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SUMMARY
In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper under-
standing of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional
level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic
characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue sam-
ples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate be-
tween HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In
addition to confirming key features of HGSC from previous studies, including a potential survival-associated
signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding
the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal
instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials.
INTRODUCTION

High-grade serous cancer (HGSC), the most prevalent histotype

of ovarian cancer, has the lowest survival rates1 and is the lead-

ing cause of gynecological cancer-related deaths in the devel-

oped world.2 HGSC is characterized by the presence of nearly

universal TP53 mutations, diverse and widespread chromo-

somal instability, and a general shortage of targetable driving

mutations.3 Given this genomic heterogeneity, the standard of

care for HGSC is surgical debulking, followed by combination

chemotherapy with platinum-based agents and microtubule in-

hibitors such as cisplatin-paclitaxel. Despite an initial clinical

response in most patients, recurrence is frequent, with current

5-year survival rates for stage IV HGSC of <20%.4 Thus, the ma-
Cell R
This is an open access article under the CC BY-N
jor clinical needs in HGSC include the identification of alternative

therapeutic targets and an improved understanding of themech-

anisms driving chromosomal heterogeneity.

HGSC has been the focus of numerous genomic investiga-

tions and was among the first cancers studied by The Cancer

Genome Atlas (TCGA).3 Recently, we reported a comprehensive

proteogenomic and phosphoproteomic characterization of 174

ovarian cancer samples previously analyzed by TCGA.5 While

the availability of outcomes data allowed us to stratify TCGA pa-

tients into short-term survivors (<2 years) and long-term survi-

vors (>3 years) and identify proteomic features associated with

survival, the absence of appropriate normal control tissues for

proteomic analysis precluded the identification of pathways spe-

cifically associated with carcinogenesis.
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In this study, we prospectively collected 83 new ovarian HGSC

samples and 20 normal precursor tissue samples (fallopian tube,

FT) for deep characterization at the genomic, transcriptomic,

proteomic, and phosphoproteomic levels; 10 of the 20 normal

FT samples were matched with tumor samples from the same

patient. We were also able to obtain cytobrush samples of FT

epithelium (FTE) and provide an extensive comparison of

HGSC and FT proteomes and phosphoproteomes, using surgi-

cal specimens rather than cell lines. The ability to compare tumor

and normal precursor tissues provided biological insights

regarding the role of increased proliferation in promoting replica-

tion stress in a DNA repair-deficient background, potentially ex-

plaining the high degree of chromosomal instability associated

with HGSC. Our collection protocols were specifically designed

to minimize the effect of ischemia on protein phosphorylation,

which has been identified as a significant confounding variable.6

Thus, we were able to identify signaling interactions that would

have been lost in the background of ischemic stress, most

notably the activation of cyclin-dependent kinase 4 (CDK4) and

CDK7. Widespread increases in protein phosphorylation and

pathway activation in tumors compared to normal tissues,

particularly in the proliferation-associated CDK-RB (retinoblas-

toma protein) and aurora kinase A (AURKA) pathways that are

targetable by US Food and Drug Administration (FDA)-approved

inhibitors, provide a rational basis for the use of these therapeu-

tics in ovarian cancer. Phosphosite-specific analysis of CDKs

and Fanconi anemia complementation group D (FANCD) was

consistent with an elevated response to replication stress,

potentially induced by proliferative signals. In addition,

pathway-level observations from the retrospective TCGA cohort

were conserved in the prospective cohort, including histone

acetylation marks associated with homologous repair deficiency

(HRD). The survival signature observed in the retrospective

TCGA cohort was found to be lowest (consistent with short-

term survival) in tumors from patients who were deceased at

the 1-year follow-on time point and highest in the normal tissues

(consistent with long-term survival), providing preliminary sup-

port for the survival signature in an independent cohort.

RESULTS

Proteogenomic Profiling
We prospectively collected tumor specimens, appropriate non-

tumor tissues (FT), and blood samples from 83 patients with

ovarian HGSC. All of the tissue samples were subjected to

mass spectrometry (MS)-based integrated global proteomics

and phosphoproteomics analysis using 10-plexed isobaric tan-

dem mass tag (TMT) labeling with extensive fractionation and

concatenation (Figure S1A). The clinical and pathological char-

acteristics of the cohort are shown in Table S1. The relative

abundances of the proteins and phosphopeptides across the tu-

mor and normal tissue samples were quantified using a universal

reference strategy as reported recently,5,7 applying a stringent

1% false discovery rate (FDR) cutoff at the protein level. Infer-

ence of the parsimonious protein set resulted in a total of

10,706 proteins and a total of 49,616 phosphopeptides identi-

fied. The processed proteomics data tables are available in

Table S2; subsets of data used in the different statistical ana-
2 Cell Reports Medicine 1, 100004, April 21, 2020
lyses were described in the respective sections or STAR

Methods. The raw proteomic data are available via the

Clinical Proteomic Tumor Analysis Consortium (CPTAC) Data

Portal (https://cptac-data-portal.georgetown.edu/cptac/study/

disclaimer;jsessionid=3725434E55F3889301A71D9F76AAE3C6?

accNum=S038). In addition, HGSC tissue samples were

analyzed by whole-exome sequencing (WXS) and mRNA

sequencing (RNA-seq). Raw genomic data associated with this

study (harmonized to the GRCh38 reference genome) have

been released at the Genomic Data Commons (https://gdc.

cancer.gov) and are accessible via the database of Genotypes

and Phenotypes (dbGaP) Study Accession: phs000892; the pro-

cessed RNA-seq data are available in Table S3.

The identification and quantification results and normalization

methods were carefully evaluated to confirm the data quality

(Figures S1B–S1D; STAR Methods). The consistency of the pro-

teomics pipeline was evident in both the protein sequence

coverage (Figure S1B) and the quantitation reproducibility in

the external quality controls comparing two breast cancer pa-

tient-derived xenograft samples analyzed alongside the ovarian

tumors and normal tissue samples (Figure S1C; STARMethods).

The proteomics and phosphoproteomics data also readily sepa-

rated the tumors from the normal FT tissues (Figure S1D). Prin-

cipal-component analysis (PCA) on both the proteomic and

phosphoproteomic data indicated that there was no clear sepa-

ration of the tumor phosphopeptide data by either anatomic site

of the tumor sample (ovary versus omentum, right panel in Fig-

ure S1E) or tumor site of origin (FT versus peritoneum, right panel

in Figure S1F). However, the global proteomics data showed a

clear separation between the ovary and all of the other anatomic

sites of tumor samples (left panel in Figure S1E).

Mutational Landscape of HGSC
The 83 HGSC tumors in our prospective cohort displayed a wide

range of somatic mutations, from a high of 7,195 to a low of 10;

93% of tumors had >50 mutations (Figure 1A). A modest in-

crease in average mutational load compared to TCGA was

observed, which may relate to advances in WXS technologies.

Specifically, missense mutations were 61.0% in our cohort

versus 48.6% in TCGA, frameshift indel 22.1% versus 24.7%,

splice site 6.5% versus 11.1%, nonsense 6.5% versus 10.7%,

and inframe indel 3.9% versus 4.9%. As reported by TCGA,

>92% of the HGSC samples had somatic mutations in TP53;

47 samples had missense mutations, while 30 had various dele-

tions, insertions, and splice variants (Figure 1B). When frequently

mutated genes (FLAG), which are known to be frequently

mutated inmany cancers simply as a function of size,8 were elim-

inated, we observed 5 other genes that were mutated in 4%–7%

of samples (Figure 1B).

Numerous arm-level and focal somatic copy number alter-

ations (SCNAs) were identified from high-resolution exome

sequence data using the Genomic Identification of Significant

Targets in Cancer (GISTIC) 2.0 algorithm9, including 18 arm-level

events at a false discovery rate (FDR) < 0.05 (Figure S2A; Table

S4). The significant arm-level amplifications and deletions iden-

tified in the prospective HGSC cohort substantially replicated

those previously reported by TCGA.10 In addition, GISTIC de-

tected regions of significant focal SCNAs across the genome,

https://cptac-data-portal.georgetown.edu/cptac/study/disclaimer;jsessionid=3725434E55F3889301A71D9F76AAE3C6?accNum=S038
https://cptac-data-portal.georgetown.edu/cptac/study/disclaimer;jsessionid=3725434E55F3889301A71D9F76AAE3C6?accNum=S038
https://cptac-data-portal.georgetown.edu/cptac/study/disclaimer;jsessionid=3725434E55F3889301A71D9F76AAE3C6?accNum=S038
https://gdc.cancer.gov
https://gdc.cancer.gov
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Figure 1. Mutational Profiles of Prospective HGSC Samples

(A) Distribution of the total number of variants in each of the 83 tumor samples across the prospective cohort. Each bar depicts the number of mutations in that

sample. Samples are ordered by the number of variants. Missense mutations are in blue, whereas all other mutations are in gray. The first four samples with

substantially more variants are shown separately.

(B) Mutational landscape of the prospective HGSC cohort, including mutation frequency and type.

See also Figure S2.
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Figure 2. Correlates of Homologous Repair Deficiency in Prospective HGSC Samples

(A) Proteins associated with chromosomal instability in prospective HGSC samples.

(B andC) Boxplots of acetylation on histone H4 lysine K12 (B) and dual acetylation on K12 and K16 (C) as a function of HRD status (16 of 83 patients were HRD+, as

indicated by BRCA1/2 mutation or PTEN deletion).

See also Figure S2.
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including 50 focal amplifications and 63 focal deletions (Fig-

ure S2B; Table S4). Direct comparisons of focal SCNAs between

the retrospective TCGA cohort and the present cohort are

complicated by the use of different platforms (Affymetrix

Genome-Wide Human SNP Array 6.0 in TCGA versus WXS

in the prospective cohort) to define SCNAs, resulting in an

increased number of focal SCNAs in the prospective cohort;

focal SCNAs from TCGA were generally detectable in the pro-

spective samples.

The high number of SCNAs observed in both the retrospective

TCGA cohort and our prospective cohort confirms the status of

HGSC as predominantly a disease of ‘‘broken chromosomes’’

with high rates of faulty DNA repair. Calculations of the Chromo-

somal Instability Index (CIN) in the prospective cohort using the

same algorithms described in the retrospective study5 indicated

that the instability was widely dispersed over all chromosomes

(Figure S2C). Statistical analysis of proteins whose abundance

correlated highly with the CIN score demonstrated substantial

overlap with a similar analysis performed on the retrospective
4 Cell Reports Medicine 1, 100004, April 21, 2020
TCGA samples (Figure 2A). Among the proteins most signifi-

cantly associated with the CIN index were PARP1 (polyadeno-

sine diphosphate [ADP]-ribose polymerase I), GTF2I (general

transcription factor II-I, involved in cell growth and division),

GMPS (guanine monophosphate synthase, involved in nucleo-

tide metabolism), and XPO1 (exportin 1-chromosomal mainte-

nance factor 1, which regulates the nuclear transport of cyclin

B, mitogen-activated protein kinase [MAPK], and nuclear factor

of activated T cells [NFATs]).

