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SUMMARY
The approval of the first kinase inhibitor, Gleevec, ushered in a paradigm shift for oncological treatment—the
use of genomic data for targeted, efficacious therapies. Since then, over 48 additional small-molecule kinase
inhibitors havebeen approved, solidifying the case for kinases as a highly druggable and attractive target class.
Despite the role deregulated kinase activity plays in cancer, only 8% of the kinome has been effectively
‘‘drugged.’’ Moreover, 24% of the 634 human kinases are understudied. We have developed a comprehensive
scoring system that utilizes differential gene expression, pathological parameters, overall survival, and muta-
tional hotspot analysis to rank and prioritize clinically relevant kinases across 17 solid tumor cancers from The
Cancer Genome Atlas. We have developed the clinical kinase index (CKI) app (http://cki.ccs.miami.edu) to
facilitate interactive analysis of all kinases in each cancer. Collectively, we report that understudied kinases
have potential clinical value as biomarkers or drug targets that warrant further study.
INTRODUCTION

The human genome encodes about 634 kinases (pseudoki-

nases included). However, as of 2019, only 49 kinases (8%)

are currently primary targets of FDA-approved small-molecule

cancer drugs1–3 (Figure 1). Furthermore, 70% of these

approved cancer kinase drug targets belong to the tyrosine

kinase (TK) group. For several cancers, though, targeting the

TK group has not been an effective strategy, despite over-

whelming evidence of receptor TK dysregulation in those

tumors.4 For example, TK inhibitors (TKIs) have shown little

to no clinical efficacy in the treatment of bladder, esophageal,

prostate, brain, and stomach cancers.4–8 While it has been

firmly established that aberrant kinase activity indeed leads

to cancer progression and metastasis in many cancers, re-

searchers have not fully elucidated the ideal cancer-specific

kinase targets or novel drug combinations to improve the stan-

dard of care.

To promote the study and validation of novel kinase targets,

we herein describe a kinase-prioritization index using data

from The Cancer Genome Atlas (TCGA) across 17 cancer

types for researchers to use as a starting point for further

investigation (Table S1 provides an overview of the available

cancer data). By combining differential gene expression

(DGE), Kaplan-Meier (KM) survival, and mutational hotspot

and clinical/pathological correlation analyses, we have devel-
Cell Rep
This is an open access article und
oped a scoring system, the clinical kinase index (CKI), to prior-

itize clinically relevant kinase targets for each cancer cohort

(Figure 2). We define ‘‘clinically relevant’’ as having a correla-

tion or relationship to critical clinical benchmarks, such as

tumor grade and American Joint Committee on Cancer

(AJCC) tumor, node, metastasis (TNM) staging.9 In short, we

have analyzed and highlighted kinases whose mRNA expres-

sion levels appear to be prognostic and associated with the

progression of cancer. Since kinase activity does not always

correspond with mRNA expression levels (e.g., mTOR onco-

genic activity is due to an increase in activation via phosphor-

ylation10), we also leveraged TCGA genomic data and

prioritized kinases that confer a selective advantage to tumor

development as measured by the accrual and clustering of

mutations at specific regions of their amino acid sequence.

Moreover, by integrating our data with external target annota-

tion resources, we evaluated the CKI scores based on a num-

ber of clinical classifications, such as target development level

(TDL),11 which classifies a target based on available target vali-

dation knowledge (Tclin, Tchem, Tbio, and Tdark); kinase fam-

ily class (which corresponds to phylogenecity and substrates);

clinical trial data; and MOA (mechanism of action) of approved

drugs for each cancer type.1,11–13

With over 175 kinase drugs currently in clinical trials, new tar-

gets are being evaluated, including AKT, aurora kinases, CHEK1,

and CDK1.14 Despite the large number of drugs that are being
orts Medicine 1, 100128, October 20, 2020 ª 2020 The Authors. 1
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Figure 1. Overview of Kinase TDLs

(A) There are 634 kinases annotated on Pharos. In total, 8.2% are considered Tclin, and 151 of 634 are considered ‘‘understudied’’; these represent kinases that

bear Tdark, Tbio, and Tchem annotations.

(B) Certain groups of kinases are historically understudied. The CMGC group, CAMK group, and ‘‘other’’ group kinases are enriched for understudied kinases,

while TKs have been extensively explored.
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investigated, the majority of trials are for well-known, previously

approved kinase targets such as EGFR, VEGFR, phosphatidyli-

nositol 3-kinase (PI3K), and mTOR.14 Nevertheless, there are

still no small-molecule drugs that target kinases in the calmod-

ulin-dependent protein kinase (CaMK), CK1, or AGC groups of

kinases as their primary target (Ki < 10 nM), notwithstanding

increased evidence for their clinical relevance in cancer.15,16

The extent of such a misrepresentation has been highlighted

by the NIH-funded Illuminating the Druggable Genome (IDG;

https://druggablegenome.net/) project, where analysis con-

cludes that 23.8% (151) of the 634 kinases are ‘‘understudied,’’

as they lack sufficient GeneRIFs, antibodies, citations in the liter-

ature, and potent chemical probes.11 Consistent with this is the

fact that the current kinase inhibitors target not only a narrow

range of targets, but also a narrow range of pathways including

angiogenesis, cell adhesion, immune system signaling (cytokine,

T cell receptor, B cell receptor), and anti-apoptotic pathways.17

For example, all kinase inhibitors for renal cell carcinoma target

angiogenic pathways.18 It is likely that the most optimal strategy

for treating cancers is targeting multiple orthogonal pathways

that work in a synergistic manner, as opposed to targeting ki-

nases with overlapping pathways.19–21 It has already been

shown that this strategy may prevent or reduce the incidence

of resistance pathways and kinome reprogramming, which is

inevitable upon singular treatment with a highly specific kinase

drug such as the EGFR inhibitor, lapatinib.22,23 The CKI is a

tool that may be used to facilitate the exploration of clinically

relevant new kinase drug targets for this purpose.

Along with this report, we have made available the CKI app

(http://cki.ccs.miami.edu/) to access, interactively explore,

download, and analyze all data and results of this study. With
2 Cell Reports Medicine 1, 100128, October 20, 2020
this study, we provide a resource for the scientific community

where the clinical relevance of kinase genes across solid-tumor

cancers can quickly be evaluated, especially for understudied ki-

nases and cancers for which no approved first-line kinase ther-

apy exists.

RESULTS

The CKI Predicts Clinically Validated Kinase Targets
The CKI (http://cki.ccs.miami.edu/) serves the purpose of

ranking and categorizing the clinical relevance of the entire ki-

nome, with a special focus on understudied and dark kinases

(Figure 3). To generate a CKI score for each kinase in each can-

cer cohort, four parameters were taken into consideration: DGE,

KM survival, mutational hotspots, and clinical-pathological fea-

tures. For each DGE, KM survival, and mutational hotspot, ki-

nases received a score of 1 if there was statistical significance

(see Method Details). Clinical and pathological data varied by

cancer cohort; thus, a clinical score was generated using

ANOVA analysis to determine if kinase expression correlated

with progression through stage or grade. For each clinical-path-

ological parameter, there was a maximum score of 1. The raw

CKI score for each kinase in a cancer cohort is the sum of the

scores from DGE, survival, mutational analysis, and clinical

scores. Raw scores were then divided by the total possible score

and converted to percentages. For comparison across cancer

cohorts, a rank-ordered list was also generated, which is avail-

able for analysis on the CKI app.

