the formation of cage 5.

used molar amounts for synthesis				Calculated molar amounts from ¹ H NMR spectrum				
Aldehyde	Amine	Amine		Cage	Amine	Cage	Amine	
1	2	3		4	3	5	2	
μmol	μmol	μmol	_	μmol	μmol	μmol	μmol	
13.6	25.7	8.90	-	2.22	4.28 ¹	2.31	21.3	
11.2	4.80	12.6		2.28	0.97 ¹	1.92	6.63	
9.20	9.60	12.1		0.75	3.02 ¹	3.29	7.71	
	used mola sy Aldehyde 1 μmol 13.6 11.2 9.20	used molar amou synthesis Aldehyde Amine 1 2 μmol μmol 13.6 25.7 11.2 4.80 9.20 9.60	used molar amounts for synthesis Aldehyde Amine Aldehyde Amine Amine 1 2 3 µmol µmol µmol 13.6 25.7 8.90 11.2 4.80 12.6 9.20 9.60 12.1	used molar amounts for synthesis Aldehyde Amine 1 2 3 μmol μmol μmol 13.6 25.7 8.90 11.2 4.80 12.6 9.20 9.60 12.1	used molar amounts for synthesis Calcu from from from from from from from from	Calculated m used molar amounts for synthesis Calculated m Aldehyde Amine Amine Cage Amine 1 2 3 4 3 μ mol μ mol μ mol μ mol μ mol 13.6 25.7 8.90 2.22 4.28 ¹ 11.2 4.80 12.6 2.28 0.97 ¹ 9.20 9.60 12.1 0.75 3.02 ¹	Calculated molar amounts for synthesis Aldehyde Amine Amine Amine Cage Amine Cage 1 2 3 4 3 5 μ mol 11.2 4.80 12.6 2.28 0.971 1.92 9.20 9.60 12.1 0.75 3.021 3.29	

$$K = \frac{[cage \mathbf{5}] * [amine \mathbf{2}]^2}{[cage \mathbf{4}] * [amine \mathbf{3}]^2}$$
(I)

$$\Delta G_{eq} = -RT * \ln \left(K_{eq} \right) \tag{II}$$

Table S14. Calculated equilibrium constants $(K_{eq.})$ and Gibbs free energy (ΔG_{eq}) using equation I and II and the concentration of compound 2, 3, 4, 5.

Cage **5** -> Cage **4**

Solubility of cage 4 and 5

The solubility was determined by suspending a defined amount (ca. 8 mg) of the pure cages in a defined volume (ca. 2 mL) of the corresponding solvents and sonicate the slurry. Not dissolved cages was removed by filtration via a syringe filter and the solvent of the filtrate was removed in vacuum The weight of the remaining residue was used to estimate the solubility in $mg \cdot mL^{-1}$.

Solubility of Cage 4 ¹	Soluvility of Cage 5 ¹
<1	2
<1	3
<1	<1
5	>15
<1	6
<1	1
<1	<1
>12	9
	Solubility of Cage 4 ¹ <1 <1 <1 <1 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 >>12

Table S15: Solubility of cage compounds 4 and 5 in va	various solvents.
---	-------------------

¹in mg·mL⁻¹