The impact of SCNAs on mRNA and protein expression (Fig-

ures S3A and S3B) was explored by computing Spearman

rank correlation across all of the tumors for each gene with

SCNA measurements and available mRNA and/or protein abun-

dances (Method Details); 475,448 of �102 million CNA-protein

pairs (0.46%) and 742,678 of 102 million equivalent CNA-

mRNA pairs (0.73%) were significantly correlated at an adjusted

p < 0.05. Positive correlations along the diagonal indicate strong

cis effects of SCNAs on the abundance of mRNAs (Figure S3A)

and proteins (Figure S3B) for cognate genes within the altered
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locus, as previously reported in the retrospective HGSC cohort.

We also identified multiple chromosomal loci where changes in

copy number affect the abundance of mRNA and proteins

encoded by genes located elsewhere in the genome (i.e., effects

in trans), including SCNA hotspots on chromosomes 1, 16,

and 19, with strong effects on protein abundance in trans (Fig-

ure S3B). Although the hotspots on chromosomes 2, 20, and

22 observed in the retrospective cohort5 were not prominent in

the prospective cohort at either the mRNA or protein levels,

gene set enrichment analysis (GSEA)11 of the trans-affected pro-

teins in the prospective cohort showed substantial enrichment of

proteins associated with immune regulation (e.g., acute immune

response, regulation of humoral immune response, regulation of

immune effector process; Figure S3C), confirming the apparent

selection for proteins associated with immune function observed

in the retrospective cohort. In general, however, the increased

resolution of focal areas provided by the use of WXS to identify

CNAs resulted in a dilution of the trans effect, while a positive

correlation between copy number and cis effects on mRNA

and protein abundance was consistently observed.

Histone H4 Acetylation as an Indicator of HRD Status
In our retrospective analysis, HGSC samples were deliberately

chosen to represent HRD+ and homologous repair proficient

(HRD�) genotypes, based on mutations in BRCA1, BRCA2,

and/or deletion of PTEN, to identify proteomic signatures asso-

ciated with HRD status that may be used to stratify women for

treatment with PARP inhibitors. In the retrospective study, we re-

ported that the acetylation of two specific lysine residues of his-

tone H4 (K12 and K16) was statistically significantly decreased in

patients who were HRD+,5, and these acetylation events were

orthogonally validated by immunoblot and parallel reaction

monitoring MS in a subsequent publication.12 Genomic analysis

of the prospective HGSC samples for either somatic or germline

mutations of BRCA1 or BRCA2 indicated that 16 of 83 patients

were HRD+. Comparison of histone H4 K12 and K16 acetylation

in these samples showed a statistically significant decrease in

the acetylation of K12 in histone H4 (Figure 2B) and a similar

but less significant decrease in dual acetylation of K12 and

K16 (Figure 2C). These results suggest that histone acetylation

marks may have potential utility as an indicator of HRD status.

Consistency of mRNA-Protein Correlations by Gene
Family
While within-sample correlations of mRNA and protein measure-

ments are fairly consistent, across-sample mRNA-protein corre-

lations for each gene-protein pair are known to bemore variable,

potentially reflecting gene-specific post-transcriptional regula-

torymechanisms.13Whenwe calculated the correlation between

each protein and its cognate mRNA across all 83 tumors (Fig-

ure S4A), the results were consistent with our previous report

on HGSC5 and with proteogenomic analyses of breast and colo-

rectal cancers,7,14,15 suggesting that there is functional signifi-

cance to the degree of correlation between cognate mRNA

and proteins across multiple cancer types. Briefly, we observed

a range of correlations between paired mRNA and protein

values, with a median correlation of 0.35 across all 83 samples

(Figure S4A). A comparison of the genes representing the top
and bottom 10% of correlation values from this study and previ-

ous studies is shown in Figure S4B. As observed previously,

functional enrichment analysis indicated that genes for nucleo-

tide and amino acid metabolism and interferon response

showed good correlation between mRNA and protein, while

genes for such housekeeping functions as ribosomes, oxidative

phosphorylation, mRNA splicing, and the complement and

coagulation cascade were relatively poorly correlated.

Comparison of Protein Expression in Ovarian HGSC and
Normal Precursor Tissues
A substantial limitation of the prior proteogenomic analysis of

HGSC samples from the TCGA cohort was the absence of an

appropriate control for tumor versus normal comparisons at

the protein level. In this prospective study, phenotypically normal

FT was collected when feasible at the time of surgery, as there is

substantial evidence that serous tubal intra-epithelial carcinoma

(STIC) lesions in the FT are the dominant precursor lesions for

HGSC.16,17 Twenty normal FT samples were characterized, 10

of which were matched with tumor samples from the same pa-

tient. Distal fimbrae from uninvolved, phenotypically normal

FTs were collected under tight ischemia control of %30 min in

recognition of the observed effects of ischemia times on the

phosphorylation of stress-related kinases.6 As shown in Fig-

ure S5A, this tightened control of ischemia time substantially

reduced the number of patients with artifactual phosphorylation

of p38/MAPK and other stress-responsive pathways. Figure S5B

demonstrates that there was no significant difference in the

levels of phosphorylation as a function of ischemia time up to

30 min, as determined by PCA.

The availability of prospectively collected FT samples allowed

us to interrogate the proteomic dataset for differences in protein

expression patterns in HGSC compared to the normal precursor

tissue. We identified 509 proteins differentially abundant (log2

fold-change > 2, FDR < 0.05) in HGSC compared to normal tis-

sue (Figure 3A; Table S5). The major difference observed was

in proteins that were under-expressed in HGSC compared to

FT; 489 proteins were statistically more abundant in FT,

compared to 20 that were statistically more abundant in

HGSC. As a quality control, we compared protein identifications

in HGSC samples, normal FT samples harvested surgically

within the prospective cohort, and FTE cell-enriched samples

prepared by scraping the mucosal surface of healthy FTs at

the time of surgery for benign conditions (cytobrush FTE). Over-

lap between the surgical FT and cytobrush FTE samples was

>50% (3,894 of 7,599 proteins observed in surgical FT were

also observed in the cytobrushed samples; Figure S5C), and

both samples contained known markers of secretory epithelial

cells, most notably oviductal glycoprotein-1 (OGP-1). GSEA

analysis indicated that processes associated with DNA repair

and DNA replication (e.g., interstrand crosslink repair, regulation

of DNA damage response, negative regulation of telomere main-

tenance, DNA-dependent DNA replication maintenance of fidel-

ity, homologous recombination) were modestly increased in

HGSC tissues, while FT appeared to be enriched in proteins

associated with muscle processes, immune function, and

signaling pathways associated with reproductive and neurolog-

ical processes (Figure 3B; Table S6), consistent with the
Cell Reports Medicine 1, 100004, April 21, 2020 5
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Figure 3. Comparison of Protein Abundance in HGSC and Normal FT

(A) Volcano plot representation of differential protein expression in tumor versus normal FT. Proteins with significantly increased or decreased (±2-fold change,

Benjamini-Hochberg adjusted p < 0.05) expression in 83 tumors compared to 18 normals are colored red and blue, respectively. The lighter colors are the

significantly differential proteins at a lower fold-change threshold of ±1.5. Differentially expressed proteins with the largest fold-changes are labeled. An inter-

active version of this plot is available at https://doi.org/10.25584/cptac/1601822.

(B) GSEA of Gene Ontology biological process gene sets for cancer versus normal protein differential expression. The clusterProfiler dot plot visualization shows

enriched terms as dots, in which the size of the dot represents the gene count and the color corresponds to the statistical significance of the enrichment. The

x axis is the proportion of genes that are annotated to a term.

See also Figures S1 and S5.

Article
ll

OPEN ACCESS
histological composition of the FT. To control for proteins asso-

ciated with non-epithelial components of the FT, we repeated

the analysis using only those proteins also observed in the cyto-

brush FTE preparations (Figure S5D) and still observed an

enrichment for immune functions and developmental processes

in normal FT compared to tumors.

Enrichment of Proliferation-Associated Kinase Activity
in HGSC
Weanalyzed and compared the phosphoproteomes of the tumor

and normal FT samples by assessing the differences in phos-

phopeptide abundance between the two groups, with and

without normalization to changes in protein abundance. Differ-

ential phosphoproteomic analysis identified 593 phosphopepti-

des with higher abundance (2-fold change, Benjamini-Hochberg

adjusted p < 0.05) in the HGSC samples, whereas 383 phospho-

peptides were found to be more highly abundant in FT samples,

indicating that the tumor samples displayed a generalized in-

crease in phosphorylation, and thus increased pathway activa-

tion, compared to normal tissues (Figure 4A; Table S5). We

examined the differences in pathway representation between

tumor and normal FT in both the proteomics and phosphopro-

teomics data (Figure 4B) and found, similar to our previous ob-

servations,5 that phosphoproteomics provided much more

robust pathway enrichment than proteomics. However, many

identified pathways were significant at both the protein and

phosphopeptide levels, including the multifunctional RhoA

regulatory pathway. Many of the pathways that were differen-

tially active in tumor versus normal were also previously

observed to be more active in short-term survivors compared

to long-term survivors (e.g., RhoA, Notch, integrin-like kinase,

Rac1).5
6 Cell Reports Medicine 1, 100004, April 21, 2020
We used kinase substrate enrichment analysis (KSEA) to char-

acterize differences in the relative phosphoproteomic profiles of

the tumors with respect to the normal tissues (Figure 4C). KSEA

is a computational framework for inferring the activation status of

signaling kinases from quantitative phosphoproteomic datasets

through the changes in the phosphorylation levels of their

respective substrates.18,19 Analysis of substrate phosphoryla-

tion using KSEA revealed significantly increased activity of

CDK1, CDK2, CDK7, and CDK4; the mitotic kinase AURKA;

and the mRNA processing-associated kinase CLK1 in tumors.