We have observed several trends in the CKI that may under-

score the validity of our model and prioritization system. First,

the CKI accurately prioritizes currently in-trial or approved drug

https://druggablegenome.net/
http://cki.ccs.miami.edu/
http://cki.ccs.miami.edu/


Figure 2. Outline of the CKI Workflow

(A) Data were extracted from multiple sources for curation, filtering, and normalization.

(B) mRNA levels and mutational hotspots were analyzed to generate DGE analyses and mutational frequencies. mRNA levels were also correlated with survival

and clinical/pathological outcomes. Various statistical methods were employed, and all significant correlations were scored.

(C) Final CKI scores were generated and mapped to other data annotations for further analysis and interpretation.
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targets for several cancers in the TCGA. As such, the average

and median CKI scores for kinases that have been under clinical

investigation are statistically significantly higher than those that

have not in BRCA, head and neck squamous carcinoma

(HNSC), renal clear cell (KIRC), lung adenocarcinoma (LUAD),

lung squamous carcinoma (LUSC), rectal adenocarcinoma

(READ), stomach adenocarcinoma (STAD), and thyroid carci-

noma (THCA) cancers (p < 0.05; Table S2; Data S1A–S1P).

Furthermore, kinases that are MOA targets for approved drugs

have significantly higher average and median CKI scores than

non-MOA targets across all cancers (p < 0.0001) (p < 0.05 for

select cancer cohorts; Data S2A–S2N; Table S2). These results

generally suggest that less-studied kinases that rank as high

as clinical kinases should be prioritized for further validation

and clinical investigation. The majority of the high-scoring tar-

gets have been or are currently under investigation. For example,

breast tumor kinase (PTK6) is the highest-ranking kinase for

BRCA. This kinase is regarded as the key regulator in the onco-

genic transformation of breast cancer, is overexpressed in >80%

of breast tumors, and is a highly attractive drug target24–26 but

has yet to enter clinical study. Other high-ranking kinases include

those that are already in clinical trial or are FDA-approved tar-

gets, including PI3K kinases, MAP kinases, cyclin-dependent ki-

nases, and aurora kinases. In the LUAD cohort, EGFR andMEK1

rank highly; they represent targets of an approved lung cancer

drug and compounds under investigation in several clinical

trials.27–30 Similarly, MET and RET are among the high-scoring

Tclin kinases for thyroid cancer. On average, we find that Tclin

kinases had higher CKI scores, suggesting that many of the

most clinically relevant or prognostic cancer kinases have
already been studied extensively or are targets of approved

drugs. The highest-scoring kinase in all datasets is PLK1

(Tchem), with a CKI of 70.83 in kidney renal papillary cancer

(KIRP). PLK1, like other Tchem kinases, ranks very highly and

is an attractive target that has been under clinical investiga-

tion.31,32 PLK1 is overexpressed in a number of cancers, and

its activity has been linked to tumor growth, metastasis, and

drug resistance.31 AURKA and AURKB also consistently scored

high across every cancer cohort, as did other cell-cycle- and mi-

toses-related kinases (BUB1B, BUB1, CDK1).

In addition to Tclin kinases, multiple understudied kinases

exhibit a high CKI score, thus indicating they are likely clinically

relevant targets. Understudied kinases rank among the top

20 kinase genes for every cancer cohort scored. Several of these

kinases appear to have mRNA levels that are prognostic of sur-

vival and tumor progression in multiple cancers. For example,

ERN2 (Tbio) is the second-highest-scoring kinase in BRCA and

cholangiocarcinoma (CHOL) and sixth in LIHC. Because of its

understudied nature, there are little to no cancer-related publica-

tions available to assess the literature evidence of ERN2 as a po-

tential target. ERN2 does code for the protein IRE1b, which is

part of the unfolded-protein stress response pathway.33 The

unfolded protein response (UPR) pathway is a pro-survival

pathway that is hijacked by cancer cells and thus has been a

topic of discussion in the context of drug development.34 Other

understudied kinases that score favorably in the majority of can-

cer cohorts include PKMYT1 (Tchem), DCLK3 (Tchem), BRSK1

(Tchem), ADCK5 (Tdark), and LMTK3 (Tbio).

To compare the CKI scores across each cancer cohort, we

performed a Spearman correlation rank analysis (see Method
Cell Reports Medicine 1, 100128, October 20, 2020 3



Figure 3. CKI scores by TDL and TCGA Cancer Cohort

Most cancers have average Tclin or Tchem scores that are significantly higher than the other TDLs. COAD, BRCA, LUSC, and PRAD have Tdark kinases that

score, on average, higher than Tclin kinases. Furthermore, cancer-specific MOA targets tend to score the highest in the CKI. See also Table S2.
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Details). Correlation between similar cancer cohorts based on tis-

sue was the strongest, with LUSC and LUAD having significant

overlap in top-ranking kinases, as was the same in KIRC with

KIRP and colon adenocarcinoma (COAD) with READ (Figure 4).

The top 25% of differentially overexpressed kinases in each can-

cer were also used as input for MSigDB35 (gene set enrichment

analysis) to compare kinase gene set enrichment overlap be-

tween each cancer. Spearman correlation using rank-ordered

gene sets shows varying degrees of overlap among all cancer co-

horts, but the strongest overlapwas between LIHC andCHOL (85

gene sets in common). These data suggest that while many of the

same key players are involved in the progression of multiple can-

cers, unique kinases emerge in each cohort. All cohorts were

highly enriched for genes in the ‘‘FIRESTEIN_PROLIFERATION’’

and ‘‘MODULE_244’’ gene sets, which are genes required for

the proliferation of colon cancer cells and genes responsible for

DNA damage repair, respectively.36

CKI Scores Are Supported by Achilles DepMap Data
Project Achilles and the DependencyMap (DepMap)37 are efforts

to identify genes essential for cancer cell proliferation and sur-

vival. Combining RNAi and CRISPR systematic loss-of-function

screens in over 700 cancer cell lines for over 17,000 genes, re-

searchers were able to obtain gene-level ‘‘dependency’’ scores

while accounting for off-target shRNA/Cas-9 effects and

other molecular features using the DEMETER2 computational

method.37 We sought to benchmark the predictivity of our clinical

kinase score against this experimentally derived data to explore

the hypothesis that cancer kinase dependency in cell models cor-

relates with clinical and pathological features associated with the

dysregulation and overexpression of these kinases. Although we

would not expect cell line data to perfectly correlate with clinical

data, there should be some indicationof clinical relevance extrap-

olated from cellular dependency. We used three independent

datasets obtained from the DepMap portal to carry out these
4 Cell Reports Medicine 1, 100128, October 20, 2020
analyses: combined RNAi (Broad, Novartis, and Marcotte),

