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SUMMARY
While metabolic changes are considered a cancer hallmark, their assessment has not been incorporated in
the detection of early or precancers, when treatment is most effective. Here, we demonstrate that metabolic
changes are detected in freshly excised human cervical precancerous tissues using label-free, non-destruc-
tive imaging of the entire epithelium. The images rely on two-photon excited fluorescence from twometabolic
co-enzymes, NAD(P)H and FAD, and have micron-level resolution, enabling sensitive assessments of the
redox ratio and mitochondrial fragmentation, which yield metrics of metabolic function and heterogeneity.
Simultaneous characterization of morphological features, such as the depth-dependent variation of the nu-
clear:cytoplasmic ratio, is demonstrated. Multi-parametric analysis combining several metabolic metrics
with morphological ones enhances significantly the diagnostic accuracy of identifying high-grade squamous
intraepithelial lesions. Our results motivate the translation of such functional metabolic imaging to in vivo
studies, which may enable improved identification of cervical lesions, and other precancers, at the bedside.
INTRODUCTION

The reprogramming of cellular metabolism is an emerging hall-

mark of cancer.1–3 Enhanced levels of aerobic glycolysis have

been recognized widely as a prevalent characteristic of many

cancers, and their detection through fluorodeoxyglucose-posi-

tron emission tomography (FDG-PET) is being used now

routinely in the clinic to diagnose and stage tumors and to assess

response to treatment.4 It is becoming increasingly clear that

metabolic reprogramming involves a much more complex set

of pathways that ultimately enable the cells to maximize the uti-

lization of a diverse set of substrates and nutrients to proliferate

and modify their microenvironment to evade death and ulti-

mately metastasize.1,5,6 While fluorine-labeled glutamine has

shown promise as a more recent contrast agent for PET imaging

clinically, and other contrast agents are in the pipeline as a
Cell R
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means to assess other metabolic processes, such as fatty acid

utilization, the use of a contrast agent, radiation, and specialized

imaging facilities does not render this type of metabolic imaging

suitable for screening, routine monitoring, or early detection.7

Similar limitations exist for nuclear magnetic resonance (NMR)-

based imaging approaches, even though recent developments,

especially with dynamic nuclear polarization MRI are likely to

lead to wider clinical adoption for monitoring treatment re-

sponses or detecting metastatic lesions.7 Optoacoustic imag-

ing, a more recently developed modality combining optical exci-

tation with ultrasound detection, has been applied in humans

in vivo for monitoring the metabolic changes associated with

altered oxygen utilization and offers exciting possibilities for la-

bel-free metabolic imaging with higher spatial resolution (hun-

dreds of microns) over imaging depths that extend a few centi-

meters.7,8 However, with hemoglobin, lipids, and water as the
eports Medicine 1, 100017, May 19, 2020 ª 2020 The Author(s). 1
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primary endogenous sources of contrast for this type of imaging,

the sensitivity and specificity of metabolic changes that can be

detected may be limited in the context of early or precancerous

lesions that are confined in the epithelium and may be subtle.

Further developments in this relatively new imaging method

may extend the potential sources of contrast to include other

metabolically important molecules such as carbohydrates and

broaden its potential applications9,10; however, such studies

are still in their initial phases. In most cases, low-resolution visu-

alization approaches, including colposcopy, endoscopy, and

laparoscopy, followed by biopsy remain the gold standard for

detection or monitoring high-risk patients.11–13 This paradigm

suffers typically both from low-sensitivity and low-specificity lim-

itations. Low specificity is primarily an outcome of the fact that

gross morphological feature changes guide the identification of

tissues selected for biopsy, and benign conditions often harbor

similar morphological features to early cancer changes. Sensi-

tivity is impaired by the fact that a limited number of tissues

can be sampled by biopsy because they are painful, costly,

and can lead to side effects such as bleeding and infection.

This is especially challenging for early or precancerous tissue

detection, since changes may be highly heterogeneous and

extend only a few hundred microns or even less, making lesions

very difficult to perceive visually. Thus, there remains a clear

need for imaging modalities that are sensitive to functional meta-

bolic changes, provide information with high (cellular or subcel-

lular level) resolution, and can be implemented ideally in vivo

without a contrast agent using portable instrumentation.

Optical, non-linear microscopic imaging methods are well

suited to address these gaps, particularly in the context of intro-

ducing non-destructive, multi-parametric metabolic functional

assessments in the diagnosis of early or precancerous changes.

In label-free two-photon excited fluorescence (TPEF) imaging,

energy from two near-infrared photons delivered by ultrafast la-

sers is simultaneously absorbed by endogenous molecules

commonly found within biological samples and then re-emitted.

As a result of the high photon density required for this process,

signal generation is limited to a highly confined excitation vol-

ume, which can be scanned to yield high-resolution optical sec-

tions of three-dimensional (3D) epithelial tissues in a non-

destructive manner that obviates the need for an exogenous

contrast agent.14We have previously demonstrated that intrinsic

TPEF imaging of NAD(P)H, the reduced form of nicotinamide

adenine dinucleotide, and FAD (flavin adenine dinucleotide),

two key metabolic coenzymes involved in several important

metabolic pathways, complemented with automated analytical

approaches, provides diagnostically useful information

regarding the cellular morphological, biochemical, and mito-

chondrial dynamics changes. (NAD(P)H is used to refer to both

NADH and NADPH in this article, since the two chromophores

have very similar fluorescence properties; however, we note

that in previously reported mass spectrometry studies of engi-

neered epithelia, we detected negligible amounts of NADPH

compared to NADH.15) These cellular morphofunctional features

revealed by label-free TPEF imaging have been investigated

in vitro, ex vivo, and in vivo at the onset of cancer and in response

to treatment.16–25 In vivo TPEF studies from small numbers of hu-

man patients have also reported promising diagnostic results for
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skin cancer lesions.26–32 Most of the human in vivo studies high-

light the potential sensitivity of this imagingmodality tometabolic

changes as well as changes in cellular and extracellular matrix

morphology and organization. Descriptions of results have

been primarily qualitative, with one of these studies combining

a number of these features to differentiate common nevi,

dysplastic nevi, and melanoma lesions.26 More recently, the

NAD(P)H TPEF intensity fluctuation patterns from images ac-

quired from human patients in vivo were analyzed using auto-

mated algorithms to provide quantitative readouts of the

depth-dependent changes in mitochondrial organization

(referred to as mitochondrial clustering) in skin epithelia corre-

sponding to healthy tissues, basal cell carcinoma, and mela-

noma tissues.33 Differences in these patterns were used to

distinguish the cancerous lesions with high sensitivity and

specificity.

Here, we use non-invasive TPEF imaging of endogenous

NAD(P)H and FAD to characterize the structural and functional

metabolic status of freshly excised cervical human epithelia

from healthy and precancerous tissues. Cervical cancer is

almost always the result of infection by a high-risk human papil-

lomavirus (HPV) strain.34 Two viral oncoproteins, E6 and E7, are

consistently expressed in cervical cancer, which inhibit the p53

and pRB tumor suppressor pathways, respectively.35–37 These

pathways are mutated in a large number of tumors and affect

cell apoptosis, differentiation, and proliferation.38 Thus, our

studies are likely relevant for the detection of a number of squa-

mous epithelial (pre)cancers, not just cervical ones. We assess

non-destructively two functional tissue readouts associated

with cellular metabolism (optical redox ratio [RR] and mitochon-

drial clustering) and the corresponding levels of heterogeneity

across the epithelial depth, along with metrics associated with

morphological changes in the nuclear:cytoplasmic (N:C) ratio.