Given the existence of FDA-approved drugs targeting Aurora ki-

nases and CDKs, these results suggest possible therapeutic

strategies for HGSC. Normal FT showed increased activation

of multiple kinases associated with stress responses and ho-

meostatic regulation. The inferred activation in normal FT of

JNK1 kinase (MAPK8) and adrenergic b receptor kinase

(ADRBK), a G-protein coupled receptor kinase associated with

homeostatic regulation, was significant both as phosphopepti-

des and as phosphopeptides normalized to protein abundance

(Figure 4C; Table S7).

To evaluate the impact of the more tightly controlled ischemia

times in the prospective cohort, we repeated KSEA on phospho-

peptides that had been filtered conservatively to remove phos-

phosites known to be affected by ischemia (Figure S5E) using

a procedure previously described.5,6 The differences observed

between Figures 4C and S5E indicate that improved ischemia

control increases the biological insights from the analysis of

the prospectively collected samples, specifically in regard to

processes that are enriched in the normal FT samples. Of the

22 kinases identified as activated in FT without using the

ischemia filter, only 2 kinases, calcium/calmodulin-dependent

protein kinase II a (CAMK2A) and protein kinase cyclic adenosine

https://doi.org/10.25584/cptac/1601822
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Figure 4. Comparison of Protein Phosphorylation and Kinase Activity in HGSC and Normal FT

(A) Volcano plot of tumor-normal differences in peptide phosphorylation. Phosphopeptides with significantly increased or decreased (±2-fold change, Benjamini-

Hochberg adjusted p < 0.05) abundance in tumors compared to normal FT are colored red and blue, respectively. The lighter colors are the significantly dif-

ferential phosphopeptides at a lower fold-change threshold of ±1.5. An interactive version of this plot is available at https://doi.org/10.25584/cptac/1601822.

(B) Pathway components were compared (2-sided t test) between tumor and normal FT samples for differences in protein and phosphorylation abundance. The

top 10 most significant pathways in terms of Benjamini-Hochberg adjusted p value for proteomics and phosphoproteomics data are shown. These pathways

exhibit increased phosphorylation in tumors. The notch, integrin-like kinase, and RhoA regulatory pathways emerged as the most activated in this analysis.

(C) Inference of kinase activity in tumors compared to normal using KSEA on phosphopeptides for known kinase substrates. The bar plot shows the relative

activity of kinases in tumors versus normal FT. The Z scores are a measure of the enrichment for phosphorylated substrates of a given kinase, with higher scores

corresponding to greater activity in the tumors. Kinases with significant (FDR < 0.05) increases in tumors are in red, whereas those with significantly lower activity

in tumors are in blue. Darker colors are used for kinases for which phosphorylation changes are independent of abundance changes.

(D) Comparison of DAPK1 phosphorylation at residue S289 in tumor and normal samples.

See also Figures S1 and S5.
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monophosphate-activated catalytic subunit a (PRKACA),

passed the ischemia filter. While many of the kinases lost from

the analysis are related to the p38-MAPK stress-activated

pathway, information regarding the activation of p21-activated

protein kinase 2 (PAK2) and rho-associated protein kinase 1

(ROCK1), kinases associated with organization of the actin cyto-

skeleton and cell motility, would have been lost.

While KSEA identifies high-level pathway alterations,

additional biology can be discerned by focusing the analysis

of phosphoproteomics data on known phosphorylation

sites linked to kinase activity. Significantly differential phos-
phopeptides were filtered using the PhosphoSitePlus data-

base,20 which highlights modifications known to affect

protein function (Table S8). Multiple differential phosphoryla-

tion sites with relevant functional consequences were identi-

fied in this analysis. For example, increased phosphorylation

of death-associated protein kinase 1 (DAPK1) in tumors

is relevant to the consistent observation of suppressed

apoptosis in cancer (Figure 4D). DAPK1 is a serine-threonine

kinase involved in multiple pathways related to cell survival,

apoptosis, and autophagy.21 We observed significantly

increased phosphorylation in tumors relative to FT at S289
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Figure 5. Assessment of Relation between SCNA and Protein Levels and RB1 Hyperphosphorylation in HGSC

(A) RB1 was consistently hyperphosphorylated independent of SCNAs. RB1 phosphorylation (boxplots) in all of the samples is shown ordered by the relative

abundance of RB1 protein (red dots), and SCNA levels (purple dots). RB1 phosphorylation is correlated with protein abundance (r = 0.74) but is not well correlated

with the RB1 SCNA level (r = 0.27).

(B) RB1 phosphorylation level was higher in tumor (n = 83) relative to normal FT tissue (n = 18).
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of DAPK1, a site known to suppress apoptosis induced by

DAPK1.22

Cell-Cycle Control and Replication Stress in HGSC
KSEA revealed substantial increases in the inferred activity of

multiple kinases associated with cell-cycle control, including

CDK1, CDK2, AURKA, CDK7, and CDK4 (Figure 4C). This obser-

vation prompted a closer look at the possible role of cell-cycle

dysregulation and replication stress in HGSC.

RB1 is a tumor suppressor that is frequently deleted in can-

cer23; unphosphorylated RB1 suppresses proliferation by

sequestering the E2F transcription factor, which is released

upon phosphorylation.24 Phosphorylated RB1 also promotes

apoptosis in response to replication stress and DNA damage.25

Although 70% of SCNAs in HGSC involving RB1 were associ-

ated with chromosomal losses, we found only a modest positive

correlation of RB1 SCNAs and RB1 protein levels (Pearson cor-

relation r = 0.51); RB1 hyperphosphorylation correlated posi-

tively with protein abundance (Pearson correlation r = 0.74),

but was largely independent of SCNAs (Pearson correlation r =

0.27; Figure 5A), indicating a general downregulation of the tu-

mor suppressor activities of RB1 in HGSC, mediated at the pro-

tein phosphorylation level (Figure 5B; mean average fold-change

1.5; p value 3.7e�27). This observation highlights the power of

phosphoproteomics to identify functional changes independent

of protein or mRNA abundance.

One well-known driver of increased RB1 hyperphosphoryla-

tion is the cyclin E-CDK2 complex.26 In our analysis of HGSC,

mean CDK2 activity inferred from known substrate phosphoryla-

tion levels after removing the contribution from RB1 phospho-

sites was significantly correlated with mean RB1 phosphoryla-

tion (Pearson correlation r = 0.53, p value 7e�7; Figure 6A),

similar to observations in colorectal cancer.15 However, exami-

nation of individual CDK2 phosphosites in HGSC compared to

normal FT showed significantly increased phosphorylation of

the two major phosphorylation sites CDK2-Y15 and CDK2-

T160 in HGSC (Figure 6B). These two sites have opposing roles
8 Cell Reports Medicine 1, 100004, April 21, 2020
in CDK2 function, with Y15 being inhibitory and T160 activating

the kinase.27 Although increased phosphorylation at Y15 in tu-

mors would appear to be counterintuitive, there is evidence

that distinct subpopulations of CDK2 could be inhibited by Y15

phosphorylation even if the overall CDK2 activity is increased.27

In addition, increased phosphorylation of CDK2 on Y15 has

been associated with cell-cycle exit in response to replication

stress28,29 and could conceivably constitute a response to

mutant TP53-associated replication stress in HGSC. We

observed a highly statistically significant correlation between

the phosphorylation of CDK2-Y15 and the phosphorylation of

RB1-S249 (r = 0.56, p = 0.00054) and RB1-T356 (r = 0.60, p =

0.0002). While these RB1 sites are known to be activating, they

have not been previously linked to CDK2 activity.

Examining other cellular components associated with repli-

cation stress, we found statistically significant increases in

the abundance of FANCD, PARP, CHK1, CDK1, and CDK2;

we also observed modest (but not statistically significant) in-

creases in the kinase activity of both ataxia telangiectasia

mutated (ATM) and ATM and RAD3-related (ATR) (Z scores

are 0.56 and 0.40, respectively), key regulators of DNA repair

in response to replication stress.30 FANCD2 is a key compo-

nent of the Fanconi anemia homologous DNA repair complex,31

and an examination of FANCD2 revealed both increased overall

abundance and concomitant phosphorylation at S590 and

S592 in HGSC tumors compared to normal FT samples (Fig-

ure 6C). At present, very little is known about the functional

consequences of specific phosphorylation sites on FANCD2,

although its partner FANC1 is known to be activated by phos-

phorylation.32 We also observed previously undescribed asso-

ciations between the phosphorylation of CDK2-T160 and the

phosphorylation of PARP-S257 (r = 0.79, p = 0.039), and be-

tween CDK2-Y15 and 2 sites on nucleophosmin 1 (NPM1)

(S243, r = 0.57, p = 0.002; S254, r = 0.58, p = 0.0009). These

phosphoproteomics results suggest a possible regulatory

mechanism for homologous repair that deserves further

investigation.



Figure 6. Phosphosite Analysis Provides Evidence of Increased Proliferation and Replication Stress in HGSC Compared to Normal FT

Tissues

(A) Correlation of mean CDK2 activity inferred from known substrate phosphorylation levels after removing the contribution from RB1 phosphosites, with mean

RB1 phosphorylation level.

(B) Comparison of phosphorylation at specific CDK2 phosphosites in tumors (teal; n = 83) versus normal FT (red; n = 18).

(legend continued on next page)
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The activity of the mRNA processing-associated kinase CLK1

was also significantly higher in HGSC compared to that in the

normal FT tissues (Figure 4C). In breast cancer, CLK1/4 kinases

are involved in the regulation of the alternative splicing of TP53.33

CLK1 also plays a role in the response to replication stress,34 and

CLK1 and CLK2 inhibitors have been screened for use in triple-

negative breast cancer (TNBC) through compromising the

G1-S checkpoint,35 suggesting the potential utility of CLK1 inhib-

itors in HGSC. Figure 6D illustrates the connections between

these activated kinases and the regulation of cell-cycle transit,

DNA repair, and replication stress.

Survival Signature from Retrospective HGSC Samples
Correlates with Preliminary Survival Data in Prospective
Cohort
A key finding of our previous study of retrospective HGSC sam-

ples was a regression model-based minimal protein signature

capable of predicting overall survival in a held-out test set of pa-

tients; ‘‘low’’ scores correlated with decreased survival time.5

The utility of such signatures can only be established by valida-

tion in an independent sample set such as the prospective

cohort in this study. During the first year of clinical follow-up,

there were seven deaths reported within the cohort. In the pre-

sent study, we applied our 90-protein signature to produce

scores for each tumor.