shRNA Achilles (Avana), and CRISPR (Sanger). Each set had a

different number of cell lines and disease models represented

and a differing number of kinases annotated. For example, 565

of the 634 kinase genes in our dataset were present in the Achilles

database. Of the 69 kinases that were not present in Achilles, 21

(30%) were understudied, which further underscores the inherent

bias against these genes. Kinase genes were extracted from the

datasets and were annotated as ‘‘dependent’’ if the dependency

score was < �1 (a cutoff defined by all DepMap studies37) and

‘‘not dependent’’ if the dependency score was > �1. Kruskall-

Wallis tests (one-way ANOVA) were performed to determine if

there was a significant difference in the distribution of mean

CKI score in each cohort (dependent versus non-dependent) in

the combined RNAi, Achilles, and Sanger datasets per disease

type. Cell lines were grouped by tissue type: for example, all

cell lines annotated ‘‘lung’’ were used to analyze CKI scores in

both the LUSC and LUAD TCGA cohorts. Similarly, all cell lines

annotated ‘‘kidney’’ were analyzed with kidney chromophobe

carcinoma (KICH), KIRC, and KIRP cohorts. The results support

the hypothesis that gene dependency relates to clinical rele-

vance. ‘‘Dependent’’ kinases score significantly higher on the

CKI than ‘‘not dependent’’ kinases for many cell lines, across all

cancers and datasets (p value < 0.05) (Figure 5; Table S3). Of

note, some Tclin kinases in our model scored low on the CKI

but had significant dependency scores. Further investigation re-

vealed that cyclin-dependent kinases (CDKs) tend to score

‘‘low,’’ as mRNA levels typically do not correspond with activity

in tumors. CDKs, as their name suggest, have activity that is

dependent on the abundance of cyclins. Also, as noted above, ki-

nases such as mTOR have activity that is related to their post-

translational modification. Despite these outliers, we can make

the case that our kinase target ranking based on clinical pheno-

types has a strong relationship with cancer-cell dependency in

validated cancer cellular models.



Figure 4. Overlap Analysis between Cancer Cohorts

(A) Gene set enrichment analysis was performed on the top-25%-scoring kinases for each cancer cohort using MSigDB. Pairwise overlap of 100 gene sets was

calculated. Cohorts that share the highest degree of gene set enrichments include LIHC and CHOL, KIRC and CHOL, and THCA and CHOL.

(B) Spearman-rank correlation between CKIs of each cancer cohort. The greatest degree of correlation was present between cancers of the same tissue,

including COAD and READ or LUAD and LUSC. THCA and BRCA had a slight negative correlation, suggestive of opposing clinical relevance of the same kinases

in the different cancer cohorts.
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Additionally, we employed both a Spearman rank correlation

and a linear regression analysis to determine the strength of the

relationship between the two variables, CKI score and depen-

dency score, for each cell line in the DepMap datasets. When

considering TMOA kinases (cancer-specific kinases that are an-

notatedasMOA targets for anapproveddrug), thereexists amod-

erate to strong relationship (p < 0.05, R < �0.6) between CKI and

dependency (Table S3). This suggests that targets with a low CKI

score are likely to be not dependent in a particular cell line.

Conversely, targets with a high CKI score are likely to be depen-

dent. For example, in the UACC-893 breast cancer cell line,

MOA target ERBB4 has a dependency score of only �0.18 and

a corresponding CKI score of 3.65. However, MOA target PI3KCA

has a dependency score of �1.8 and a CKI score of 14.38.

Finally, to evaluate the CKI as a predictive model for cellular

dependency, receiver operating curves (ROC) were generated

for cell lines from the DepMap datasets that showed significant

differences in CKI scores between dependent and not-depen-

dent kinases. A rank-ordered list of kinases (by CKI score) was

generated per cancer type along with dependency scores for

the corresponding cellular model. ROC curves were also gener-

ated using the average dependency score across all cell lines for

a particular cancer model type. The dependency cutoff of < �1

was used to define the active (dependent) class. In breast cancer

cell lines, CKI tended to be most predictive of dependency, as

the ROC scores generated from the average dependency scores

across all breast cancer cell lines in D2, Achilles, and Sanger da-

tasets were 0.98, 0.78, and 0.76, respectively. Overall, we can

conclude that the cellular dependency is ‘‘fair’’ to ‘‘excellent’’

at predicting clinical relevance as defined by the CKI (Table S3).
Understudied Kinases Are Highly Overexpressed across
Multiple Cancer Types
The NIH IDG project research consortium (https://

druggablegenome.net/) has curated a list of ‘‘understudied ki-

nases,’’ which was constructed using a combination of biblio-

metric and other measures including lack of R01 funding, limited

GeneRIF and Gene Ontology (GO) annotation, and lack of avail-

able potent and specific chemical probes. These include kinases

that bear the TDLs of Tchem, Tbio, and Tdark. Despite being

largely ignored by the scientific community, understudied ki-

nases are gaining more attention due to their novelty and there-

fore opportunities and potential clinical importance.15,16 Of the

151 understudied kinases, 22% are from the ‘‘other’’ group

(which includes the subfamilies of BUB, AUR, and PLK), 20.7%

are of the CGMC group (which contains MAP kinases and

CDKs), and 17.3% are CaMKs. The rest of the understudied ki-

nases include AGC and atypical kinases, with the lowest number

of kinases belonging to the well-studied TK and tyrosine kinase-

like (TKL) groups (Figures 2A and 2B).

Since DGE analysis is one of the most effective, scalable, and

predictive methods for target prioritization,38,39 we proceeded

with a comprehensive analysis of the expression patterns of

each of the 624 kinases across 20 TCGA cancer types (see

STAR Methods for inclusion criteria). In total, 424 of the

624 kinases studied were found to be significantly differentially

overexpressed (adjusted p value < 0.05) in at least two cancers

in the TCGA (Figure 6A; Table S4). BUB1, BUB1B, and PLK1

are all significantly overexpressed in every solid cancer analyzed

in this study. In addition to being commonly differentially overex-

pressed, the average log2FC between normal and tumor cells
Cell Reports Medicine 1, 100128, October 20, 2020 5
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Figure 5. Comparison of DepMap Scores and CKI

(A) Kinases from theACH-000851cell line (lung cancer)were divided into ‘‘dependent’’ (DepMapScore <�1.0) and ‘‘not-dependent’’ groups. LUSCCKI scoreswere

compared between the groups using the Kruskall-Wallis test. Kinases that are dependent in lung cancer cell lines also score significantly higher in the CKI (p =

2.13E�7). Black bars represent the 95% confidence interval of the mean. Distribution of scores is depicted as horizontal bar graphs superimposed on the boxplot.

(B) As DepMap scores (binned) increase (becoming less dependent), CKI scores decrease.

(C) ROC curve data using averageCKI score and average dependency score with a cutoff of <�1.0 shows that DepMap datamay be a predictivemodel of clinical

relevance (ROC = 0.776).
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is >2 for these kinases. Interestingly, these three kinases all

interact with one another in the kinetochore-microtubule spindle

assembly checkpoint during mitosis.40,41 Several other kinases

involved in mitosis/cell cycle are overexpressed in the majority

of cancers (AURKA, AURKB, CDK1),42–44 underscoring a hall-

mark of cancer, cell-cycle dysregulation. Many campaigns are

well underway in the pre-clinical and early clinical trial phases

to assess the efficacy of targeting such cell-cycle kinases,

some with great potential.45,46

The DGE analysis also included 149 understudied kinases

across 20 cancers from the TCGA. In total, 102 understudied ki-

nases were shown to be differentially overexpressed in at least

two cancers (Figure S1A). In every cancer cohort, the ratio of

overexpressed understudied kinases compared to well-studied

kinases was nearly 1:1. Several kinase groups appear to be en-

riched in their overexpression in various cancers. Averaging the

log2FC of all kinases across all cancers demonstrates that

certain kinase transcripts are consistently very highly upregu-

lated. Kinases from the historically understudied CaMK group

have the highest average log2FC (2.14) (Figure S1B). Twenty-

four of the 26 understudied CaMKs are overexpressed in at least

one cancer. The most commonly overexpressed CaMK is the

pseudokinase CAMKV, which is significantly upregulated in 14

cancer cohorts. The understudied multi-functional CaMKs
6 Cell Reports Medicine 1, 100128, October 20, 2020
(CAMK1D, CAMK1G, CAMKK1, PNCK) are overexpressed in