Previously, we validated the use of these two quantitative met-

rics independently as sensitive reporters of changes in the rela-

tive rates of the utilization of glycolysis, oxidative phosphoryla-

tion, and glutaminolysis present in engineered epithelial tissues

that consist of non-immortalized human foreskin keratinocytes

(HFKs) that have stable expression of HPV16 E6, E7, or E6 and

E7, or of immortalized HFKs that express the full HPV16 genome

(HPV16 is themost prevalent high-risk HPV strain).15,39 Recently,

we demonstrated the complementary nature of the sensitivity of

the two optical metabolic readouts to metabolic changes,20 and

we report their combined use in this study to augment diagnostic

accuracy. Specifically, to illustrate the potential translational

impact of label-free metabolic TPEF imaging, we use these

quantitative functional optical metrics in combination with

morphological metrics for the automated tissue classification

of healthy, low- (LSILs) and high-grade squamous intraepithelial

lesions (HSILs) of the cervix. We demonstrate that while the

mean values of our metabolic readouts are diagnostically useful

metrics, the incorporation of their depth-dependent profiles

across the cervical epithelium enhances the performance of

our algorithms, highlighting the value of high-resolution imaging.

In addition, our results indicate that label-free metabolic tissue

assessments are potentially more sensitive indicators of

changes that occur at the onset of cervical precancers than

morphological changes. Furthermore, our study highlights the



Figure 1. Morphological and Differentia-

tion-Related Depth-Dependent Feature

Variations Are Detected in Healthy and Pre-

cancerous Human Cervical Epithelia

(A) Representative endogenous TPEF 3D image

reconstructions from healthy, LSIL, and HSIL

cervical tissues. Individual TPEF images are

created by the overlay of NAD(P)H and FAD

fluorescence, which are pseudo-colored green

and red, respectively. 3D reconstruction volumes

correspond to healthy: 238 3 238 3 160 mm3/

SIL: 238 3 238 3 120 mm3/HSIL: 238 3 238 3

60 mm3.

(B) Quantification of the average epithelial thick-

ness detected from the healthy (blue; N = 4 par-

ticipants; 10 tissue stacks), LSIL (light gray; N = 16

participants; 38 tissue stacks), and HSIL (dark

gray; N = 5 participants; 15 tissue stacks) cervical

tissues examined. Healthy versus SIL compari-

sons are also presented.

(C) Automated depth-dependent quantification of

the intraepithelial differentiation gradient. Healthy,

LSIL, and HSIL and healthy versus SIL comparisons are presented. Exact p values shown in panels, *significance at a = 0.05.

In (B) and (C), data are presented as quantile boxplots with median (white line) and 95% confidence diamond around the mean (gray diamond). Each point

represents 1 optical image stack.
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need to adopt a multi-parametric approach—the inclusion of

several functional metabolic readouts—to achieve high diag-

nostic accuracy, since the changes that are present can be sub-

tle and/or highly variable. Our study reveals that quantitative

metrics of cellular metabolism can be acquired in a non-destruc-

tive manner via label-free TPEF microscopic imaging of human

tissues and that these assessments could enhance significantly

our ability to detect early cancers when used in combination with

metrics of morphological tissue changes.

RESULTS

Morphological- and differentiation-related depth-dependent

feature variations are detected in endogenous TPEF image

stacks from healthy and precancerous human cervical epithelia.

Since NAD(P)H and FAD are found predominantly in the cyto-

plasm, the lack of fluorescence signal in our images can be used

to identify cell borders and nuclei (Figures S1A and S1B). Thus,

depth-dependent TPEF imagesof healthy, LSIL, andHSIL cervical

epithelia relying entirely on the detection of intrinsic NAD(P)H and

FAD autofluorescence were analyzed to reveal substantial differ-

ences in tissueorganizationandmorphologybetween thedifferent

tissue groups (Figures 1 and S1A). Within healthy epithelia, which

were in general thicker, a gradient of morphological changes

was observed from the basal to the superficial layers (Figures

1A, 1B, and S1A). The latter was demonstrated by a gradually

increasing N:C and decreasing cell size from superficial epithelial

layers toward the deeper strata (Figure S1A) in the autofluores-

cence images. These features agreed with typical histological

H&E and immunohistochemical staining patterns of Ki67, confirm-

ing that proliferation was confined to the basal layer in healthy tis-

sues, asexpected (Figure2).On thecontrary,SIL tissuesoftenpre-

sentedwith thinner epithelia andweremost often characterizedby

disturbed depth-dependent cellular stratification, as signified by

the presence of smaller cells with a high N:C ratio occupying the
upper epithelial layers (Figures 1A, 1B, and S1A) and in agreement

with histological findings indicating non-basally confined intraepi-

thelial proliferation (Figure 2). The degree of severity was higher in

HSIL tissues, as expected histopathologically.

To quantify these differences in an automated manner, we

used Fourier-based image feature analysis to extract the

depth-dependent variation of the power spectral density (PSD).

We refer to this parameter as the differentiation gradient, as it re-

ports on the changes of the prevalence of features within spatial

frequencies corresponding to characteristic lengths of 7–50 mm,

which is consistent with nuclear and cell size ranges observed in

healthy epithelia (Figure S1A).33,39 We found that healthy tissues

were typically characterized by larger differentiation gradient

values than HSILs (Figure 1C). LSIL epithelia were the most

heterogenous at the group level (Figure 1C), with varying degrees

of morphological heterogeneity. This is supported by the fact

that in LSILs, stratification is not always widely disturbed and

only localized findings of nuclear abnormalities or koilocytic

presence can inform HPV-related cellular alterations. This also

agrees with the clinical difficulty of accurately and consistently

classifying LSILs just by morphological criteria and the typical

moderate levels of diagnostic agreement between pathologists,

particularly for this difficult group of lesions.40

Depth-Dependent Mitochondrial Organization Patterns
Reveal Functional Differences between Normal and
Precancerous Lesions
Apart from the morphological evaluation, we further sought to

investigate the functional metabolic information contained in

the captured autofluorescent stacks. Monitoring subcellular

functional and structural changes associated with metabolic

function can be essential for understanding healthy tissue func-

tion and disease progression, perhaps at an earlier stage than

gross morphological changes occur. To assess the presence

of functional epithelial metabolic changes at the onset of cervical
Cell Reports Medicine 1, 100017, May 19, 2020 3



Figure 2. Histological and Immunohisto-

chemical Findings Support Optical Imaging

Outcomes

Representative H&E and immunohistochemical

staining of p16 and Ki67 in healthy, LSIL, and HSIL

human cervical samples. Scale bar, 50 mm for all

images.
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precancers, we initially characterized the intracytoplasmic

NAD(P)H TPEF intensity fluctuations that are influenced mainly

by the spatial distribution and organization of mitochondrial for-

mations, since NAD(P)H fluorescence is enhanced �10-fold

when bound in mitochondria.41 In healthy tissues, we typically

detected higher mitochondrial clustering levels in the basal and

parabasal layers (representing more fragmented states) than in

the more superficial epithelial cell layers, where cells are more

differentiated and have typically more tubular mitochondrial net-

works (Figure 3A). These depth-dependent patterns correlated

with the natural differentiation of the healthy epithelia and are

in agreement with previous studies of engineered epithelial tis-

sue ex vivo cervical biopsies39 and in vivo human epidermal

epithelia.33 In contrast, in diseased tissues, these depth-depen-

dent stratification-related patterns were abolished (Figure 3).