We found that the mean score was lowest (indicative of

short survival) in the seven deceased patients, intermediate in

the currently surviving patients with tumors, and highest in the

normal FT tissues (Figure 7). The difference between the

deceased group and the living group was statistically significant

(p = 0.03), despite the small number of samples. These results

support the ability of our signature to discriminate between

short- and long-surviving patients with HGSC at the time of tu-

mor resection, although further mortality data from this cohort

will shed more light on the efficacy of the signature.

We also examined the possibility that other clinical covariates

may be associated with survival status in our current cohort. In

our retrospective study, we analyzed the contribution of these

clinical variables in a Kaplan-Meier survival model. However,

as described previously, the survival analysis for the present

study was precluded due to the limited follow-up data available

(1 year). Accordingly, we tested for association using a t test for

continuous variables (age) and Fisher’s exact test for categorical

variables (site of disease, anatomic site of tumor, tumor stage,

tumor grade, tumor residual disease, race, weight of tissue sam-

ple) in the seven deceased patients versus the other living pa-

tients (Table S9), but we found that these variables did not statis-

tically affect mortality (p < 0.05) in this small subset of patients.

DISCUSSION

The most significant opportunity presented in this study of pro-

spectively collected HGSC is the ability to compare the tumor
(C) Assessment of abundance of FANCD2 phosphosites. Distribution of abundan

(D) Diagram of pathways linking DNA damage, cell-cycle regulation, and replica

colored in salmon are significantly upregulated in tumors, and phosphosites indic

that the known substrates of the identified kinase show significant increases in p
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proteome and phosphoproteome with an appropriate normal

control for the tissue of origin, in this case FT, based on the cur-

rent consensus that fallopian STIC lesions are the precursor of

HGSC.36,37 Here, we provide an extensive comparison of

HGSC and FT at the proteome level and the phosphoproteome

level using surgical specimens rather than cell lines. Because

TCGA tumor samples were collected with a focus on genomic

analyses, DNA from peripheral blood monocytic cells (PBMCs)

was used as the ‘‘normal control’’ and somatic mutations in

the tumor were identified by comparison to the patient’s own

germline DNA from PBMCs. There was no attempt to collect

normal adjacent tissue from the same organ as the tumor in

most TCGA studies. In addition to germline DNA for the assess-

ment of somatic mutations, we compared tumor tissue to two

normal tissue controls, FT and FTE. HGSC showed reduced

diversity of the global proteome compared to normal FT; specif-

ically, normal FT featured a higher abundance of proteins

associated with immune regulation, including both innate and

adaptive immune responses, as well as neutrophil- and leuko-

cyte-mediated immunity. This enrichment was preserved when

the comparison was limited to proteins observed in FTE samples

obtained by cytobrushing to control for proteins associated with

non-epithelial tissue layers (e.g., muscularis, serosa). Although it

may seem counterintuitive to observe an increase in immune-

associated protein expression in the normal FT compared to

the HGSC tumor, several recent proteomic studies have identi-

fied ‘‘immune desert’’ subtypes, specifically renal clear cell car-

cinoma,38 breast cancer,39 and head and neck cancer.40 It is

possible that HGSC is dominated by an immune desert pheno-

type, potentially contributing to the poor prognosis for HGSC

patients.

Gain-of-function events in the tumors were most evident in the

phosphoproteome and were characterized by a marked in-

crease in relative phosphorylation across multiple phosphopro-

teins, particularly CDKs and mitotic kinases. Many of the path-

ways upregulated in association with short survival in

retrospective HGSC samples were also enriched in HGSC

compared to FT, specifically RhoA, Notch, integrin-like kinase,

and Rac. These observations suggest a continuum of pathway

activations from normal FT through HGSC, associated with

long-term survival, to themost aggressive forms of HGSC, asso-

ciated with short-term survival. The observed changes are

consistent with the upregulation of proteins associated with

the cancer hallmarks of proliferation (CDKs and AURKA) and

motility and invasion (RhoA and Rac) as well as cell-cell commu-

nication (Notch and integrin-like kinase).

In our prior retrospective study of HGSC,5 we derived a sur-

vival-associated signature based on differential trans-regulated

protein abundance in short-term versus long-term survivors. Us-

ing survival data for the first year of clinical follow-up available for

patients in the prospective cohort, we determined that tumors

from the seven deceased patients had significantly worse sur-

vival scores than those from surviving patients, and the normal
ce of phosphosites of FANCD2 in tumors versus normal FT.

tion stress found to be activated in HGSC. As indicated in the figure, proteins

ated in red are also significantly increased in tumors. The red arrows indicate

hosphorylation.



Figure 7. Survival Signature Predicts Tumor

Status

The survival signature identified in our previous

study using retrospective HGSC samples was

applied to proteomics data from the present study

showing that it significantly discriminated between

deceased and surviving patients and had a

significantly different profile in normal tissues.
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tissues from all of the patients had better survival scores than

from either set of tumors. Further development of these models

could promote their use in a precision medicine context to guide

the use of targeted therapies either in conjunctionwith initial plat-

inum treatment or after recurrence. A second clinically relevant

observation was the association of decreased histone H4 acet-

ylation, specifically on K12 and K16, with positive HRD status;

this observation was confirmed in the prospective cohort. Given

the preliminary success of PARP inhibitor therapies in TNBC,41 a

robust biomarker for HRD status independent of known patho-

genomic mutations in BRCA1 and BRCA2 could be a useful

adjunct to guide therapy choices in women with HGSC.

The control of ischemia time in the prospective sample collec-

tion process enabled a deeper analysis of the phosphoproteo-

mic data. This stringent criterion allowed us to include the

ischemia-responsive p38 and other stress kinases in the analysis

of the phosphoproteome. Use of KSEA to infer kinase activity

from the phosphorylation status of known kinase substrates indi-

cated significantly increased activation in HGSC of themitotic ki-

nase AURKA, CDK1, CDK2, CDK4, and CDK7, and the mRNA

processing-associated kinase CLK1. All of these kinases are po-

tential targets of therapeutic intervention in HGSC, particularly

given the availability of FDA-approved inhibitors for CDKs and

Aurora kinases.

In addition to opening the prospect of additional therapeutic

strategies for HGSC, characterizing the phosphorylation sta-

tus of specific, well-annotated phosphosites has the potential

to provide insight into HGSC biology. This work shows that

RB1 is consistently hyperphosphorylated in HGSC, largely in-

dependent of changes in RB1 copy number, thus facilitating a

general increase in proliferation that is consistent with the

increased phosphorylation of the AURKA mitotic kinase. Com-

parison of specific phosphorylation sites on CDK2 shows

increased phosphorylation of CDK2-T160, which is consistent

with increased proliferation and increased phosphorylation of

CDK2-Y15. Phosphorylation at this site has been associated

with cell-cycle exit in response to replication stress. The latter

observation, together with the observed increase in CLK1 ac-

tivity, suggest a general response to increased replication
Cell Rep
stress in HGSC that is borne out

through the phosphoproteome, as evi-

denced by increased phosphorylation

of PARP, FANCD, and NPM.

Finally, we hypothesize that phospho-

proteomics reveals a potential mecha-

nism to explain the high degree of chro-

mosomal instability characteristic of

HGSC (Figure 6D). Increased prolifera-
tion driven by mitotic kinase activation and RB1 hyperphos-

phorylation induces a state of replication stress, evidenced by

CDK2-pY15, increased CLK1 activity, and increased activity

of ATR and ATM. In the presence of impaired capabilities for

DNA repair resulting from breast cancer gene 1 and 2

(BRCA1 and 2) mutations or dysregulation of PARP and

FANCD, this could result in increased non-homologous end-

joining and chromosomal translocations. This pattern of onco-

gene-driven increased proliferation leading to replicative stress

and genomic instability is increasingly recognized as a novel

hallmark of cancer.40,42 Therapies that break this cycle by tar-

geting cyclin-dependent kinases or that leverage damaged

DNA repair to induce apoptosis (e.g., use of PARP inhibitors)

may prove particularly effective in HGSC when used in

conjunction with DNA-damaging platinum-based therapies.

Although additional research will be required to build a prog-

nostic marker, it is possible that proteomic indicators of repli-

cation stress and mitotic kinase activation could eventually be

applied to HGSC tissues at the time of cytoreduction, providing

guidance on the adjuvant use of targeted therapies with tradi-

tional platinum-based therapies.

In conclusion, analysis of prospectively collected HGSC

samples from 83 patients provided significant insights stem-

ming from direct comparisons to normal precursor tissues.

Key elements of the prior retrospective study were confirmed,

including the variation in mRNA-protein correlation by func-

tional group, the consistent enrichment of immune regulatory

pathways despite heterogeneity in the focal sites of SCNA,

and the performance of a protein abundance-based survival

signature to discriminate between short-term survivors

(currently deceased) and longer-term survivors (currently

alive). Histone H4 acetylation remains a promising indicator

of HRD status. Comprehensive analysis of kinase activity, in-

ferred from the phosphorylation of known kinase substrates,

suggests a key role for cell-cycle control and replication stress

in HGSC, and the identification of multiple CDKs with

increased activity in tumors compared to normal tissue sug-

gests a potential application for FDA-approved CDK inhibitors

in ovarian cancer.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Primary tumor and normal tissue samples CPTAC Biospecimen Core Resource See Experimental Model and Subject Details

Patient-derived xenograft tissue samples Washington University in St. Louis See Method Details

Critical Commercial Assays

Illumina Barcoded Paired-End Library

Preparation Kit

Illumina Cat#PE-410-1001

Illumina’s Infinium LCG Quad Assay Illumina Cat#15025908

TruSeq Stranded RNA Sample Preparation Kit Illumina Cat#RS-122-2103

TruSeq Small Total RNA Sample Prep Kit Illumina Cat#RS-200-0048

Sequencing grade modified trypsin Promega Cat#V517

Tandem mass tags - 10plex Thermo Scientific Cat#90110

Ni-NTA Superflow agarose beads QIAGEN Cat#30410

Deposited Data

CPTAC Ovarian raw genomic data database of Genotypes and

Phenotypes (dbGaP)

https://www.ncbi.nlm.nih.gov/gap/, phs000892

Proteomic data CPTAC Data Portal https://cptac-data-portal.georgetown.edu/

cptac/study/disclaimer?accNum=S038

Software and Algorithms

mzRefinery 43 https://omics.pnl.gov/software/mzrefinery

MASIC 44 https://github.com/PNNL-Comp-Mass-Spec/

MASIC/releases

MS-GF+ 45 https://omics.pnl.gov/software/ms-gf

ProteoWizard 46 http://proteowizard.sourceforge.net

COSMIC 47 https://cancer.sanger.ac.uk/cosmic

SomaticWrapper N/A https://github.com/ding-lab/somaticwrapper

Mutect1 48 https://software.broadinstitute.org/cancer/

cga/mutect

Strelka1 49 https://github.com/Illumina/strelka

VarScan2 50 https://dkoboldt.github.io/varscan/

Pindel 51 https://github.com/genome/pindel

dbSNP 52 https://www.ncbi.nlm.nih.gov/snp

CrossMap 53 http://crossmap.sourceforge.net/

GermlineWrapper N/A https://github.com/ding-lab/germlinewrapper

GATK 54 https://gatk.broadinstitute.org

Variant Effect Predictor (VEP) 55 https://uswestembl.org/info/docs/tools/vep/

index.html

CharGer 56 https://github.com/ding-lab/CharGer

ExAC 57 http://exac.broadinstitute.org/

ClinVar 58 https://www.ncbi.nlm.nih.gov/clinvar/

gnomAD 57 https://gnomad.broadinstitute.org/

SIFT 59 N/A

PolyPhen 60 N/A

Integrative Genomics Viewer (IGV) 61 https://software.broadinstitute.org/software/igv/