12 cancers, with PNCK being overexpressed in 9 alone. PNCK

(Tbio) mRNA expression and activity has recently been linked

to renal cell carcinoma progression and survival,17 breast cancer

tumor microenvironment remodeling,47 and decreased sensi-

tivity to chemotherapies such as temozolomide.48 PNCK is high-

ly overexpressed in KIRC (>5 log2FC), LUSC (>6 log2FC), and

LIHC (>6 log2FC). In fact, PNCK is the most significantly overex-

pressed kinase in these cancers, suggestive of a tumor-specific

differential need for PNCK or CaMK activity compared to normal

tissue. GTex and other human proteomic/transcriptomic studies

show PNCK has very low expression levels in normal adult tis-

sue, with the highest expression of mRNA and protein found in

the dentate gyrus of the hippocampus. Non-specific CaMK in-

hibitor KN-93 has been shown in pre-clinical cancer cell models

to induce cell-cycle arrest and apoptosis.49,50 Despite these

data, none of the CaMKs are currently targeted by FDA drugs,

nor are they being evaluated in clinical or (published) pre-clinical

studies.

Mutational Hotspots Found in Several Understudied
Kinases May Correlate with Overall Survival
Many studies have demonstrated that somatically acquired mu-

tations in kinase domains lead to tumorigenesis and promote



Figure 6. Four Analyses That Contributed to the CKI

The x axis contains all kinase names in the analysis, while the y axis represents the TCGA cancer. The plot on the top of the graph shows how many cancers a

particular kinase is ‘‘significant’’ in. The plot on the right side of the graph represents how many significant kinases a particular cancer has for this analysis.

(A) 424 kinases are differentially overexpressed in at least two cancers.

(B) 317 kinases are prognostic of survival in at least two cancers.

(C) Many kinases have expressions that correlate with T, N, and M staging. This heat-map quantifies the extent to which each kinase correlates with the clinical

outcome, TNM staging (total score out of 3, max score of 1 per parameter)

(D) 13 kinases have significant hotspot mutations in at least two cancers. See also Table S7.
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cancer progression.27,51,52 As mutations accumulate in a pre-

cancerous cell, some mutations confer selective advantage

through the promotion of tumorigenic functions (such as un-

checked cell-cycle progression, immune evasion, invasion,

and metastasis), whereas others are effectively neutral ‘‘passen-

gers’’ and are the byproduct of ‘‘driver’’ mutations. The discov-

ery of frequent mutations in various kinase active sites has given

rise to a new approach in drug development. Selectively target-

ing the mutated version of the kinase (versus the wild-type

version) has led to great clinical success in oncology. For

example, BRAF V600E inhibitors have greatly improved survival

outcomes in melanoma patients with said mutation.51 Thus, it is

important to prioritize kinases with driver mutations as potential

novel drug targets. Many cancer genes formmutational hotspots

that disrupt their functional domains or active sites, leading to
gain- or loss-of-function.53 Therefore, we performed a muta-

tional hotspot analysis on the entire kinome across 20 cancer

types for which there were genetic data available. A hotspot

mutation is defined as a mutation that occurs in a set of tumor

samples significantly more frequently than what is observed by

background mutations characterized by genes, cancer types,

mutation types, and sequence contexts.54 Hotspot mutations

also affect an amino acid position and include missense,

nonsense, insertion, and deletion mutations. In total, 42 kinases

were found to have significant hotspot mutations, with kinases

from the TK family being mutated most frequently. The most

commonly mutated kinases were PIK3CA (12 cancers), BRAF

(5 cancers), and AKT1 (4 cancers), all of which have

mutant-targeted inhibitors in clinic or in trial (Figure 6D;

Table S5).51,55,56 Eight understudied kinases were found to
Cell Reports Medicine 1, 100128, October 20, 2020 7
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have hotspot mutations in at least one cancer (CDC42BPA,

DYRK1B, DYRK4, LMTK3, MAPK15, NEK7, TSSK1B, and

TTBK1), withDYRK4, LMTK3,MAPK15, andNEK7 all having sig-

nificant hotspot mutations in STAD. Additional study showed

that DYRK1B was mutated in 4.3% of endometrial carcinoma

(UCEC) samples, with significantly worse overall survival for pa-

tients harboring the mutated kinase (p < 0.05; Figure S1C).

Further work must be done to determine which of these kinase

mutations are driver mutations and what downstream genomic

and transcriptomic effects these mutations have on tumor pro-

gression. STAD and COAD were the cancers with the highest ki-

nase mutational burden, with 16 and 11 kinases significantly

mutated, respectively. There are currently no first-line treatments

for gastric adenocarcinoma that include kinase inhibitors. As a

highly heterogeneous disease, genomic data obtained from

studies such as this may usher in a new era of personalizedmed-

icine for gastric cancer with novel kinase inhibitors against clini-

cally relevant but rarely amplified and mutated kinases.

Comparing our mutational analysis to other pan-cancer TCGA

analysis confirms that few kinases are significantly mutated, and

few mutations are prognostic of survival. Smith and Sheltzer57

identified all non-silent mutations with >2% frequency and

used Cox-proportional hazard analysis to detect genes prog-

nostic of survival. Analysis of their hazard ratios as Z-scores

does show that Tdark kinase NRK is significantly mutated and

prognostic in HNSC. Additionally, understudied kinases

CAMK1D, PNCK, and NEK3 have mutations with significant

pan-cancer prognostic value, with PNCK being mutated

frequently in LUAD and NEK3 in COAD and READ (p < 0.05;

Table S5). Various large-scale mutational analyses of tumors

all confirm that the vast majority of somatically acquired

mutations are passenger mutations of little or no functional

consequence that arise simply as a result of the random muta-

genic processes underlying the development of cancer.58 It is

rare, then, that a single kinase is commonly mutated (with the

well-known exception, BRAF, which is mutated in over 60% of

melanoma cases),58 suggesting that several infrequently

mutated kinases most likely contribute to tumorigenesis and

progression.