This finding agrees with previous results obtained from a small

number of freshly excised cervical precancerous tissue bi-

opsies39 and cancer-affected human skin epithelia assessed

in vivo.33 To quantitatively capture these differences, we ex-

tracted the depth-dependent epithelial variability (as assessed

by the variance or the square of the standard deviation) for the

mitochondrial organization profile of each tissue (Figure 3B).

Significantly decreased mitochondrial clustering variability pat-

terns were detected even at the LSIL stage when compared to

healthy tissues, suggesting that functional intracellular changes

may precede morphologic alterations associated with disease.

RR Images Enable the Visualization of Functional
Biochemical Differences between Normal and
Precancerous Lesions
To further investigate the functional state of the epithelia, we ex-

tracted biochemical information from the autofluorescent tissue
4 Cell Reports Medicine 1, 100017, May 19, 2020
stacks by evaluating the optical RR,

defined as FAD/(NAD(P)H+FAD).17,42 We

note that NAD and FADH2 are not fluores-

cent. Within the evaluated optical sec-

tions of healthy tissues, we typically

observed cellular uniformity and RR

hues that correlatedwith the natural strat-

ification and differentiation of the

epithelia. HigherRRvalueswere detected

in the upper, more differentiated layers

(represented by redder RR image hues),

with a transition to lower RR values in

the deeper, more undifferentiated layers

(represented by greener RR image hues)

(Figure 4A, left column;VideoS1). Howev-

er, the depth-dependent biochemical

patterns were quite different in LSIL and
HSIL lesions (Figure 4A). Increased cellular heterogeneity, often

expanded through the entire epithelial thickness, was frequently

observed in LSILs (Figure 4A, center column; Video S2). Specif-

ically, scattered cells with higher RR values and sometimes

more apoptotic morphology (e.g., loss of centrally located dark

nucleus, decreased cellular feature delineation, highly increased

autofluorescent FAD signal) were surrounded by cells with much

lowerRRvalues. This finding is suggestive ofdifferential effects of

the earlier stages of HPV infection on the proliferative and senes-

cence/apoptotic pathways, even within neighboring cells.35,43,44

This functional intercellular heterogeneity was supported by

more irregular p16 staining patterns observed in LSIL lesions

that often displayed focally uneven and/or patchy staining inten-

sities (Figure 2). Lastly, higher-grade lesions exhibited more uni-

form intrafield RR patterns, but with consistently lower RR values

spanning the epithelia (Figure 4A, right column; Video S3). These

optical metabolic findings are consistent with overall higher

glycolytic and proliferative metabolic tissue profiles and are in

agreement with HSIL p16 and Ki67 staining patterns, which

were more diffuse and intense throughout the epithelium

(Figure 3).

To quantitatively describe the observed biochemical differ-

ences, we calculated several parameters from the RR values of

each optical tissue stack (Figure S2A; Table S1). In agreement

with the qualitative observations, SIL tissues progressively dis-

played decreased epithelial RR values, with more pronounced

differences between healthy and HSIL lesions (Figure 4B).

Furthermore, SIL tissues displayed decreased levels of epithelial

RR variability (as assessed by the variance) and epithelial RR

heterogeneity variability (Figures 4C, 4D, and S2B). The epithelial

RR heterogeneity is a metric of the spread of RR values within a

given field, while its variability refers to the range of this



Figure 3. Depth-Dependent Mitochondrial

Organization Profiles Reveal Functional Dif-

ferences between Normal and Precancer-

ous Lesions

(A) Representative ex vivo human NAD(P)H TPEF

images acquired from healthy (top), LSIL (center),

and HSIL (bottom) cervical lesions. Optical sec-

tions are shown from various depths from themost

superficial (left column) to the deepest layers (right

column). The corresponding depth-dependent

mitochondrial organization profiles for the entire

epithelial stacks are shown in the rightmost col-

umn. Scale bar, 50 mm for all images.

(B) Epithelial mitochondrial clustering variability

extracted from the mitochondrial organization

profiles for the healthy, LSIL, and HSIL cervical

tissues examined, as detailed in Figure 1. Healthy

versus SIL comparisons are also presented.

Exact p values shown in figure; *significance at

a = 0.05. Data are presented as quantile boxplots

with median (white line) and 95% confidence

diamond around the mean (gray diamond). Each

point represents 1 optical image stack.
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heterogeneity as a function of depth. Variability for this param-

eter is decreased even for the LSIL tissues, as the increased in-

trafield heterogeneity for these tissues (Figure S2B) tends to

persist throughout the epithelial thickness (Figure 4A, center col-

umn). In summary, healthy epithelia were characterized by

more consistent morphofunctional patterns that relate to histo-

logical stratification and differentiation and indicate an interde-

pendence of structure and function. In contrast, SIL tissues

displayed disturbed morphofunctional patterns that lack the

stratification and differentiation-related depth-dependent varia-

tions observed in healthy epithelia. As these differences can be

evaluated in a quantitative manner, optical-based morphofunc-

tional epithelial metrics hold great potential for automated dis-

ease diagnostics. In addition, future in vivo implementation of

such imaging may provide important insights regarding the dy-

namic evolution of such functional changes, depending on dis-

ease state and/or response to treatment.

Automated Tissue Classification Using Optically
Derived Morphofunctional Tissue Metrics
To investigate the potential of the optical morphofunctional

epithelial metrics for automated disease diagnostics, we used

quadratic discriminant analysis (QDA) methodology to differen-

tiate in an automated way healthy from diseased epithelia (Fig-

ure 5A) and to identify the parameters that conferred the best

discrimination potential (Table S1). Covariances for each classi-

fication group and each pair of covariates indicated a lack of

equality (Figure S3A) and supported the choice of a quadratic

model. Multicollinearity diagnostics (Figure S3B) supported the

lack of multicollinearity (Pearson product-moment correlation

coefficients (r) < 0.7),45 signifying that there were no offending

variables that needed to be eliminated from the model. The

detailed canonical plot displaying the tissue separation in space

along with corresponding detailed original outcomes are shown

in Figure 5A. The discriminant function for SIL versus non-SIL

classification calculated with the entire dataset yielded 98.1%

and 100% specificity. To ensure that themodel classification ac-
curacy was not due to data overfitting and to further investigate

the potential of themodel in a prospectivemanner, we tested our

classification approach in a predictive model, using randomized

70%/30% training-test SIL data separation. The discriminant

functions derived from the training sets from 3 independent

model runs resulted in 96.2% mean sensitivity and 100%

mean specificity for the original training sets, and when applied

predictively to the function model-independent test data,

100% mean classification accuracy was achieved (Figures 5A,

bottom panels, and S4A).

The discriminatory potential of the analysis was also evaluated

at different group separations of interest to clinical diagnostics.

The healthy, LSIL, and HSIL group levels (Figure 5B) were as-

sessed. The detailed canonical plot displaying the three-class

tissue separation, along with corresponding detailed original

outcomes, extracted receiver operating characteristic (ROC)

curves and areas under the ROC curve (AUCs), are shown in Fig-

ure 5B. Notably, this analysis also yielded high sensitivity

(96.2%) and specificity (100%) in discriminating SIL from healthy

epithelia.

Finally, we assessed in two ways the potential of the optical

metrics to classify HSIL versus non-HSIL tissues, as this ulti-

mately is of high importance clinically for patient management.