GISTIC 2.0 9 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

MultiOmicsViz 62 10.18129/B9.bioc.multiOmicsViz

clusterProfiler 63 10.18129/B9.bioc.clusterProfiler

limma 64 10.18129/B9.bioc.limma

KSEAapp 19 https://cran.r-project.org/web/packages/

KSEAapp/index.html
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Karin

Rodland (karin.rodland@pnnl.gov). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Specimens and Clinical Data
Ovarian tumor, normal Fallopian tube (FT), and blood samples were collected from 100 women between the ages of 36 and 86. Tis-

sues were collected at twelve Tissue Source Sites (TSS) in strict accordance to the CPTAC-2 ovarian cancer procurement protocol,

and institutional review boards at each TSS reviewed protocols and consent documentation, in adherence to Clinical Proteomic Tu-

mor Analysis Consortium (CPTAC) guidelines. Of the 100 HGSC cases collected, 83 had both tumor and FT that passed molecular

qualification, while ten patients provided FT only, as the tumor failed molecular qualification, due to insufficient yield, poor gel scores,

or RIN values below 7, as described in more detail below. The inclusion criteria encompassed newly diagnosed, untreated patients

undergoing primary surgery for high grade serous adenocarcinoma of the ovary. Patients with prior history of other malignancies

within twelve months, any systematic chemotherapy, endocrine or biological therapy as well as prior radiation therapy to the

abdomen or pelvis for any cancer type were excluded from the study. Required clinical information regarding patient history and sta-

tus of surgery along with relevant diagnostic information were collected using case reports forms. One-year follow-up information

and updated history after completion of the initial treatment regimen were also collected through follow-up forms. De-identified pa-

thology reports and representative diagnostic slide images were utilized to review and qualify cases for this study. Peripheral venous

blood was collected from each patient prior to administration of anesthesia. Segments from qualified tumor specimens were greater

than 300mg inmass with at least 60% tumor cell nuclei and less than 20% necrosis. Tissue and the adjacent normal specimens were

collected with less than 30 min total ischemic time and embedded in optimal cutting temperature (OCT) compound for processing at

a common CPTAC-2 Biospecimen Core Resource (BCR) center. Pathologically-qualified cases underwent further molecular quali-

fication for extraction and co-isolation of nucleic acids. Tissue segments that passed pathology and molecular qualifications were

shipped to proteomic characterization centers. DNA and RNA from the same tumor segment and DNA from germline blood were

further aliquoted and quantified per protocol. DNA quality was confirmed using gel electrophoresis and Nano drop methods. RNA

quality was confirmed using Nano drop and Agilent bioanalyzer. Sufficient yield, a good gel score and a RIN value of 7 or greater

qualified the DNA and RNA for sequencing, respectively. Analytes were then shipped to the sequencing center. Corresponding clin-

ical data were formatted and distributed through the CPTAC data coordinating center (https://cptac-data-portal.georgetown.edu/

cptac/study/disclaimer?accNum=S038) and are summarized in Table S1.

METHOD DETAILS

Protein Extraction and Tryptic Digestion
The tumor and normal Fallopian tube tissue samples were obtained as pulverized OCT-embedded tissues through the CPTAC BCR.

Approximately 50mg of each of the samples were homogenized separately in 600 mL of lysis buffer (8 M urea, 100mMNH4HCO3, pH

7.8, 0.1%NP-40, 0.5% sodium deoxycholate, 10 mMNaF, phosphatase inhibitor cocktail 2, phosphatase inhibitor cocktail 3, 20 mM

PUGNAc). Lysates were precleared by centrifugation at 16,500 g for 5 min at 4�C and protein concentrations were determined by

BCA assay (Pierce). Proteins were reduced with 5 mM dithiothreitol for 1 h at 37�C and subsequently alkylated with 10 mM iodoa-

cetamide for 1 h at 25�C in the dark. Samples were diluted 1:2 with 100 mM NH4HCO3, 1 mM CaCl2 and digested with sequencing-

grade modified trypsin (Promega) at 1:50 enzyme-to-substrate ratio. After 4 h of digestion at 37�C, samples were diluted 1:4 with the

same buffers and another aliquot of the same amount of trypsin was added to the samples and further incubated at 25�C overnight

(�16 h). The digested samples were then acidified with 10% trifluoroacetic acid to �pH 2. Tryptic peptides were desalted on strong

cation exchange SPE (Supelco) and reversed phase C18 SPE columns (Supelco) and dried using Speed-Vac.
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TMT-10 Labeling of Peptides
Desalted peptides from each sample were labeled with 10-plex Tandem Mass Tag (TMT) reagents according to the manufacturer’s

instructions (ThermoScientific). Peptides (300 mg) from each of the samples were dissolved in 300 mL of 50 mM HEPES, pH 8.5, and

mixed with 3 units of TMT reagent that was dissolved freshly in 123 mL of anhydrous acetonitrile. Channel 131 was used for labeling

the internal reference sample (pooled from all tumor and normal samples with equal contribution) throughout the sample analysis.

After 1 h incubation at RT, 24 mL of 5% hydroxylamine was added and incubated for 15 min at RT to quench the reaction. Peptides

labeled by different TMT reagents were thenmixed, dried using Speed-Vac, reconstituted with 3%acetonitrile, 0.1% formic acid, and

desalted on C18 SPE columns.

Peptide Fractionation by Basic Reversed-phase Liquid Chromatography
Approximately 2.5 mg of 10-plex TMT-labeled sample was separated on a Waters reversed-phase XBridge C18 column (250 mm3

4.6 mm column containing 5-mm particles, and a 4.6 mm3 20 mm guard column) using an Agilent 1200 HPLC System. After sample

loading, the C18 column was washed for 35 min with solvent A (5 mM ammonium formate, pH 10.0), before applying a 100-min LC

gradient with solvent B (5mMammonium formate, pH 10, 90%acetonitrile). The LC gradient began with a linear increase of solvent A

to 10% B in 2 min, then linearly increased to 45% B in 78 min, 10 min to 42.5% B, 10 min to 100% B. The gradient then resolved to

100% solvent A in tenminutes. The flow rate was 0.5mL/min. A total of 96 fractions were collected into a 96-well plate throughout the

LC gradient. These fractions were concatenated into 24 fractions by combining four fractions that are 24 fractions apart (i.e.,

combining fractions #1, #25, #49, and #73; #2, #26, #50, and #74; and so on). For proteome analysis, 5% of each concatenated frac-

tion was dried and resuspended in 2% acetonitrile, 0.1% formic acid to a peptide concentration of 0.1 mg/mL for LC-MS/MS analysis.

The remainder of the concatenated fractions (95%) were further concatenated into twelve fractions by combining two concatenated

fractions (i.e., combining concatenated fractions #1 and #13; #3 and #15; and so on), dried, and subjected to immobilized metal af-

finity chromatography (IMAC) for phosphopeptide enrichment.

Phosphopeptide Enrichment Using IMAC
Fe3+-NTA-agarose beads were freshly prepared using Ni-NTA Superflow agarose beads (QIAGEN) for phosphopeptide enrichment.

For each of the twelve fractions, peptideswere reconstituted in 400 mL IMACbinding/wash buffer (80%acetonitrile, 0.1% formic acid)

and incubated with 20 mL of the 50%bead suspension for 30min at RT. After incubation, the beads were washed two times eachwith

100 mL of wash buffer on the stage tip packed with two discs of Empore C18 material. Phosphopeptides were eluted from the beads

on C18 using 70 mL of Elution Buffer (500 mM K2HPO4, pH 7.0). 50% acetonitrile, 0.1% formic acid was used to elute phosphopep-

tides from the C18 stage tips. Samples were dried using Speed-Vac and later reconstituted with 10 mL of 3%acetonitrile, 0.1% formic

acid for LC-MS/MS analysis.

LC-MS/MS for Global Proteome Analysis
The global proteome fractions were separated using a nanoAquity UPLC system (Waters Corporation) by reversed-phase HPLC. The

analytical columnwasmanufactured in-house usingReproSil-Pur 120C18-AQ 1.9 mmstationary phase (Dr.MaischGmbH) and slurry

packed into a 30-cm length of 360 mm o.d. x 75 mm i.d. fused silica containing a 3-mm sol-gel frit. The trapping column was manu-

factured in-house using Jupiter 300 C18 5-um stationary phase (Phenomenex) and slurry packed into a 4-cm length of 360 mm o.d. x

150 mm i.d. fused silica with the final column being sol-gel fritted on both ends. The analytical column was heated to 50�C using an

AgileSLEEVE column heater (Analytical Sales and Services, Inc.). The analytical columnwas equilibrated to 95%Mobile Phase A (MP

A, 0.1% formic acid in water) and 5% Mobile Phase B (MP B, 0.1% formic acid in acetonitrile) and maintained at a constant column

flow of 200 nL/min. The injected sample (5 mL) was trapped using 100%MP A for 10 min at flow rate of 3 mL/min before being placed

in-line with the analytical column and subjected to the gradient profile (min:%MP B): 0:5, 1:8, 44:15, 85:30, 94:55, 102:70, 105:95,

108:95, 115:5, 150:5.