Copy-Number Alterations and Gene Amplifications Are
Frequent among Dark Kinases
There are 31 ‘‘dark kinases’’ (Tdark), about which very little infor-

mation is known. Specifically, these kinases have fewer than 50

antibodies in antibodypedia, fewer than 3 gene RIFs, and a

Jensen Lab PubMed text mining score of less than 5.12 Tdark

kinases are further characterized by poorly defined roles in wider

signaling networks, poorly defined function and regulation,

poorly defined kinase substrates, lack of activation-loop phos-

pho-antibodies or immunohistochemistry-grade antibodies,

and lack of selective chemical tools for functional characteriza-

tion.11 Over a quarter of the dark kinases belong to the ‘‘other’’

group of kinases. Dark kinases are also highly represented

among the AGC group (13.3%), atypical kinases (10%), and

non-protein ‘‘small-molecule kinases’’ (10%). A number of ki-

nases from the so called ‘‘ignorome’’ are, in fact, known to

interact with FDA-approvedmulti-kinase inhibitors. For example,

according to DrugCentral data,1,3 crizotinib, ruxolitinib, ninteda-
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nib, vandetanib, bosutinib, sorafenib, and sunitinib all inhibit

understudied kinases in the low nanomolar range (including

SBK3, STK32A, RIOK1, CDK15, and CSNK1A1L), one of which

is Tdark (CSNK1A1L).1 Thus, it is possible that some therapeutic

effect or anti-cancer phenotype can be achieved through

inhibition of dark kinases. Homology of kinase ATP binding

sites across the kinome and the tendency of many kinase

inhibitor chemotypes to inhibit multiple kinases strongly sug-

gests that Tdark kinases can be effectively targeted with small-

molecule inhibitors. To promote the pre-clinical study of these

dark targets, we must first evaluate and analyze the available

clinical data to prioritize the kinases based on several criteria

including mutational status, frequency of genetic alteration,

and DGE compared to normal samples. If these genomic or tran-

scriptomic variations then correlate with clinical or pathological

outcomes, the kinases could be explored in depth as potential

oncogenic drivers.

In total, 22 of the dark kinases are significantly overexpressed

in at least one TCGA cancer cohort. Increased expression of 15

Tdark kinases correlates with decreased overall survival across

multiple cancers (Table S6). For example, high ADCK5 mRNA

levels are a negative prognostic indicator in KIRC, liver hepato-

cellular carcinoma (LIHC), UCEC, and uveal melanoma (UVM).

In breast cancer (BRCA), overexpression of six dark kinases is

associated with decreased overall survival (ALPK3, CSNK1A1L,

CSNK2A3, NRK, POMK, and PSKH1) (Tables S2 and S3). We

have also found that many Tdark kinases have altered genetics

in the TCGA dataset. Although no Tdark kinases were detected

to have significant hotspot mutations, by querying all dark

kinases across 9,519 samples in the TCGA (for which copy num-

ber alterations [CNA]/copy number variants [CNV] data are avail-

able) in 24 cancer cohorts, we found that these genes have

significantly altered copy numbers in 36% of patients. NRBP2,

POMK, ADCK5, SCYL3, PSKH2, and ETNK2 are amplified in

over 5%–10% of all patients (Table S5). While CNA and CNVs

do not linearly correlate with increases or decreases in mRNA

expression, the potential increased expression of many kinases

in primary human tumors and their location in focal amplification

peaks with other cancer promoting genetic alterations suggests

that dark kinases have important functions for the tumor cell

phenotype that have not been characterized to date.

It was expected that Tclin kinases would generally score

higher on our CKI than other less-characterized proteins. Kinase

targets for which there are approved clinical drugs would be

assumed to have disease-modifying properties in each cancer,

such as effects on survival and tumor progression and size. In

BLCA, CHOL, HSNC, KIRC, LUAD, READ, and STAD cohorts,

CKI scores were highest for Tclin and MOA-cancer specific tar-

gets (TMOA). While this is generally the case for MOA targets

(see above), in several cancer cohorts (BRCA, PRAD, COAD,

LUSC), Tdark kinases scored higher on theCKI scale than known

clinical targets (Tclin) (Tables S2 and S7). This suggests that

these dark kinases may have similar phenotypic effects on

cancer, comparable to well-known targets of approved drugs.

Additional analysis of the dark kinome in these cohorts was per-

formed to further explore clinical relevance. Out of 1,108 breast

cancer patients, for example, dark kinases are altered in 54% of

samples. Overall survival is significantly worse in patients with
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dark kinase alterations than in those without (p = 4.90e�3).

Multiple kinases are commonly amplified including ADCK5

(14% of samples), ETNK2 (13%), NRBP2 (15%), PSKH2 (12%),

RPS6KC1 (11%), and SCYL3 (10%). Gene amplification of

UCKL1 (6%) and SBK2 (3%) correlated negatively with overall

survival and progression-free survival in a KM univariate analysis

(p < 0.05; Table S5). Cox-proportional hazard ratios on Tdark ki-

nases and their CNAs reveal that SBK2, ETNK2, PSKH2, SCYL3,

and NRBP2 are all significantly prognostic for survival across all

cancers.57 Genes that are amplified in a peak are likely involved

in the driving of oncogenic pathways and alterations. ETNK2 is

significantly focally amplified in breast cancer tumors (Q =

7.6e�5) and located in a peak with 94 other genes.59 ADCK5,

ETNK2, PSKH2, RPS6KC1, and SCYL3 are all significantly

focally amplified in breast cancer samples as well but are not

located in a peak region. Similar trends were confirmed in pros-

tate, lung, and colon cancers (Table S5).

CaMKs Are Potential Prognostic Biomarkers
The identification and prioritization of novel biomarkers in cancer

can be achieved by the integration of gene expression data with

clinical data of patient samples. Genes that are prognostic for

various cancers typically have expressions that correlate with

overall survival (OS), progression-free survival (PFS), and tumor

progression (TNM staging). Despite the abundance of studies

exploring the prognostic value of many genes and kinases,

very few prognostic biomarkers exist in clinical practice.60

FDA-approved prognostic biomarkers typically include RNA

expression panels of multiple genes. It is often true that good

prognostic biomarkers may also be drug target candidates if

functional characterization of the gene proves as such.60 To

assess the potential of utilizing kinase expression as prognostic

biomarkers, we aggregated for each kinase, RNA sequencing

(RNA-seq), and clinical data from 17 TCGA cancer types and

performed KM survival analysis with logrank tests and ANOVA

tests between the different tumor stages and grades. Kinases

were scored separately for significance in each clinical param-

eter (TNM staging and histological grade when available; see

Method Details).

In our analysis, 357 kinases were shown to be prognostic of

M-stage, 522 for N-stage, and 552 for T-stage. In total, 24 of 31

dark kinases showed correlation with TNM staging in at least

one cancer (Figure 6C). The average clinical score per kinase

phylogenic group showed significant differences in each can-

cer cohort (pairwise t test, p < 0.05). The kinases with the high-

est average clinical scores include NEK2, TRIB3, MELK,

EPHA2, SPEG, and BRSK1, several of which are CaMKs.

TRIB3 (Tbio), for example, shows correlation with metastasis

in five cancer cohorts. Literature and other studies confirm

that this kinase, a member of the CaMK family, may play a

role in promoting metastasis in lung and colorectal cancers

via induction by the transcription factor NF-kappaB.61–63

CaMK members CHEK2, TRIB2, STK17A, and STK17B are

also shown to correlate with TNM staging, further highlighting

the potential clinical use for CaMKs as novel cancer targets

(Table S7). In total, 317 out of 624 kinases were shown to corre-

late with survival in at least two cancers (Figure 6B; Table S6).

The kinases with the highest survival scores have been well
described in the literature as predictive and prognostic bio-

markers in multiple cancers, notably PGK1, PLK1, and

AURKA.60,64,65 Less-studied kinases such as ALPK3 (Tdark)

(Figure S1D) and SPEG (Tbio) also were shown to correlate

with survival in six cancer cohorts (Table S6).