The first QDA was performed using the entire dataset directly

(Figure 6A). The second QDA (Figure 6B) was performed in a se-

rial fashion after excluding from the dataset the 10 tissues pre-

dicted as being healthy from the healthy versus SIL QDA (Fig-

ure 6A). This iteration aimed to provide an alternative serial

step-based methodology in evaluating tissue states and to pro-

vide further support for the extensive applicability of the analyt-

ical process. The detailed canonical plots displaying the tissue

groups’ separation, along with corresponding extracted ROC

curves, AUCs, and detailed original and predicted outcomes,

are shown in Figures 6A and 6B. Both iterations achieved high

levels of sensitivity and specificity, namely 93.3% and 83.3%,

respectively, for the first (Figure 6A) and 93.3% and 81.6%,

respectively, for the second (Figure 6B).
Cell Reports Medicine 1, 100017, May 19, 2020 5



Figure 4. RR Optical Images Enable Visualization of Functional Intraepithelial Biochemical Differences

(A) Representative ex vivo human TPEF RR color-coded images acquired from the healthy, LSIL, and HSIL cervical tissues shown in Figures 1 and 3. Optical

sections are shown from various depths from the most superficial (top row) to the deepest layers (third column), along with corresponding 3D reconstructions of

the full epithelial depth optical stacks. Scale bar, 50 mm for all 2D optical sections. Differences in color hues represent distinct metabolic RRs. Color bar is the

same for all images. 3D reconstruction volumes correspond to healthy: 238 3 238 3 160 mm3/SIL: 238 3 238 3 120 mm3/HSIL: 238 3 238 3 60 mm3. See also

Videos S1, S2, and S3.

(B–D) Mean overall RR outcomes (B), epithelial RR variability (C), and epithelial RR heterogeneity variability outcomes (D) for the healthy, LSIL and HSIL cervical

tissues examined, as detailed in Figure 1. Healthy versus SIL comparisons are also presented. Exact p values shown; *significance at a = 0.05. Data are presented

as quantile boxplots with median (white line) and 95% confidence diamond around the mean (gray diamond). Each point represents 1 optical image stack.
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In all of the classification scenarios, when morphological and

functional markers were independently used, the functional

markers outperformed their morphological counterparts in clas-

sification accuracy (Figures S4B–S6); however, neither group

reached independently the original accuracies achieved by the

morphofunctional marker integration. These highlight the impor-

tance of complementarymulti-parametric functional information,

typically lacking from the evaluation of fixed specimens, in aug-

menting the diagnostic arsenal and aiding the diagnostic

process.

DISCUSSION

Early detection is the most critical prognostic factor for many

epithelial cancers, including cervical cancer. Despite the key

role of cellular metabolism in cancer development, its assess-

ment for early cancer diagnosis and, potentially, screening is

not yet performed clinically. Here, we demonstrate that the char-

acterization of redox state and mitochondrial organization

through label-free, non-destructive TPEF imaging has the poten-
6 Cell Reports Medicine 1, 100017, May 19, 2020
tial to improve the identification of pre-invasive cancerous

changes. Our studies highlight the advantage conferred by

high (subcellular)-resolution imaging for this purpose, which is

necessary for the assessment of mitochondrial dynamics and

the depth dependence of metabolic changes across the epithe-

lium. Such resolution is also an advantage for the detection of

focal and/or heterogeneous lesions. Notably, the extraction

and use of multiple metrics of metabolic function and heteroge-

neity are necessary for overcoming interpatient variability and

achieving high diagnostic accuracy, especially when changes

are more likely to be subtle at earlier stages of (pre)cancerous

transformation. The label-free and non-destructive nature of

the imaging we used renders our approach highly suitable for

clinical translation. In vivo TPEF imaging studies have already

been performed to image human skin, and efforts are under

way to develop probe-based imaging systems that will enable

such measurements in other epithelial tissues and organs.

It is estimated that the annual costs of screening and treating

for HPV-related diseases in the United States alone are at least

$6 billion.46 In the case of the uterine cervix, the availability of a



Figure 5. Automated Tissue Classification

Using Optically Derived Morphofunctional

Tissue Metrics

(A) 2D canonical QDA scatterplot showing the

tissue separation of the healthy (blue; N = 4 par-

ticipants; 10 tissue stacks) and SIL (black; N = 21

participants; 53 tissue stacks) tissue stacks. Each

point represents 1 tissue stack. Full-line ellipses

represent 50% of data coverage, crosses display

group means, and dashed ellipses indicate 95%

confidence intervals for the mean of each tissue

group, respectively. Original classification out-

comes are presented based on the comparison of

the QDA model predictions for the healthy (blue)

and SIL (black) groups. Mean prospective classi-

fication outcomes from 3 randomized runs are

shown for the training and validation sets based on

the comparison of the QDA model predictions for

the healthy and SIL groups.

(B) Left: 2D canonical QDA scatterplot showing in

space the tissue separation of the healthy, LSIL,

and HSIL tissue stacks. Colored ellipsoids repre-

sent 50%of data coverage. Right: ROC analysis of

the QDA discriminationmodel at the healthy (blue),

LSIL (light gray), and HSIL (dark gray) levels. AUC

for each tissue group is also shown, indicating

discrimination accuracy. Bottom: original classifi-

cation outcomes based on the comparison of the

QDA model predictions at the healthy (blue), LSIL

(light gray), and HSIL (dark gray) levels and

merged classification outcomes at the healthy

(blue) and SIL (gray) levels, with corresponding

histopathological evaluations and extracted

sensitivity and specificity outcomes.
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noninvasive imaging method has the potential to enhance both

the sensitivity and the specificity of pre-invasive disease detec-

tion, leading to significant benefits. Colposcopy typically in-

volves visualization of the cervix under 63 magnification

following acetic acid application and selection of the worst-ap-

pearing site for biopsy.47 In a recent study involving 690 patients,

aimed to directly evaluate the diagnostic improvement achieved

as a result ofmultiple biopsies, it was found that the sensitivity for

HSIL detection of the first biopsy was 60.6% and increased to

85.6% and 95.6% with a second and third biopsy, respec-

tively.48 Secondary analyses also indicate that colposcopic

impression and biopsy placement are not highly reproducible

and fail to detect 30%–50% of prevalent high-grade lesions.49.In

fact, some studies have indicated that sampling normal-appear-

ing regions of the cervix could increase HSIL detection by up to

30%.50,51 However, punch biopsy of the human cervix is associ-

ated with the increased risk of bleeding and infection (as in all bi-

opsies) and is typically performed without anesthesia, even

though the frequency and duration of moderate to severe pain

is high.52 Unfortunately, topical anesthetics have proven ineffec-

tive in providing pain relief.53–55 Thus, the ability to sample mul-

tiple colposcopically abnormal regions of the cervix, especially in
a non-invasive manner, could have a significant impact on

improving the sensitivity of HSIL detection. In addition, the spec-

ificity of colposcopy (in terms of its ability to guide the biopsy of

tissues likely to harbor HSILs or cancerous lesions) is <50%,56,57

leading to enormous monetary and psychological costs that can

be prevented.56 In fact, this number may represent a significant

specificity overestimate, since it was found that <6% of 256,648

women who had biopsies had a diagnosis of HSIL or cancer58

(these are the patients who need to be treated, while patients

with LSILs are followed up, typically every 6 months). Finally,

studies that assess compliance for a colposcopy examination

following abnormal cytology testing yield rates that vary from

27% to 93%, with larger studies most commonly reporting rates

in the 70%–80% range.59 In several of these studies, including a

recent smaller study of Latina patients, anxiety regarding and

fear of the diagnosis or procedure (i.e., fear typically associated

with physical pain) was reported as a common barrier to follow-

up colposcopy.60 As mentioned above, anesthetics are not typi-

cally used during cervical biopsy, while the doctor’s experience

is a major factor affecting the severity of pain experienced.61

Thus, the availability of a non-invasive diagnostic procedure

could lead to a decrease in pain-associated fear and thus have
Cell Reports Medicine 1, 100017, May 19, 2020 7



Figure 6. Automated Tissue Classification

Distinguishes High-Grade Lesions

(A) QDA analysis at the non-HSIL versus HSIL

levels using the entire dataset, as detailed in Fig-

ure 1. Left: 2D canonical QDA scatterplot showing

the tissue separation of the non-HSIL (blue) and

HSIL (gray) tissue stacks. Extracted sensitivity and

specificity outcomes are also presented. Right:

ROC analysis of the QDA discrimination model at

the non-HSIL (blue) and HSIL (gray) levels. AUC for

each tissue group is also shown, indicating

discrimination accuracy.