MS analysis was performed using a Q-Exactive Plus mass spectrometer (Thermo Scientific, San Jose, CA). Electrospray voltage

(2.2 kV) was applied at a carbon composite union (Valco Instruments Co. Inc.) between the analytical column and electrospray emitter

(chemically etched 360-umo.d. x 20-um i.d.). The ion transfer tubewas set at 250�C. Following a 15-min delay from the end of sample

trapping, Orbitrap precursor spectra (AGC 1x106) were collected from 300-1800 m/z for 120 min at a resolution of 70K along with the

top twelve data-dependent Orbitrap HCDMS/MS spectra at a resolution of 35K (AGC 1x105) and max ion time of 100 msec. Masses

selected for MS/MS were isolated at a width of 0.7 m/z and fragmented using a normalized collision energy of 32%. Peptide match

was set to ‘’’preferred,’’ exclude isotopes was set to ’’on,’’ and charge state screening was enabled to reject unassigned 1+, 7+, 8+,

and > 8+ ions with a dynamic exclusion time of 20 s to discriminate against previously analyzed ions.

LC-MS/MS for Phosphoproteome Analysis
Phosphoproteome fractions were separated using a nanoAquity UPLC system by reversed-phase HPLC. The analytical column was

manufactured in-house using ReproSil-Pur 120 C18-AQ 1.9 mm stationary phase and slurry packed into a 35-cm length of 360 mm

o.d. x 50 mm i.d. fused silica picofrit capillary tubing (New Objective, Inc.). The trapping column was manufactured in-house using

Jupiter 300 C18 5-mm stationary phase (Phenomenex) and slurry packed into a 4-cm length of 360 mm o.d. x 150 mm i.d. fused silica,

with the final column being sol-gel fritted on both ends. The analytical column was heated to 50�C using an AgileSLEEVE column
Cell Reports Medicine 1, 100004, April 21, 2020 e3
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heater. The analytical column was equilibrated to 98%MP A and 2%MP B and maintained at a constant column flow of 120 nL/min.

The injected sample (5 mL) was trapped using 100%MPA for 5min at flow rate of 3 mL/min before being placed in-line with the analyt-

ical column and subjected to the gradient profile (min:%MP B): 0:2, 8:4, 50:15, 85:35, 94:60, 95:95, 105:95, 115:2, 170:2.

MS analysis was performed using an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific). Electrospray voltage (1.8 kV)

was applied at a Valco carbon composite union coupling a 360 mmo.d. x 20 mm i.d. fused silica extension from the LC gradient pump

to the analytical column and the ion transfer tube was set at 250�C. Following a 40-min delay from the end of sample trapping, Orbi-

trap precursor spectra (AGC 4x105) were collected from 350-1800 m/z for 120 min at a resolution of 60K along with data-dependent

Orbitrap HCD MS/MS spectra (centroided) at a resolution of 50K (AGC 1x105) and max ion time of 105 msec for a total duty cycle of

2 s. Masses selected for MS/MS were isolated (quadrupole) at a width of 0.7 m/z and fragmented using a collision energy of 30%.

Peptide mode was selected for monoisotopic precursor scan and charge state screening was enabled to reject unassigned 1+, 7+,

8+, and > 8+ ions with a dynamic exclusion time of 45 s to discriminate against previously analyzed ions between ± 10 ppm.

Construction and Utilization of the Comparative Reference Samples
As a quality control measure, two ‘‘Comparative Reference’’ (‘‘CompRef’’) samples were generated as previously described65,66 and

used tomonitor the longitudinal performance of the proteomics workflow throughout the course of this study. Briefly, patient-derived

xenograft (PDX) tumors from established basal and luminal breast cancer intrinsic subtypes were raised subcutaneously in 8-week

old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Laboratories, Bar Harbor, ME) using procedures reviewed and approved by the

Institutional Animal Care and Use Committee at Washington University in St. Louis. Xenografts were grown in multiple mice, pooled,

and cryopulverized to provide a sufficient amount of uniform material for the duration of the study. Full proteome and phosphopro-

teome process replicates of each of the twoCompRef samples were prepared and analyzed as standalone 10-plex TMT experiments

alongside every four TMT-10 experiments of the study samples, using the same analysis protocol as the patient samples. These inter-

stitially analyzed CompRef samples were evaluated for depth of proteome and phosphoproteome coverage and for consistency in

quantitative comparison between the basal and luminal models (i.e., basal/luminal ratios across different replicates and batches;

Figure S1C).

Global Proteome Analysis of Fallopian Tube Epithelial Cells
Ten Fallopian tube epithelial (FTE) cell samples were freshly collected using cytobrush techniques at University of Connecticut Health

Center (Dr. Molly Brewer) from patients undergoing surgery for benign gynecological conditions. The cell pellets were lysed in 50mM

NH4HCO3, pH 7.8 with intermittent sonication on ice. Trifluoroethanol (TFE) was then added to the samples at 50% (v/v) concentra-

tion and incubated at 60�C for 2 h. After being reduced with 2 mM dithiothreitol for 1 h at 37�C, the samples were diluted 1:5 with

50 mM NH4HCO3 (i.e., 10% TFE) and digested with sequencing grade modified trypsin (Promega) at 1:50 enzyme-to-substrate ratio

for 3 h at 37�C. The resulting tryptic peptides were concentrated using Speed-Vac, and the peptide concentration was measured

using the BCA assay. Two pooled samples, each with 100 mg of total peptides, were created by equally mixing five samples and sub-

jected to fractionation via bRPLC as described above, generating 24 fractions for each pooled sample. Each fractionwas analyzed by

LC-MS/MS using conditions similar to those in the ovarian cancer tissue global proteome analysis (described above), except for a

resolution of 35,000 at the MS level and 17,500 at theMS/MS level and an isolation window of 2.0 m/z that were used in the label-free

analysis of the FTE cell samples. The resulting data were searched against the same protein sequence database and filtered in the

same fashion for assembling the final list of protein identifications.

Genotyping Array Analysis
Genomic DNA samples were prepared according to the Illumina Infinium LCG Quad Assay manual protocol. Processed samples

were loaded on HumanOmni5-Quad BeadChips and run on the HiScan platform. SNP and SCNA genotyping were performed

with the Genome Studio Genotyping Module. Although these data were not used in the final analysis due to limited dynamic range,

the data are publicly accessible through the Data Coordinating Center.

Whole Exome Sequencing
Genomic DNA samples were used to prepare indexed libraries using the Nextera Rapid Capture Exome kit from Illumina. Library

preparation was performed using a semi-automated 96-well plate method, with washing and clean-up/concentration steps per-

formed on the Beckman Coulter Biomek NXP platform and with ZR-96 DNA Clean & Concentrator-5 plates, respectively. Libraries

were quantified using the Agilent 2100 Bioanalyzer. Pooled libraries were run on HiSeq4000 (2x150 paired end runs) to achieve a

minimum of 150x on target coverage per each sample library. The raw Illumina sequence data were demultiplexed and converted

to fastq files, and adaptor and low-quality sequences were trimmed. Whole exome sequencing (WXS) data were used for somatic

mutation detection, germline variant detection, pathogenicity annotation of germline variants, and somatic copy number alteration

(SCNA) analysis as described below.

Somatic Mutation Detection
Weused SomaticWrapper (available onGitHub at https://github.com/ding-lab/somaticwrapper) to perform somaticmutation calling.

In SomaticWrapper, we incorporated four mutation callers, Mutect1 (3.1-0-g72492bb), Strelka1 (1.0.14), VarScan2 (2.3.8) and Pindel
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(0.2.5b9-20160729). The raw calls were subjected to individual somatic filtering steps. We removed germline variants by filtering var-

iants that exist in dbSNP but not in the COSMIC database. We used GATK (3.7-0-gcfedb67) to combine variants from different cal-

lers. For single nucleotide variants (SNVs), only the calls called by more than two out of three callers (Strelka1, VarScan2, and Pindel)

were retained. For insertions and deletions (INDELs), only those called by more than two out of three callers (Strelka1, VarScan2, and

Pindel) were retained. We later applied tumor variant allele frequency (VAF) filtering (> = 5%) and normal VAF filtering (%2%) on

the merged mutation calls. To obtain high-quality somatic indel calls, we restricted the indel size to less than 100 nts. Finally, the

genomic coordinates of the mutation calls were lifted over from hg19 to hg38 by CrossMap v0.3.3 using UCSC chain file

hg19ToHg38.over.chain.gz.

Germline Variant Detection
We used the GermlineWrapper pipeline (available on GitHub at https://github.com/ding-lab/germlinewrapper) to call germline vari-

ants. In GermlineWrapper, we used GATK (3.7-0-gcfedb67), VarScan2 (2.3.8), and Pindel (0.2.5b9-20160729) to call germline vari-

ants from normal samples. For single nucleotide polymorphism (SNPs), we took the union of calls from both GATK and VarScan2.

Finally, we retained on those indels called by both GATK and VarScan or by Pindel. Cutoffs of a minimum of 10X coverage and

20% VAF were used in the final step to report the high-quality germline variants.

Pathogenicity Annotation of Germline Variants
Germline variants were annotated using the Ensembl Variant Effect Predictor (VEP)55 (version 85 with default parameters, except

where–everything). Pathogenicity of germline variants was determined with our automatic pipeline CharGer56 (https://github.com/

ding-lab/CharGer), which annotates and prioritizes variants based on AMP-ACMG guidelines.67 This pipeline implements twelve

pathogenic and four benign evidence levels using several datasets, including ExAC and ClinVar (parsed through MacArthur lab

ClinVar; https://github.com/macarthur-lab/clinvar), and computational tools including SIFT59 and PolyPhen.60 The detailed imple-

mentation and score of each evidence level are as previously described.68

Variants prioritized by CharGer were further filtered for rare variants with % 0.05% allele frequency in ExAC (release r0.3.1) and

gnomAD (release 2.1). We then selected for cancer-relevant pathogenic and likely pathogenic variants, based on whether they

were found in the curated cancer variant database or in the curated list of 152 cancer predisposition genes compiled as previously

described.68 Special focus was given to variants in genes of interest to ovarian cancer, such as BRCA1 and BRCA2, as well as Fan-

coni Anemia-related genes. Resulting variants were manually reviewed using Integrative Genomics Viewer (IGV) software61 (version

2.4.18) using both normal and tumor data. Variants that passedmanual reviewwith low allele frequencies (MAF < 0.05%) were further

evaluated for loss-of-heterozygosity (LOH) by comparing VAF in tumor and normal samples using a Fisher’s exact test. LOH was

considered significant at p value % 0.05.

Somatic Copy Number Alteration Analysis
We used the GATK (version 4. beta.5) CNV workflow to detect somatic copy number variations in WXS data. This platform initially

collects proportional coverage using target intervals and WXS BAM files. GC-correction was applied to the derived coverage using

the CorrectGCBias module, and a CNV panel of normals was created to remove the batch effect from the tumor samples. The re-

sulting coverage data were then normalized and segmented. Finally, our workflow called copy number variants after filtering out

copy number neutral regions and outlier coverage regions (using default parameters).