DISCUSSION

The typical 20-year-long, multi-billion-dollar drug discovery

pipeline all begins with target identification and prioritization.66

This is arguably one of the most important steps, as drug failure

in the clinic is mostly due to a lack of efficacy or due to toxicities

from poor target choice.66,67 The use of large-scale omics data

has streamlined this process by allowing researchers to combine

multiple parameters to evaluate a protein’s potential as a drug

target or biomarker. Often, the first glimmer of target potential

arises from the analysis of RNA and protein expression in

disease tissue compared to healthy tissue. TCGA is one such

publicly available database where a breadth of information (tran-

scriptomic, genomic, proteomic, clinical, pathological, and his-

tological) is available for this investigation. An ideal drug target,

as described by Bayer,68 is one that is first and foremost ‘‘drug-

gable’’ and ‘‘assayable’’; this is the case for most kinases due to

the presence of both a well-defined pocket and ATPase activity.

This target will also have an activity that is disease specific (i.e., it

is differentially expressed and active in diseased tissue

compared to normal tissue). This can be determined preliminarily

by DGE analysis and proteomic or phosphoproteomic studies.

The target should not be uniformly distributed and expressed

throughout the body, a characteristic that can be checked using

expression databases such as GTex69 or The Human Protein

Atlas.70 Also, immunoprecipitation (IP) is a critical consideration.

Therefore, new targets can be attractive, such as ‘‘dark’’ and

understudied kinases where there are few or no known small-

molecule inhibitors. Finally, and the most difficult parameter to

satisfy using informatics alone, kinase targets have to be disease

modifying or have a proven function in the pathophysiology of

disease. While dysregulation of the kinome as a whole has

been indicated in the initiation and progression of nearly every

cancer type,71 disease-modifying kinases must be identified

per cancer type using a combination of genetic perturbations

and biochemical analyses. Our various analyses, including

correlation of CKI with MOA targets clinical studies and cross-

validating CKI with experimental datasets such as DepMap,72

demonstrate that CKI can prioritize drug targets for ‘‘disease-

modifying’’ potential, before further target validation studies

are pursued. In totality, combining multiple large-scale multi-

omics datasets can be a useful first step in prioritizing novel

kinase target lists prior to conducting any additional cell-based

or animal-based experiments.

In this study, we systematically integrated DGE, KM survival,

and mutational hotspot and clinical/pathological correlation an-

alyses in order to prioritize clinically relevant kinase targets

across 17 TCGA cancer types. Our clinically focused pan-cancer

and pan-kinome analysis highlighted multiple understudied

kinases with the potential of promising druggable target oppor-

tunities. Moreover, through the development of our accompa-

nying CKI app, which is freely available at http://cki.ccs.miami.
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edu/, we are facilitating the discovery, exploration, and analysis

of our data by the scientific community. Our plethora of rich

metadata annotations (e.g., TDL, approved MOA, clinical trial

status, and kinase phylogenetic and functional classifications)

offers researchers a quick and intuitive way to explore the entire

kinome and identify understudied kinaseswith a high therapeutic

potential. This app allows a comprehensive view of the kinome

based on cancer-type-specific differential expression, survival

data, and TNM pathological staging. Researchers can obtain a

prioritized list of dark and understudied kinases based on multi-

ple criteria (e.g., cancer type, kinase family). This capability can

drive a more efficient drug target prioritization by the research

communities. For each dark or understudied kinase, researchers

can obtain cancer-type-specific analysis and rank-ordered pri-

oritizations. As more information is discovered and more bioin-

formatics tools and workflows are available, such as phospho-

proteomics and active kinome profiling, the CKI will be

updated and optimized to continually enrich the dataset for clin-

ically relevant kinase targets.

All scoring, classifications, normalized data, and statistical

analyses are available via the CKI app. To use the app, one

can simply select the ‘‘Gene’’ tab and choose a kinase of

interest. The CKI scores for each cancer for this kinase will be

generated in table form, along with TDL, rank, kinase group

and family, and whether or not this kinase has an approved

drug MOA. Many annotations from the Drug Target Ontology

(DTO)18 are available as facets to filter and select kinase targets.

To start from a disease of interest, one can select a TCGA cancer

and the kinase of interest in the ‘‘Disease’’ tab. A kinase table is

generated with the specific TCGA cancer and kinase sorted by

CKI score. Next, in a sub-tab, a volcano plot will be generated

where all differentially expressed genes are displayed. One

may click points on the plot to see the specific gene, its count-

per-million, and logFC (compared to normal tissue). If the

‘‘Study’’ sub-tab is selected, cancer and gene may be chosen

to display boxplots representing mRNA levels for each T, N,

and M stage. Finally, if the ‘‘Survival’’ sub-tab is selected, a

KM plot is generated for the cancer and gene pair of interest.

All data tablesmay be downloaded via the ‘‘Download Data’’ tab.

Comparing the average CKI scores of ‘‘understudied’’ versus

‘‘studied’’ kinases across all cancers andwithin individual cancer

cohorts suggests that there are many understudied kinases with

clinical relevance comparable to currently approved kinase drug

targets. The highest-scoring understudied kinase is PKMYT1.

PKMYT1 is a member of the WEE1 family of kinases that nega-

tively regulates the G2/M transition of the cell cycle by phosphor-

ylating and inactivating CDK1.73 PKMYT1 is overexpressed in 17

of the 20 cancers analyzed in this study. Cox-regression analysis

of PKMYT1 reveals this kinase is a powerful prognostic and pre-

dictive biomarker for survival in KIRC and KIRP cohorts. Other

computational work has identified PKMYT1 as a novel drug

target for kidney cancer, using co-expression analysis to reveal

PKMYT1 clusters with other important cell-cycle genes.74

PKMYT1 is classified as Tchem with several active compounds,

including PD-0166285, IC50 = 7 nM and PD-173955, Kd = 44 nM.

Although these compounds are not considered chemical

probes, they provide starting points for the development of a se-

lective probe or a viable lead compound.
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While many of the high-scoring novel kinases are also begin-

ning to be discussed in other studies, many are too ‘‘dark’’ and

thus warrant more exploration. Even in large-scale datasets

and studies, dark kinases are excluded from the analyses due

to a lack of validated antibodies, assays, and chemical probes

and a general lack of interest and knowledge of the biology of

these targets. A large-scale concerted effort must be taken to

effectively bring these ‘‘dark’’ kinases into the light. Such target

validation efforts must include RNAi/CRISPR knockdown/

knockout cell lines and mice models, elucidation of co-expres-

sion and regulatory networks, substrate identification and assay

development, development of highly specific chemical probes,

and determination of co-crystal structures to facilitate the opti-

mization of lead compounds for future drug development efforts.

Much of this work is currently pursued in the IDG project (https://

druggablegenome.net/). The results of this paper will help us,

and other groups, select and prioritize their target of choice

based on the clinical and biological focus of their own research

interests. 2018 was a record year for FDA approvals, yet only 3

of the 39 drugs targeted novel kinase targets and moved TDLs

from Tchem to Tclin.2 The rate at which kinase targets move

from Tbio or Tdark (little known biology and no potent chemical

probes) to Tchem (a small-molecule probe with Kd < 30 nm) is

alarmingly slow. No more than 20 IDG targets move from Tbio

to Tchem each year, a number encompassing all target types

(kinases, GPCRs, ion channels). By this pace, it would take de-

cades to wholly illuminate the kinome. Thus, the biases against

understudied targets must be lifted, particularly in grant funding,

so that there can a full-fledged concerted effort to explore the

druggable genome.