(B) Serial QDA analysis at the non-HSIL and HSIL

levels after elimination of tissues identified as

‘‘healthy’’ based on the healthy versus SIL QDA

analysis of Figure 5A. Left: 2D canonical QDA

scatterplot showing the tissue separation of the

non-HSIL (blue) and HSIL (gray) tissue stacks.

Extracted sensitivity and specificity outcomes are

also presented. Right: ROC analysis of the QDA

discrimination model at the non-HSIL (blue) and

HSIL (gray) levels.
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a positive impact upon patient compliance with follow-up col-

poscopy, in addition to improving the sensitivity and specificity

of colposcopy to detect cervical precancers.

As a result, it is not surprising that numerous optical ap-

proaches are being developed as potential diagnostic tools for

cervical precancer lesions. A wide-field imaging platform that re-

lies on time-dependent and overall changes in reflectance

induced by acetic acid has shown promise, with sensitivity and

specificity of 79% and 76%, respectively, for HSIL detec-

tion.62,63 Hyperspectral wide-field imaging approaches using

reflectance and/or autofluorescence contrast have resulted in

performances characterized by either superb sensitivity

(>90%) but fairly low specificity (50%–55% with HSIL and 70%

with LSIL as the threshold),64–66 or very high specificity (90%)

but low sensitivity (52%).67 High-resolution microendoscopy,

which is based on the assessment of nuclear morphology fea-

tures of the superficial cell layers following the administration

of proflavine, a fluorescence contrast agent, has also emerged

as a promising modality. Initial studies include 26 patients with

12 HSILs, which were detected with 86% sensitivity and 85%

specificity.68,69 Point spectroscopy probes acquiring diffuse

reflectance50 or a combination of reflectance, light scattering,

and autofluorescence data have also been used in vivo.70–72

These studies revealed that the combined use of more than

one modality improved diagnostic performance, with sensitivity

between 80% and 90% and specificity in the 51%–80% range.

These studies highlight the promising diagnostic potential of

endogenous fluorescence and scattering-based contrast and

the performance improvements that can be achieved by

combining biochemical and morphological information. Howev-

er, the higher-resolution imaging modalities that had been as-

sessed still exploited only nuclear morphologic criteria. Our
8 Cell Reports Medicine 1, 100017, May 19, 2020
study demonstrates that the incorpora-

tion of functional metabolic metrics is ex-

pected to lead to enhanced HSIL

diagnosis.
Specifically, we show that healthy epithelia exhibit significant

depth-dependent variations in morphology, mitochondrial orga-

nization, and redox profiles, suggesting a gradient in the balance

of different metabolic pathways, such as glycolysis and oxidative

phosphorylation, and a correlation with the expected physiology

of the differentiating, stratified squamous epithelium. In contrast,

the patterns of diseased tissues lack depth-dependent visual

correlations. Higher-grade lesions present with more uniform

morphological intraepithelial invasion and, respectively, more

uniform functional profiles with the lowest RR values, in agree-

ment with previous measurements with HPV-transfected 3D en-

gineered tissues.15 These changes have been correlated with

viral HPV genomic expression and changes in major bioener-

getic pathways, such as increased levels of glycolysis.15 The

Varone et al.15 study demonstrated a correlation between opti-

cal- and mass spectrometry- based assessments of the RR of

healthy and HPV-transfected epithelia and further confirmed

that a decrease in the overall optical RR of HPV-transfected tis-

sues corresponded to enhanced levels of glycolysis assessed

via traditional biochemical assays. However, depth-dependent

assessments are not possible using standard mass spectrom-

etry and biochemical assays; therefore, depth-dependent corre-

lations between optical and traditional metabolic assessments

are not easily feasible. In fact, this capability is a unique and

important diagnostic feature of label-free TPEF imaging. Mass

spectrometry imaging may ultimately enable such comparisons,

but the impact of serial tissue sectioning, processing, and imag-

ing is likely to pose limitations. Nevertheless, we have been able

to correlate the depth-dependent variations in mitochondrial or-

ganization across healthy human skin epithelia imaged in vivo

with corresponding variations in dynamin-related protein 1

(DRP1) and human fission protein 1 (hFis1), two proteins related
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tomitochondrial fragmentation.33 These depth-dependent varia-

tions have very similar profiles to the ones we observed for

healthy cervical epithelia (Figure 3). In additional studies, we

have demonstrated the dependence of mitochondrial clustering

on the prevalence of different bioenergetic pathways.33,39,73

Thus, our results are strongly indicative of the ability and the

importance of assessing depth-dependent metabolic changes

across epithelia for the identification of precancerous lesions.

For LSIL lesions, functional patterns were often more markedly

changed than the morphological patterns, suggesting that func-

tional markers may have earlier sensitivity to lower-grade

dysfunction.

Metabolic reprogramming toward a more glycolytic pheno-

type, especially within higher lesion grades, is consistent with a

number of studies that have examined the impact of several

HPV oncoproteins on metabolism.74 One of the well-established

roles of high-risk HPV E6 is its degradation of p53, which in turn is

associated with a number of proteins that play a key role in the

Krebs cycle and mitochondrial integrity.75 E6 has also been

shown to promote glycolysis through its association with the c-

Myc and PI3K-Akt pathways.76,77 Furthermore, E6-mediated

degradation of p53 has been reported to lead to reduced levels

of miR-34a, which typically targets lactate dehydrogenase A and

prevents the conversion of pyruvate to lactate.78 HPV16 E7 has

been shown to bind directly to pyruvate kinase, inducing its

dimerization and promoting nucleic acid synthesis and prolifera-

tion.79 In our previous studies with engineered epithelial tissues,

we found that the overexpression of HPV16 E7 or E6 and E7 led

to enhanced glutamine consumption, likely as a result of this

interaction, which limited the entry of pyruvate into themitochon-

dria.15 Finally, enhanced levels of glycolysis may favor HPV

genome replication by providing fast access to ATP and nucleo-

tides that are required during different steps of the process.74

The main limitation of our study is the relatively small sample

size of the specimens we examine. Incorporation of a larger

number of specimens and conditions such as squamous meta-

plasia and inflammation may reveal that additional pertinent

classification features may need to be incorporated in the

currently developed algorithms to account for the greater variety

of benign changes and variations in age and menopausal and

hormonal status. However, these initial outcomes confirm that

functional and morphological optical differences exist between

healthy and diseased cervical epithelia, which can be detected

and used to improve tissue classification. The evaluation of

data from a larger patient population is mainly expected to

further increase the statistical power and significance of our out-

comes and may enable us to identify even more subtle changes

in cellular metabolism and allow further diagnostic improve-

ments. Thus, our results with the presented analytical ap-

proaches are highly encouraging. In addition, our previous study,

focused on in vivo human skin mitochondrial clustering assess-

ments incorporating a very small number of sites that were iden-

tified as inflammation upon biopsy, indicates that such condi-

tions may not affect significantly the depth-dependent profiles

of our metabolic readouts.33 A second limitation of our study is

that it was performed with freshly excised tissue specimens.