For quality control, we compared germline and somatic copy number variation. We found one group of cases with evidence of

switched tumor and normal samples, shown by the germline CNV profiles resembling somatic CNV profiles, and vice-versa. This

switch was further indicated by those cases having significantly fewer somatic mutations than the rest of the cohort. Swapping

the tumor and normal sequencing files (BAMs) before re-processing CNV and somatic mutations eliminated the issue and rescued

many important somatic mutations, including TP53. The sample swap issue was limited to exome sequencing data.

Significantly altered regions of amplification and deletion across the tumor population were identified using the Genomic Identifi-

cation of Significant Targets in Cancer (GISTIC) 2.0 algorithm9 on the segmented copy number profiles of the tumor samples. The

GISTIC algorithm uses relative copy number data to determine significantly aberrant regions of somatic copy number alteration

across a set of tumors. The algorithm calculates a G-score for each locus that accounts for both the frequency and the amplitude

of observed alterations across the set of samples. Separate scores are computed for gains and losses. Only SCNAs that met rela-

tively high thresholds of copy number changes (in log2-space) > 0.3 (amplification) or < �0.3 (deletion) were included in the compu-

tations. Statistical significance of the aberrations is determined by comparing the observed statistics against a random distribution

obtained by a permutation of the data in each dataset. The p values are corrected for multiple hypotheses testing. A q-value cutoff of

0.05 was used to identify significant alterations. SCNA profiles are divided into arm-level and focal alterations. Significant aberrant

regions that span more than half of the chromosome arm are characterized as arm-level events whereas regions smaller than this

length are labeled focal events.

mRNA Sequencing
Indexed cDNA sequencing libraries were prepared from the RNA samples using the TruSeq Stranded RNA Sample Preparation Kit

and bar-coded with individual tags. Library preparation was performed similarly to the method used for WXS. Quality control was
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performed at every step, and the libraries were quantified using the Agilent 2100 Bioanalyzer. Indexed libraries were prepared as

equimolar pools and run on the HiSeq4000 platform (2x150 paired end runs) to generate a minimum of 30 million paired-end reads

per sample library. The raw Illumina sequence data were demultiplexed and converted to. fastq files, and adaptor and low-quality

sequences were trimmed.

RNA-Seq Data Analysis
mRNA sequencing reads weremapped to human genome hg19 by STAR (version 2.5.3a) using the one-pass model. Hg19 sequence

and genome annotation were downloaded from NCBI RefSeq (03/29/2017). RSEM (version 1.2.31) was used to quantify gene and

transcript expression levels. Gene read counts were calculated by HTseq (version 0.7.2) based on the above annotation. The

RSEM output, including the mRNA RSEM and FPKM (Fragments Per Kilobase of transcript per Million mapped reads) results,

were reported in table format (Table S3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of Global Proteomics Data
LC-MS/MS analysis of the TMT10-labeled, bRPLC fractionated samples generated a total of 288 global proteomics data files. The

Thermo RAW files were processed with mzRefinery43 to characterize and correct for any instrument calibration errors and then with

MS-GF+45,69 (v9881) to match against the RefSeq human protein sequence database released on September 14, 2016 (37,593 pro-

teins) combined with 149 contaminants (e.g., trypsin, keratin). The partially tryptic search used a ± 10 ppm parent ion tolerance, al-

lowed for isotopic error in precursor ion selection, and searched a decoy database composed of the forward and reversed protein

sequences. MS-GF+ settings included static carbamidomethylation (+57.0215 Da) on Cys residues, TMT modification (+229.1629

Da) on the peptide N terminus and Lys residues, and dynamic oxidation (+15.9949 Da) on Met residues for searching the global pro-

teome data.

Peptide identification stringencywas tuned to a PepQValue < 0.005 and a parent ionmass deviation < 7 ppm criteria such that it did

not exceed false discovery rate (FDR) of 1%at the unique peptide sequence level. Theminimumnumber of unique peptides per 1,000

amino acids of protein length was also explicitly evaluated, and aminimum of six peptides per 1000 AA was finally applied to achieve

1% FDR at the protein level within the full dataset. Inference of the parsimonious protein set resulted in 10,706 protein identifications

(an average of 9,769 proteins per sample), with 8,184 proteins common among all 103 samples (Table S2).

The intensities of all ten TMT reporter ions were extracted using MASIC software.44 Next, PSMs were linked to the extracted re-

porter ion intensities by scan number. The reporter ion intensities from different scans and different bRPLC fractions corresponding

to the same protein were summed. Relative protein abundance was calculated as the ratio of abundance in a given sample to the

reference abundance. The pooled reference sample was labeledwith TMT 131 reagent, allowing comparison of relative protein abun-

dances across different TMT-10 plexes. The relative abundances were log2 transformed and zero-centered for each protein to obtain

final, relative abundance values.

Small differences in sample handling andBCA assaymeasurement errors can result in detectable systematic, sample-specific bias

in the quantification of protein levels. To mitigate these effects, we computed the median, log2 relative protein abundance for each

sample and re-centered to achieve a common median of 0. The final processed global proteome data table is available in Table S2;

raw proteomic data is available via the CPTAC Data Portal (https://cptac-data-portal.georgetown.edu/cptac/study/disclaimer?

accNum=S038).

Quantification of Phosphopeptides
Phosphopeptides were identified from the 144 phosphoproteomics data files as described above (e.g., peptide level FDR < 1%), with

an additional dynamic phosphorylation (+79.9663 Da) on Ser, Thr, or Tyr residues. A total of 49,616 phosphopeptides were identified.

The phosphoproteome data were further processed by the Ascore algorithm70 for phosphorylation site localization, and the top-

scoring sequences were reported. For phosphoproteomic datasets, the TMT-10 quantitative data were not summarized by protein

but remained at the phosphopeptide level (Table S2).

All the peptides (phosphopeptides and global peptides) were labeled with TMT-10 reagent simultaneously, and the enrichment of

phosphopeptides using IMACwas performed after the labeling. Thus, all the biases upstream of labeling are assumed to be identical

between global and phosphoproteomics datasets. Therefore, to account for sample-specific biases in the phosphoproteome anal-

ysis we applied the correction factors derived from mean-centering the global proteomic dataset.

In addition to the original phosphorylation abundances, phosphorylation site occupancy ratios (i.e., the relative extent of phosphor-

ylation) were calculated by subtracting the log2 relative abundance of the parent protein (reflecting the overall abundance) from the

phosphopeptide (Table S2). The resulting phosphopeptide values reflect the changes in relative phosphorylation rates of the protein

and are not confounded by changes in expression of the protein itself.

The proteomics data quality has been carefully evaluated in terms of both proteome coverage and quantitation. The relative abun-

dances of the proteins and phosphopeptides across the tumor and normal tissue samples were quantified using a universal reference

strategy as reported recently,5,7 applying a stringent 1% FDR cutoff at the protein level. The consistency of the proteomics pipeline

was demonstrated in both the protein sequence coverage in the proteome data (Figure S1B) and the quantitation reproducibility in
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the external quality controls comparing two breast cancer patient-derived xenograft samples (i.e., CompRef samples, see ‘‘Con-

struction andUtilization of the Comparative Reference Samples’’ above) that were analyzed alongside the ovarian tumors and normal

tissue samples using the same proteomics pipeline (Figure S1C). Note that it was the ratio between two different xenograft samples,

not the quantitation values of just one sample, that was compared in Figure S1C for correlation. We have successfully used such

external QCs to effectively monitor the performance of the proteomics pipeline over time in previous analyses.5,7,71

Isobaric labeling based quantitation could have interference-based compression compared to the label-free methods; however,

we have performed extensive fractionation to significantly reduce the sample complexity in each individually analyzed fraction, thus

effectively alleviating such compression issues. The consistency and robustness of the quantitation results were also demonstrated

in the PCA analysis of the entire global proteome and phosphoproteome datasets: the tumors were readily separated from the normal

FT tissues (Figure S1D).

Identification and Quantification of Acetylated Histone H4
In order to identify specific sites of acetylation using TMT global proteomic data, we performed the search similarly yet with the addi-

tion of a dynamic acetylation to lysine (+42 Da). The PSMs were filtered by (1) FDR < 1%, (2) number of missed cleavage sites no

greater than 2, (3) at least 3 PSMs for an identified peptide, and (4) at least 3 peptides for an identified protein. Each identified

PSM was quantified using TMT reporter ion intensities.

Gene-wise Correlation between Different Platforms
We calculated gene-wise correlations between RNA-seq and TMT proteomics that were quantifiable in both platforms. The

Spearman correlation between the two platforms was calculated for each gene across all the samples.

Correlation of Somatic Copy Number Alterations with mRNA/protein Abundance
To determine the consequences of copy number variation on mRNA and protein expression, we carried out a correlation analysis as

previously described14 and implemented in the R package MultiomicsViz.62 The datasets were initially ordered in terms of their chro-

mosomal location. mRNA expression was transformed to log2 fold change versus mean expression of each gene. The Spearman

rank correlation was then calculated for the genes quantified in all samples in the SCNA dataset for each gene with complete

data in both the mRNA and proteomic datasets using the corresponding measurements for the 81 overlapping samples between

the SCNA, mRNA, and proteomic matrices. The p values for the correlation were also determined to assess statistical significance.

The p values were adjusted for multiple-testing correction by applying the Benjamini-Hochberg procedure across each set of

p values of the correlations of each SCNAwith the proteins. SCNA-protein correlations (positive or negative) with an adjusted p value

below 0.05 were deemed to be significant. Functional enrichment analysis for gene sets represented in the group of proteins in the

SCNA loci with the strongest trans effects was carried out using clusterProfiler63 at an FDR of 0.05 to determine enriched gene

ontology biological processes.

Tumor versus Normal Differential Proteomic Analysis
For the proteomic dataset, peptides were aggregated to the gene level by computing their mean abundance. Two normal samples,

N02OV001 and N17OV001, were removed from all tumor-normal comparisons based on quality control analysis. Proteins with

missing values in any of the samples were dropped, yielding 7,599 complete proteins that were tested for statistically significant dif-

ferential abundance between tumor and normal samples. Differential abundance analyses were conducted using empirical Bayes

moderated t tests via the Bioconductor package limma.64 To correct for multiple testing, the Benjamini-Hochberg procedure was

used to control the FDR. Gene-set enrichment analysis was conducted using the R package clusterProfiler63 with the list of proteins

tested for differential expression and their corresponding log fold-changes as determined by limma as input. Gene symbols were

mapped to their Entrez ids and ranked according to their log fold-change values. ClusterProfiler calculated normalized enrichment

scores (NES) and FDR values for gene sets in GO BP. An FDR cutoff of 0.05 was used to designate significant enrichment of path-

ways. This differential expression analysis was repeated and restricted to the set of proteins that overlapped with cytobrush FTE

samples (Figure S5D).