Limitations of Study
The CKI is a tool for researchers to use to aid the target prioriti-

zation or identification process. All data used to generate the

index and annotate the kinases have come from large-scale,

validated datasets. Target validation, however, requires multi-

factorial experiments. Here, we offer a first step in the process

and seek to encourage others to follow up in their cellular or an-

imal model of choice to further evaluate understudied kinases as

novel drug targets.
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TCGAbiolinks pipeline (Colaprico et al., 2016) https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

R/Bioconductor R packages https://www.bioconductor.org/

cBioportal for cancer genomics (Cerami et al., 2012; Gao et al., 2013) https://www.cbioportal.org/
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Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Stephan Sch€urer

(sschurer@med.miami.edu)

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The published article includes all datasets generated in this study. In addition, data is available for further exploration at the CKI App,

https://schurerlab.shinyapps.io/CKIApp/. Code has been deposited to https://github.com/schurerlab/CKI.

METHOD DETAILS

Inclusion Criteria: TCGA Datasets
The TCGA data portal contains the molecular data of over 20,000 tumor and matched normal samples for 33 cancer types from over

11,000 patients (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). Our inclusion criteria for

kinase analyses were based on the availability of data including normal samples available for differential gene expression analysis,

mutational hotspot analysis, clinical data and survival data. First, we only considered solid tumors, thus excluding LAML and DLBC. 9

Cancers (OV, THYM,UVM, SARC, PCPG, UCEC,GBM, UCS and LGG) have been excluded from the complete scoring systemdue to

lack of clinical data (TNM staging). 5 Cancers have only clinical and survival data (ACC, SKCM, PAAD, MESO, and TGCT) but not

enough normal samples (< 3 samples) to perform a differential gene expression analysis or mutational analysis. 20 cancers had

full gene expression data with normal and tumor samples for DGE analysis. 17 Cancers had the full requirements for scoring for

this paper, including clinical and survival data. An overview of the TCGA dataset with number of normal samples, tumor samples

and data availability is compiled in the Supplementary material (Table S1). Abbreviations for all the cancer types used in this paper

are in accord with the TCGA data portal.

Inclusion Criteria: Kinases
The complete list of kinases used in this analysis was obtained from Pharos (https://pharos.nih.gov/).12 As of June 2019, 634 kinases

were included in our initial analyses; this list contained protein kinases, non-protein kinases and pseudokinases. Several of the kinases

annotated in Pharos have different gene names in the TCGA dataset, and needed to be manually curated for our data. Kinase names

that could not bemapped to Pharos or whose expression levels were undetectable after expression normalizationwere excluded from

our analyses. Target development levels (TDL) were also obtained from Pharos. Kinases were additionally grouped as ‘‘Understudied’’

or Studied, based off of the IDGdesignation also available fromPharos. As of June 2019, 151 kinaseswere annotated asUnderstudied.

However, only 149 of these were included in our analyses (MAP3K21 and STK19 were excluded for above reasons).

Kinases were annotated, per cancer, as MOA targets of approved drugs indicated for the treatment of that specific cancer. For

example, while BRAF may have a Tclin annotation, it is not a primary clinical drug target for Breast Cancer (BRCA) treatment.
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Data for drug target MOA and drug indication was obtained from DrugCentral (https://drugcentral.org/)1,3 and ‘‘A Comprehensive

Map ofMolecular Targets’’75 (Table S2). BLCAwasmodified to include FGFR1/2/3/4 due to the 2019 approval of Erdafitinib.76 Kinase

group and family information were obtained from Kinase Drug Target Ontology (DTO) database.18

Tchem and Tclin kinases were further annotated by clinical trial status using the PKIDB14 in conjunction with Drug Bank13 and Drug

Central.1,3 For example, if a kinase target was under a clinical trial investigation, the cancer indication was also mapped to the CKI

data (Table S2).

Data Extraction and Preprocessing
The TCGA data were downloaded from recount277 where TCGA clinical data are also available for all 31 cancers. Differential gene

expression analysis was performed for 20 of the 31 cancer types. Datasets with at least three normal (control) samples and three

tumor samples were considered, and all other datasets were discarded. For 12 cancers (ACC, LGG, SARC, DLBC, THYM, OV,

SKCM, LAML, UVM, PAAD, TGCT, UCS) data were not available for normal samples or were below three normal samples thus pre-

venting the comparison between normal and tumor samples. The data downloaded from recount2 was pre-processed by removing

the duplicated TCGA patient IDs or barcodes in each cancer type. Further, the counts were scaled and the lowly expressed genes

filtered out using R limma package.78 The resultant datasets for each cancer were used for differential expression (DE) analysis, sur-

vival analysis, identification of mutational hotspots, and analysis of clinical significance (TNM, pathology, histology).

Clinical Data
Patient data for AJCC pathological stage9 and histological grade for each cancer type was obtained from the standardized clinical

dataset, the TCGA Pan-Cancer Clinical Data Resource79 T,N, and M staging was obtained from the GDC80 database using the R/

Bioconductor81 package recount2.77 Unique patient IDs were matched using R for each cancer type to include only primary tumor

samples for clinical analyses (Sample code ‘‘01’’). Secondary or metastatic tumors were not considered in this analysis.

Differential Gene Expression Analysis
For the differential expression analysis, we applied the TCGAbiolinks pipeline on the filtered genes for 20 cancers.82 Genes with

log2FC > 1 and FDR threshold of 0.01 were considered significantly differentially expressed. The significantly differentially expressed

genes were mapped to the kinases per cancer. Specifically, only the overexpressed kinases from each cancer type were further

considered for the scoring analysis.

Survival Analysis
In addition to gene expression analysis across cancer samples, survival analysis based on gene expression levels was

performed. Available TCGA patient data were used to generate Kaplan-Meier (KM) survival plots. For the plots, patient clinical

data was obtained with, i) patient vital status (alive or dead), ii) time (if patient is al then, ‘‘days_to_last_follow_up,’’ if patient is

dead then, ‘‘days_to_death’’), and iii) expression level. Patients with no vital status or follow_up data were considered censored.

For each kinase, the Kaplan-Meier (KM) survival plot was generated across each cancer type, applying the survival R package.83

The patients were categorized into two distinct groups, high expression (upper quartile) and low expression (lower quartile). The re-

sulted KMsurvival curveswere compared by log-rank test obtaining aP value, which indicates statistical significance of survival sam-

ples. Kinases with high expression and significant P value were used for score analysis.

Mutational Hotspot Analysis
Mutation somatic variants data was obtained from the GDC data portal in the Mutation Annotation Format (MAF) for each cancer

type.53 The pre-compiled TCGA MAF objects including somatic mutation along with clinical information were downloaded from

the TCGAmutation R package.81 All Kinases were mapped to each cancer type using R. In addition, the function oncodrive was

applied to identify cancer genes (kinase drivers) from a given MAF file.53 Oncodrive is a function based on oncodriveCLUST algo-

rithm, which has been implemented in Python.84 For scoring analysis, specifically, only those kinases were selected for each cancer

that had a minimum of 5 mutations and significant P values. Kaplan-Meier curves for mutated or amplified kinases were generated

using cBioPortal.85

Clinical Analysis
For clinical analysis, Tumor, Node, Metastasis (TNM) staging system developed by American Joint Committee on Cancer AAJC9was

used. The TNM system classifies cancer:

1. T: by the size, which is further grouped into t1- (t1a, t1a1, t1b, t1b1), t2- (t2a, t2a1, t2a2, t2b, t2c), t3- (t3a, t3b, t3c) and t4- (t4a,

t4b, t4c, t4d, t4e).