While the specimens were handled in a manner that minimized

the time between excision and imaging and, in principle, pre-
served the optical metabolic profile of the tissues,80 it is possible

that artifacts are introduced in the process. However, the consis-

tency of the mitochondrial clustering profiles of in vivo human

skin epithelia and our ex vivo healthy cervical tissues support

our hypothesis that our findings will be relevant for in vivo

studies.33 A much more extensive tissue image pool could also

enable the application of more advanced classification algo-

rithms in the future, perhaps through artificial intelligence rou-

tines that could identify features that are not necessarily discern-

able by human visual perception. Lastly, due to the non-invasive

nature of optical TPEF imaging, dynamic monitoring of suspi-

cious areas could be performed to investigate disease progres-

sion or resolution, complementing the macroscopic cervical vi-

sual inspection with a functional cervicographic map.

While in vivo TPEF imaging studies are already reported in hu-

mans, these have been limited to skin imaging performed via a

fairly bulky articulated arm. A number of groups are developing

probes for the acquisition of TPEF images in a manner that en-

ables access to a broader range of organs and tissues.81–84

The uterine cervix is a good target organ for such translational ef-

forts, as the size requirements for such a probe are not too strict.

However, the design of a probe that will enable reliablemetabolic

assessments is not trivial. Scanning in three dimensions is

required to characterize the depth profile of metabolic changes.

The resolution and signal:noise ratio of the required images

needs to remain high, even for the deeper epithelial tissue layers.

This will require the design of fairly high-numerical-aperture

custom-designed objectives and the delivery of high-energy

pulses, likely through specialized fibers that limit broadening of

the short pulses. Because of the high-resolution imaging de-

mands, the field of view is limited to a couple of hundredmicrons.

Improvements in the speed of image acquisitionwill ultimately be

necessary to enable the assessment of significant tissue vol-

umes to make reliable metabolic assessments and diagnoses.

Nonetheless, the recent and continuous advances in relevant

laser systems with more time-efficient multi-wavelength excita-

tion schemes,85 hybrid detectors,86 and fiber-based probes,87,88

as well as systems that have already been used to acquire similar

two-photon images from human skin in vivo,26–28,33,84,89 high-

light the imminent translation potential of our analytical approach

to in vivo measurements. Such developments, along with opti-

mized image acquisition protocols that enable the extraction of

the diagnostically useful metabolic heterogeneity parameters

based on a limited number of optical sections, promise to enable

label-free, 3Dmetabolic imaging in time frames that approach 1–

2 min and are feasible in a clinical setting. Compared to other

spectroscopy and imaging modalities being explored as

methods to improve the detection of cervical (and other) pre-

cancers, two-photon imaging systems use more advanced and

expensive lasers and have more stringent requirements

regarding the light delivery and collection optics. However, their

unique ability to yield quantitative metrics of metabolic function

and heterogeneity with subcellular resolution and related in-

sights regarding the value of such measurements to improve

precancer diagnosis motivate their clinical assessment.

In summary, we have shown that label-free TPEF imaging

coupled with analytical routines enables near-real time, non-

destructive, automated classification of healthy, LSIL, and
Cell Reports Medicine 1, 100017, May 19, 2020 9
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HSIL freshly excised live tissues with high sensitivity and speci-

ficity, and holds significant potential for the rapid, morphofunc-

tional characterization of cervical epithelia. Given the identifica-

tion of cellular metabolic changes as an emerging cancer

hallmark and the renewal of interest in assessing and under-

standing tissue metabolism to improve the diagnosis and treat-

ment of numerous cancers, our study provides a paradigm for

how we may ultimately perform high-resolution, highly quantita-

tive tissue metabolic assessments in humans in vivo for a broad

range of early epithelial cancers and organ targets. Our results

further highlight the importance of the combined use of multiple

metabolic readouts to achieve optimized diagnostic perfor-

mance. Such measurements could provide unique translational

insights regarding the role of metabolism in human cancer devel-

opment at the microscopic level and could complement photo-

acoustic imaging and/or more established metabolic imaging

modalities such as fMRI and PET, which provide information

on a more macroscopic scale.
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Further information and requests will be fulfilled by the Lead Contact, Irene Georgakoudi; irene.georgakoudi@tufts.edu.

Materials Availability
No new materials or reagents were generated in this study.

Data and Code Availability
Derived data supporting the findings of this study are available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All human tissue investigations were approved by the Institutional Review Board of Tufts Medical Center and Tufts University and

informed consent was obtained from each subject. For diseased tissue collection, non-pregnant premenopausal patients older

than 18 years of age with abnormal Pap tests that were scheduled to undergo colposcopy or colposcopy and loop electrosurgical

excision procedure (LEEP) were recruited to the study. Subjects were negative for non-HPV-related STDs, if test results were avail-

able. During colposcopy, suspicious cervical areas were identified by the medical provider and one biopsy additional to the routine

procedure was excised typically from the transition zone for the purposes of the study. For normal specimen collection and evalu-

ation, cervical biopsies were obtained from the ectocervix proximal to the transition zone from discarded cervical tissues acquired

immediately following hysterectomy of premenopausal patients with no known cervical tissue abnormalities. Due to clinical protocol

research-biopsy acquisition limitations of this initial study, the endocervical zone was not evaluated. Upon tissue excision, each

specimen was placed in chilled sterile DMEM tissue culture media to preserve cellular metabolism and ensure consistency of the

ex vivo data with in vivo status80 and imaged within two hours. The acquired fresh cervical biopsies were imaged using a commercial

Leica SP2 confocal microscope (Wetzlar, Germany) equipped with a Ti:sapphire laser (Spectra Physics, Mountain View, CA) (see

detailed imaging protocol in following imaging data section). Post imaging, formalin fixation and H&E histology was performed ac-

cording to standard practice and an experienced pathologist (E.G.) assessed the specimens histopathologically and samples
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were allocated to experimental groups bases on corresponding diagnosis. Tissues were classified as Healthy (N = 4 tissues) and low

(N = 16 tissues) or high (N = 5 tissues) grade squamous intraepithelial lesions (LSIL or HSIL). LSIL lesions included histological diag-

nosis of epithelial morphology suggestive of HPV effects and/or cervical intraepithelial neoplasia of grade 1 (CIN1). From the 16 pa-

tients with LSIL lesions, five had corresponding positive and one negative HPV-DNA testing, while for the remaining patients no HPV-

DNA information was available. HSIL lesions included histological diagnosis of focal or diffuse CIN2 and CIN3. Two of the patients

with HSILs had corresponding positive HPV-DNA results, while the remaining three had no HPV-DNA information available. For one

of the LSIL tissues and one of the HSIL tissues, the research-intended biopsy did not survive processing and diagnosis was assigned

based on collective evaluation of the routinely collected clinical biopsy outcomes, HPV-DNA positivity if available and the morpho-

functional appearance of the collected optical stacks. Sample sizes were set so as to secure validation of the statistical analyses

assumptions as detailed in Quantification and Statistical Analysis methods section.