Tumor versus Normal Differential Phosphoproteomic Analysis
Non-normalized phosphoproteomics data were reduced to the phosphosite level by averaging phosphopeptides that mapped to the

same site. As with the corresponding proteomic analysis, samples N02OV001 and N17OV001 were discarded. Phosphosites with

missing values in at least half of either the tumor or the normal samples were filtered out, resulting in 7,215 phosphosites for further

downstream analysis. Differential expression analysis to characterize changes in phosphoproteomic levels between tumors and the

FT samples were conducted as described in the preceding subsection using limma to calculate the fold changes and associated

adjusted p values for each phosphosite. The differential expression results were then used to determine kinase activity using

KSEA18 implemented in the R package KSEAapp.19 KSEA computes a normalized score to measure relative kinase activity in test

versus control using the difference in the mean log fold-changes of predefined substrate groups of the kinase, as referenced from

the PhosphoSitePlus20 (July 2016) and NetworKIN72 databases. In the latter database, kinase-substrate annotations with a

NetworKIN score below five are discarded. The mean log fold-changes of all the substrates are divided by the standard deviation
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of log fold-changes across all phosphosites, followed by an adjustment to the score for the number of substrates in the data that

annotate to the kinase. The statistical significance of the scores is calculated using a one-tailed z-test followed by BHmultiple testing

correction. Kinases with z-scores with corresponding p values below 0.05 were considered to be significant. The KSEA analysis was

repeated after filtering out phosphorylation sites known to be altered by ischemia6 (Figure S5E).

Pathway activity was compared between the tumor and normal samples using themethod described in our previous study5. Phos-

phopeptides from the stoichiometrically corrected phosphoproteomics data were mapped to pathways in NCI PID using gene sym-

bols. For each pathway, the relative abundances of all phosphopeptides mapping to the pathway were compared between tumor

and normal samples using a two-tailed t test followed by FDR correction using the Benjamini-Hochberg procedure. A similar analysis

was performed with the global proteomics data.

Phosphoproteomics Pathway Analysis Across Cohorts
To identify potential improvement in phosphoproteome quality resulting from improved ischemia control, we compared the pathway

activity of the retrospective and prospective cohorts using KEGG, Reactome and BioCarta pathway collections. For each patient in a

particular cohort, we tested for enrichment for a specific pathway by comparing the abundance of phosphosites on proteins in the

pathway against that of all other phosphosites in the dataset using a Kolmogorov-Smirnov test, adjusted for multiple hypothesis

testing using the Benjamini-Hochberg approach. An adjusted p value threshold of 0.05was used to determine significant enrichment.

The number of patients for which the pathway was enriched was used as ameasure of overall activity of the pathway in the cohort for

purposes of comparing across the retrospective and prospective cohorts. Figure S5A depicts a scatterplot of the number of patients

for which a pathway was determined to be significantly enriched in the two datasets.

NetFill Analysis Linking CIN Score Associated Proteins Across Cohorts
Proteogenomic analysis of HGSC tumor tissues from the TCGA cohort and the current prospectively collected cohort both identified

a relatively small number of proteins that are highly associated with CIN score. A common issue when comparing discoveries across

multiple studies is that the results may not overlap on the surface. To compare and interpret the results beyond simple Venn dia-

grams, we applied an in-house software package, NetFill, to identify a parsimonious set of molecular mediators to connect the results

from the current and the TCGA cohorts. NetFill inputs information frommultiple interactome databases and formulates the solution as

a linear programming problem under constraints.

Survival Analysis
This was performed by first applying the four individual models (a set of proteins and weights) to the proteomics data reported in the

current study to get scores, then averaging the resulting scores to get an overall predictive score for each sample. We note that in the

previous study we used a voting method to combine results from the different models, but that was because the survival analysis

(which we could not reasonably perform on the current cohort) allowed this. The proteins in our models were all observed and quan-

tified in the current study with the exception of KIAA1715, out of 142 unique proteins considered in the models.

DATA AND CODE AVAILABILITY

Processed proteomic data tables are available in Table S2. Raw genomic data is available from the Genomic Data Commons (https://

gdc.cancer.gov/) and proteomic data is available via the CPTAC Data Portal (https://cptac-data-portal.georgetown.edu/

cptacPublic/). Interactive plots for proteomics and phosphoproteomics data are available at https://doi.org/10.25584/cptac/

1601822.
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Figure S1. Integrated proteomics workflow and longitudinal mass-spectrometry data 
generation quality control. Related to STAR Methods and Figures 4 and 5. (A) Mass 

spectrometry (MS)-based TMT-10 based global proteome and phosphoproteome analysis 

workflow. The ovarian tumors and normal tissues were analyzed in twelve TMT 10-plex 

experiments, each with nine study samples and a common internal reference sample created by 

pooling all study samples (equal contribution). The TMT10-labeled samples were then 

fractionated, split (with 5% peptide mass analyzed directly for global proteome), and subjected 

to enrichment of phosphopeptides. Peptides were detected and quantified using information 

from the TMT-10 MS/MS spectra. (B) Distribution of sequence coverage of the identified 

proteins with tryptic peptides detected by MS/MS in each TMT-10 plex; whiskers show the 5–95 

percentiles. (C) Robust and precise proteomics platforms. Longitudinal performance was tested 

by repeated proteome (left) and phosphoproteome (right) analysis of aliquots of the same 

patient-derived xenograft QC samples in standalone TMT-10 plexes, along with the ovarian 

cancer study samples; scatter plots and Pearson correlations comparing individual replicate 

measurements are shown. (D) PCA analysis of the proteome (left) and phosphoproteome (right) 

data readily separated the tumors from the normal FT tissue samples. (E) PCA analysis of the 

tumor-only proteome (left) and tumor-only phosphoproteome (right) data separate the site of the 

tumor sample for the proteome, but not well for the phosphoproteome. (F) PCA analysis of the 

tumor-only proteome (left) and tumor-only phosphoproteome (right) show some separation 

based on the site of disease. 

 
  



 
 
Figure S2. Somatic copy number aberrations of prospective HGSC samples. Related to 
Figures 1 and 2. (A) Arm-level events. Significant (FDR <0.05) arm-level events were identified 

by GISTIC. Red and blue bars represent amplifications and deletions respectively. (B) Focal 

events. GISTIC analysis of somatic copy number alterations identifies significantly recurring 

regions in the genome with focal copy number amplifications (red) and deletions (blue) across 

the tumor cohort. The x-axis represents the chromosomal locations with the dashed vertical 

lines indicating the centromeres. The y-axis shows the G-scores (left) signifying the magnitude 

and frequency of the aberrations, and the corresponding q-values (right) on a log scale with the 

dashed green line representing a q-value threshold of 0.05. The focal peaks are annotated at 

the top and bottom of the plot. (C) Box-plots of distributions of CIN index in tumor samples from 



the current cohort calculated for each individual chromosome and in genome-wide average (the 

last boxplot). Chromosomes 22, 8, and 17 show the highest levels of median CIN index values. 
 
  



 
 
Figure S3. Proteogenomic characterization of prospective HGSC samples. Related to 
STAR Methods. The upper panels show the correlation of copy number abundance (x axes) 



with RNA (A) and protein (B) levels (y axes). Genes are ordered by chromosomal locations on 

both axes. Significant correlations (Benjamini-Hochberg adjusted p-value <0.01, Spearman 

correlation coefficient) are indicated with positive correlations in red and negative correlations in 

green. Lower panels show the number of mRNAs (A) and proteins (B) significantly correlated 

with each CNA gene. Blue bars show the correlations specific to mRNA or protein and black 

bars represent the correlations common to both mRNA and protein. (C) Functional enrichment 

analysis of trans-affected proteins.  Enriched GO biological processes associated with the set of 

proteins significantly correlated with the top trans-acting CNA hotspots on chromosomes 1, 16 

and 19, i.e. the peaks identified in bottom panel in B representing aberrant loci significantly 

correlated with a large number of proteins, are shown. Log-transformed, FDR-corrected p-

values are shown for the GO terms found to be most significantly enriched in the trans-affected 

proteins.  
 
  



 
 
Figure S4. mRNA-protein correlation. Related to STAR Methods. (A) Distribution of the 

correlation of mRNA to cognate protein across all tumor samples using Pearson correlation. (B) 
Functional enrichment using gene set enrichment analysis shows a typical distribution of 

functional pathways enriched in the most highly correlated and least highly correlated fractions. 

 
  



 
 
Figure S5. Prospective samples allow comparison with normal tissue, improved ischemia 
control. Related to Figures 3 and 4. (A) Pathway activation comparison of the current cohort 



against the retrospective cohort. Scatterplot of the number of patients for which a pathway was 

found to be significantly enriched (Kolmogrov-Smirnov p-value < 0.05) in the retrospective (x 

axis) cohort against the prospective (y axis) cohort. (B) PCA of the phosphoproteome colored 

by ischemic time shows no separation. (C) Overlap of proteins between surgical FT and 

cytobrush FTE samples. (D) Gene-set enrichment analysis of proteins observed only in the 

cytobrush FTE preparations. (E) Kinase substrate enrichment analysis results after filtering out 

phosphosites that are known to be involved in warm ischemia. 
 
 
  



Supplemental Tables 
 
Table S1. Patient cohort clinical data. Related to STAR Methods. 

Table S2. Proteomic and phosphoproteomic data. Related to STAR Methods. 

Table S3. RNA-seq data. Related to STAR Methods. 

Table S4. GISTIC analysis of arm-level and focal alterations. Related to STAR Methods. 

Table S5. Proteome and phosphoproteome tumor vs normal differential analysis. Related to 

Figures 3 and 4. 

Table S6. Tumor-vs-normal proteome gene-set enrichment analysis. Related to Figure 3. 

Table S7. Phosphoproteome kinase substrate enrichment analysis. Related to Figure 4. 

Table S8. Differential phosphosites known to be involved in kinase activity. Related to Figure 6. 
Table S9. Analysis of covariates potentially affecting survival. Related to Figure 7. 
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