2. N: involvement of regional lymph nodes, subtypes n0, n1- (n1a, n1b, n1c, n1mi), n2- (n2a, n2c, n3a) and n3 - (n3a, n3b, n3c).

3. M: presence or absence of distant metastasis, sub divided into m0 and m1.
Cell Reports Medicine 1, 100128, October 20, 2020 e2
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We used ANOVA to identify significant differences between t1-t4 for each of the four metrics. Subsequently, ANOVA was also per-

formed for N andM to see if there are any significant changes between n0-n3 andm0-m1. In addition, the histological grade was also

considered for scoring. The grade is a qualitative assessment for differentiated cells under microscope. The differentiated cells are

low grade (g1, g2) and dysmorphic and de-differentiated cells are considered high grade (g3, g4). The statistical significance differ-

ences between histological grade g1-g4 was calculated using ANOVA.

Scoring
We have developed the Clinical Kinase Index (CKI) to evaluate the prognostic and clinical value of the mRNA expression levels of

each kinase in the human kinome. RNASeq data obtained from normal and solid-tumor samples was used to correlate RPKM

with advanced tumor staging in clinical, pathological and histological classifications. Since we are mostly interested in the under-

studied kinome, we opted to not include RPPA or protein expression data since this was unavailable due to lack of specific and vali-

dated antibodies for such kinases. Additionally, we recognize that levels of messenger RNA do not necessarily correlate linearly with

kinase activity10 and a future study of the phospho-kinome would offer more insight into effects these kinases have on cancer

progression.

The Clinical Kinase Index (CKI) score was generated for each kinase per cancer using 4 parameters: Differential Gene Overexpres-

sion, Overall Survival (OS), Mutational Hotspots and Clinical/Pathological Progression. If the kinase was shown to be significantly

overexpressed, correlated with negative survival outcomes or significantly mutated, it received a score of 1 (per parameter). A Clinical

score was created using an average per each clinical/pathological parameter which include clinical stage, T, N and M staging, and

histological staging/grade. For example, ANOVA analysis was used to determine significant differences in the means of expression

for each kinase in each T stage (t1 versus t2, t2 versus t3 etc.). If a kinase expression was significantly increased between two T

stages, it received a score of 1. If it was significant between multiple T stages, the scores were averaged to have a maximum score

of 1. This was repeated for M and N stages as well as other clinical parameters including histological grade, pathological stage and

clinical stage. The total clinical score was a sum of these scores, with a maximum score varying per cancer due the differing avail-

ability of clinical and pathological data in the TCGA datasets. Final scores were determined by summing all parameters and dividing

by themaximumpossible score andmultiplying by 100% to normalize across all cancer cohorts. In short, a score is only assigned to a

kinase if its increased expression correlates with a progression in staging, a decrease in survival or has significant mutations.

Clinical Kinase Index (CKI) Web Application (https://schurerlab.shinyapps.io/CKIApp/)
The Clinical Kinase Index and application was developed and written in R language R 3.3 or higher using the R packages: shiny,

RColorBrewer, gplots, plyr, ggplot2, limma, TCGAbiolinks, tidyverse, recount2, edgeR, SummarizedExperiment, devtools, super-

heat, xlsx, survival, RTCGA.rnaseq, RTCGA.clinical, survminer, maftools, corrplot, colorRamp, and plotly. The construction of the

App utilizes Shiny, a framework to build and deploy interactive Web applications in R. The data have been processed using the R

Bioconductor databases and packages includedwithin other requirements. The CKI homepage includes themRNA expression heat-

maps of all kinases (and understudied kinases). The application includes a table which can be filtered based off of user input and

contains the kinase gene name, cancer of interest, clinical kinase index score, ranking and othermeta-data annotations for the target.

Through the gene page users can explore the score of a particular kinases of interest taking advantage of all the information available

for specific dataset, which can be filtered: TDL, Kinase type, Kinase Group, MOA targets. Additionally, the CKI disease page allows

users to generate 1) a table with specific cancer of interest and filter by TDL and understudied kinases. It also develops a plot of

particular cancer including 2) Volcano plots to display differentially expressed kinases per cancer. Next, the clinical Data page pro-

duces different plots of particular cancer and gene of interest including 1) Boxplots showing the expression of kinases according to

TNM staging, and 2) Kaplan Meier curve representing the overall survival levels of each gene per cancer. The data to reproduce the

plots can be downloaded on the Download page for future analysis. This includes some data that has not been visualized in the app,

such as mutational and CNA analyses. Code is available on GitHub https://github.com/schurerlab/CKI.

DepMap Analysis
Data was downloaded fromDepMap Portal.37 The datasets usedwere CRISPR (Avana) Public 19Q2, Sanger CRISPR and Combined

RNAi, along with the cell line metadata. Using DepMap Cell line metadata, cell lines were extracted using ‘‘disease’’ and ‘‘disease

subtype’’ terms to match the corresponding TCGA cohort. Genes were manually annotated as ‘‘dependent’’ for our analyses if

the dependency score was less than �1.

External Tools
Gene amplification datawas obtained fromcBioPortal using all TCGAProvisional Datasets. Focal amplifications were identified using

the GISTIC tool from the BROAD Institute.59 Gene Set Enrichment Analysis was performed using MSigDB.35 The top 25% scoring

kinases for each cancer were used as input. Positional Gene Sets, chemical and genetic perturbations, canonical pathways,

KEGG gene sets, cancer modules and oncogenic signatures were selected for analysis. The FDR q-value threshold was 0.05 and

the top 100 enriched gene sets were saved.
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Statistical analyses used are outlined in the paper. Statistical significance was broadly defined as having a p value < 0.05 unless

otherwise stated. All reported statistical analyses are available in the supplemental tables with associated p values and adjusted

p values.

ADDITIONAL RESOURCES

For further analysis and graphical display of the data generated in this study, the Clinical Kinase Index (CKI) app is available for use:

https://schurerlab.shinyapps.io/CKIApp.
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Supplemental Figure 1(A-D). Related to Figure 6.

A: Differential overexpression of Understudied kinases in each cancer cohort. 102 Understudied are significantly overexpressed in at-least two cancers.

B: Several kinase groups appear to be enriched in their overexpression in various cancers. Averaging the log2FC of all kinases across all cancers demonstrates that certain kinase transcripts are consistently very highly 

upregulated. Kinases from the understudied CAMK group have the highest average log2FC (2.14) and kinases from the Other group have the highest median log2FC (2.66).

C: Dark Kinase DYRK1B was mutated in 4.3% of Endometrial Carcinoma samples (UCEC) with significantly worse overall survival for patients harboring the mutated kinase (p<.05). 

D: Tdark Kinases are potential prognostic biomarkers for several cancers. TNM staging scores (0-3) show that dark kinases contribute to tumor progression. 

A B

C D



Supplemental Data 1 (A-P) Analysis of Clinically Relevant Understudied Kinases. Related to Figure 5: CKI scores of targets who have been under or are currently under clinical trial investigation versus those that have no 

been clinically evaluated in humans. Significant differences in distributions are signified by p-values <.05. 
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Supplemental Data 2 (A-N) CKI Score for MOA Targets. Related to Figure 5.



Average CKI Score per Cancer, TDL2A.



Distribution of CKI Scores for all Cancers by TDL 2B.
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