METHOD DETAILS

Data collection and image analysis of 3D epithelial stacks
The acquired fresh cervical biopsies were imaged using a commercial Leica SP2 confocal microscope (Wetzlar, Germany) equipped

with a Ti: sapphire laser (Spectra Physics, Mountain View, CA). Depth-resolved TPEF images (5123 512 pixels; 2383 238 mm) were

acquired with 400Hz scanning frequency, a 63x/1.2NA or 40x (1.57x zoom)/1.1NAwater immersion objective at 755 and 860nm exci-

tation and with emission bands centered at 460 ± 20 and 525 ± 25 nm for NAD(P)H and FAD signal acquisition, respectively. Six

frames were averaged for each section typically yielding acquisition times of approximately 5 minutes for a 100 mm stack of

NAD(P)H and FAD images. Umbelliferone and fluorescein standards were used to evaluate the differential objective detection effi-

ciencies at respective NAD(P)H and FAD excitation/emission conditions and convert our inter-objective fluorescence intensity mea-

surements for appropriate measurement comparisons. Optical sections were acquired at different depths with a 2 or 4-mm step de-

pending on epithelial thickness to optimize acquisition time, from one to five regions of each specimen yielding a total of 10, 38 and 15

stacks from the normal, LSIL and HSIL specimens, respectively. We have shown previously33 that sampling at 5 mm steps doesn’t

result in any significant differences in extractedmetrics of depth-dependent variations in mitochondrial clustering when compared to

a 1 mm step; thus differences in the sampling z step between 2 and 4 mm are not expected to affect our quantitative analysis results.

Laser power at the sample was�30-40mW. Exposure of human skin tissues to 60 mWNIR fs pulses (150 fs, 80MHz) was estimated

to be equivalent to a dose of about 0.6 minimal erythema dose of UV exposure, while exposure between 5 mW and 30mW at 5 mm z-

steps did not show any irradiation effects.90 As, our delivered power was on the order of �30-40 mW, we expect that our imaging

conditions are relevant for in vivo translation of suchmeasurements. Further, with the continuing advances in efficiencies of detectors

and collection optics, irradiation schemes should decrease even further. We also note that no damage was observed by our pathol-

ogist during evaluation of the histological sections from the tissues we imaged. Finally, our experimental imaging parameters are on

par with previous human in vivo studies.28,33 Image processing was performed in MATLAB. First, a selection was made to define the

depth range within which cellular related analysis was to be performed. The most superficial optical section where cells clearly

covered at least half of the image area below the epithelial surface or the exfoliating epithelial layer in healthy tissues, was selected

as the top cellular layer for image analysis purposes. Fifty percent cell area coverage relative to dermal contributions was also used to

select the deepest cellular layer used for analysis. This depth range herein represents for each optical image stack the epithelial thick-

ness evaluated. The thickness of the epithelium presents natural variations from patient to patient and even between location to loca-

tion within the same biopsy, so this affected the detected epithelial thickness reported; it was not biased due to acquisition or sam-

pling. This epithelial thickness was typically in the range of 30 to 165 mm for the tissues examined. All TPEF fluorescence intensity

images were normalized for photomultiplier (PMT) gain and laser power as described previously.91

Morphological evaluation and quantification of morphological tissue organization in autofluorescence image stacks
To evaluate morphological features associated with the depth-dependent changes in the nuclear to cytoplasmic ratio and, thus, the

differentiation gradient within the autofluorescence image stacks, an automated Fourier-based analysis was utilized.39 This analysis

capitalizes on the fact that in multiphoton metabolic optical imaging, the image contrast is mainly generated from the cytoplasmic

autofluorescent patterns originating from the spatial distribution of metabolic cofactors (e.g., NADH). Thus, the presence of dimmer

interstitial and intranuclear autofluorescent regions enables delineation of nuclear and cellular borders and the evaluation of cellular

morphological features (Figure S1). In more detail, to evaluate the epithelial morphological variation and differentiation gradient as a

function of depth for the autofluorescence tissue stacks, the power spectral density (PSD) of every optical section within a tissue

stack, created by the overlay of the NAD(P)H (exc:755nm/em:460nm) and FAD (exc:860nm/em:525nm) images, was computed.39

The PSD is amathematical representation that quantifies prevalence of themorphological variations present in an image as a function

of spatial frequency, which ultimately corresponds to the weighted contributions of features of different sizes. Then to quantify how

the morphological features varied over depth within each tissue stack, the depth dependent PSD variance was calculated from all

individual PSDs of each epithelial image stack within the 0.143-0.02 mm�1 frequency range, corresponding to image features be-

tween 7-50 mm33 (Figure S1). The 7-50 mm length scale was selected for this study to account for the cellular size ranges observed

within healthy cervical epithelia. This length scale was also consistent with another type of squamous stratified epithelium evaluated

previously, that of the skin.33 As diseased tissues typically presented with decreased differentiation patterns and thus smaller cells,
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their length scales were incorporated within the broader scale size of the healthy tissues. The coefficient of variation (CoV) (defined as

the ratio of the standard deviation to the mean) for the PSD variance in the 0.143-0.02 mm�1 frequency range (corresponding to sizes

in the 7-50 mm range) was then extracted (Figure S1), as a measure of the relative degree of epithelial morphological variability. This

parameter is referred to as the differentiation gradient metric of the optically sampled epithelial volume in the Figures and Tables of

this study. When the size and prevalence of features in the aforementioned length scales did not change as a function of depth within

an epithelial tissue, the magnitude of the PSD values remained more consistent and the variation of the PSD signals were smaller

(Figure S1). Conversely, healthy tissues typically had higher CoV PSD variance values, as their features varied over depth more,

thus making such metrics valuable indicators of the extent of the depth-dependent intraepithelial differentiation gradient,15,33 that

can be extracted in an automated and quantitative manner.

Functional evaluation and quantification of biochemical and mitochondrial tissue organization in autofluorescence
image stacks
Two complementary quantitative measures of cellular metabolism were extracted using our previously published procedures from

the acquired NAD(P)H (755 nm excitation, 460 ± 20 nm emission) and FAD (860 nm excitation, 525 ± 25 nm emission) images: a) the

optical redox ratio, defined as the intensity based ratio FAD/(NAD(P)H+FAD), 15,92 and b) the mitochondrial clustering, which is asso-

ciated with the levels of mitochondrial fragmentation and fissioning.33,39,93,94 We assessed a number of associated metrics related to

the mean values of these parameters as well as the levels of heterogeneity across the epithelial depth.

In more detail, to evaluate biochemical tissue state, we assessed the optical redox ratio. For a given field, the 755nm excitation,

460nm emission (attributed to NA(P)DH) and 860nm excitation, 525nm emission (attributed to FAD) images were spatially co-regis-

tered by cross-correlation analysis (Figure S2A). We utilized, low and high intensity thresholds along with custom bandpass filters as

described previously33 to create binary masks that removed the background, dark nuclei, and saturated pixels and isolated image

features attributed primarily to cytoplasmic associated fluorescence (Figure S2B). Redox ratio (RR) imagemaps were generated on a

pixel-by-pixel basis as the fluorescence intensity contributions from FAD over the sum of the intensity contributions from NAD(P)H

and FAD, FAD/ (NAD(P)H+FAD) (Figure S2C). The value of this ratio varies always between 0 and 1. To evaluate intrafield RR hetero-

geneity the interquartile ratio of the pixel based RR distribution of all cytoplasmic related pixels within the respective field mask (Fig-

ure S2D) was computed for each optical section. Amean RR value was also computed for each optical section, as a representation of

the overall section biochemical state. To enhance cellular feature visualization, the intensities of redox ratio color maps were

weighted by the sum of the normalized intensity of the NAD(P)H and FAD fluorescence channels. After this weighing, all 3D image

volume rendering was done in ImJ (v1.51p). This intensity weighting processing step was done for visualization purposes only.

Mitochondrial organization analysis was performed as described previously.33 Briefly, the segmented cellular features contained

within each optical section, were utilized by a custom digital object cloning (DOC) algorithm,94 to fill the intensity gaps produced by

thenuclearand interstitial feature removal and thus toeliminate largescale featureartifacts thatcanaffect theevaluationofmitochondrial

organization (Figure 2D). Only the void regions (zero intensity pixels) were filled, without overwriting any foreground pixels or disturbing

the native spatial distributions by pixel shuffling (Figure 2E). This essentially amplified the features of interest within the image while

reducing the edge artifacts and ultimately decreasing measurement error.94 The PSD of the 2D Fourier transform of each processed

NAD(P)H intensity image was computed. Then, the DOC process was repeated in this study 5 times for each image to minimize errors

introducedby the cloning process and the averagePSDof eachNAD(P)H imagewas assessed. An equation of the form: R(k) = Ak-bwas

then fit to the region of the PSDwhere spatial frequency, k, was higher than 0.118mm�1 (corresponding to features smaller than 8.5 mm).

As the healthy humancervical epithelial cells vary in size asa functionof depth, themeanof those sizes fromall different stratawasused.

The absolute fittedvalueof the exponent (b) represents thedegreeofmitochondrial organization, referred toasmitochondrial clustering.

Typically, increased values of the exponent parameter represented more fragmented/fissioned mitochondrial formations.33,73

Histology and Immunohistochemistry
Post imaging, the samples were fixed in 10% formalin and embedded in paraffin, sectioned into 4-mm-thick slices, and mounted on

microscope slides, according to standard practice. All processing and staining procedureswere performed by the TuftsMedical Center

pathology services using an automated staining machine (Benchmark Ultra, Ventana Medical Systems, Inc., Tucson, AZ) according to

established protocols. Typical hematoxylin and eosin (H&E) along with immunohistochemical (IHC) staining for Ki67 and p16 markers

was performed. For IHC, anti-Ki-67 (30-9) Rabbit Monoclonal Primary and CINtec� p16 Histology Ventana-ready-to-use antibodies

were utilized. The IHC sections were counterstained with hematoxylin and a bluing agent by using 3-30-diaminobenzidine detection

kit (VentanaMedical Systems, Inc.). Control slides of human tonsil and cervical carcinomawere used to confirm the sensitivity and spec-

ificity of the Ki-67 and p16 staining respectively. Digital imageswere acquiredwith a BZ-X710Keyencemicroscope equippedwith a 40x

(NA 0.6) Nikon objective. Acquisition settings were held constant for all captured images per antibody group. Visual interpretation of the

staining intensities in conjunction with histological examination was performed by the study’s board-certified pathologist (E.G).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using JMP Pro 14 SAS. Unless otherwise noted, data are presented as quantile boxplots with

median (white line) and 95% confidence diamond (gray) around themean. Each boxplot point represents one optical image stack. To
e3 Cell Reports Medicine 1, 100017, May 19, 2020
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assess the significance of the differences in either of the presented metrics between the healthy, LSIL and HSIL groups, ANOVAs

were performed with post hoc Tukey honestly significant different tests. For the healthy and SIL group comparisons t tests were per-

formed. Prior to ANOVA or t test comparisons, Johnson’smaximum likelihood normalization was implemented to ensure the required

normality assumptions were valid. Normality was validated with the Shapiro Wilk test. For each ANOVA or t test, a nested design

considered the lack of biological independence for the multiple optical stacks derived from individual patient/tissues, with statistical

group outcomes reported ultimately at the participant/patient level. Significance level for all statistics was set to a = 0.05. To evaluate

the optical metric based tissue separation model, multivariate canonical quadratic discriminant (QDA) analyses were performed.

Quadratic discriminant analysis utilizes quadratic equations to identify the separations between the classes of interest and is advan-

tageous when the group covariances are not equal,95 as previously shown in multiphoton-imaging datasets from human tissues.96

For the predictive QDA model, a randomized 70%/30% training–test data separation of the SIL tissue stacks was utilized. To avoid

data overfitting and user bias, three independent randomized runs were performed, and a random number generator was imple-

mented to select each time the optical stack training–test data separation. To ensure lack of offending variables and to support

themathematical assumptions of the QDA analysis, multivariate analysis was implemented to evaluate group covariances andmulti-

collinearity between the optimal metrics for each tissue group using the Pearson product-moment correlation coefficient (r). Pearson

correlation coefficients between variables were reported on the basis of the null hypothesis that r = 0.
Cell Reports Medicine 1, 100017, May 19, 2020 e4
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SUPPLEMENTAL FIGURES  AND TABLES  

 

Supplemental Table 1. Correlation of Biological terminology to analytical process. Related to Figures 1,3-6 and 

STAR Methods. 

 

Biological term Analytical process 

Epithelial thickness 

Epithelial depth range between the most superficial optical section (cells clearly 

covering at least half of the image area below the epithelial surface or the 

exfoliating cell layer in healthy tissues) and the deepest optical section (cells 

clearly covering at least half of the image area relative to dermal components) 

Differentiation gradient 

 

Extent of epithelial morphological (cellular and nuclear) depth-dependent 

variability. Extracted by automated Fourier-based power spectral density (PSD) 

analysis, that quantifies the weighted contributions of features of different sizes. 

The PSD variance (square of standard deviation) for features within the 7-50μm 

spatial frequency range were considered.  The coefficient of variation (ratio of 

the standard deviation to the mean) of the PSD variance over the epithelial depth 

was defined as the Differentiation Gradient.  

Epithelial Mitochondrial 

Clustering Variability 

 

Extracted by automated Fourier-based  PSD analysis of processed NAD(P)H 

images, that reports on the spatial distribution patterns of mitochondrial 

formations. Variability defined by the depth-dependent variance of the 

mitochondrial clustering profile of each optical tissue stack within the epithelium.  

Epithelial Redox Ratio 

average 

Defined based on the NAD(P)H and FAD TPEF intensity images as the ratio 

FAD/ (NAD(P)H+FAD) 

. The average represents the epithelial RR mean value of each optical tissue stack. 

Epithelial Redox Ratio 

Variability 

 

Extracted by automated analysis of intensity contributions from NAD(P)H and 

FAD images, in a ratiometric relationship {FAD/ (NAD(P)H+FAD)}. Described 

by the epithelial depth-dependent variance of the RR profile of each optical tissue 

stack. 

Epithelial Redox Ratio 

Heterogeneity Variability 

 

For each optical section the pixel-based RR histogram spread (heterogeneity) was 

quantified by the distribution’s interquartile range. The variability of the RR 

heterogeneity was defined by the depth-dependent variance of this parameter for 

each stack. 
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Supplemental Figure 1. Representation of analytical steps, Related to Figures 1,3,4 and STAR Methods. A. 

Automated image analysis for quantitative morphological depth dependent epithelial evaluation. Representative 

optical NAD(P)H TPEF sections acquired over depth from a Healthy and a HSIL cervical tissue, along with 

corresponding tissue stack PSD variance profiles. (green segments indicate spatial frequency range corresponding to 

image features of 7-50 microns). The coefficient of variation (CoV) extracted from each variance curve is also shown, 

as a quantitative metric describing herein the epithelial differentiation gradient. Cellular and nuclear sizes regress over 

depth in healthy tissues in a much greater extent than SIL tissues, making PSD variance metrics valuable indicators 

of the extent of the depth-dependent intraepithelial differentiation gradient.  B. Representation of automated image 

analysis steps for quantitative extraction of cellular-related biomarkers. (I) Representative TPEF NAD(P)H (green) 

and FAD (red) overlaid fluorescence image. (II) Respective segmentation mask for isolation of cytoplasmic related-

pixels and removal of saturated pixels and the nuclear and interstitial features. (III) Redox ratio map calculated as the 

ratio of FAD/(NAD(P)H+FAD). (IV) Example of application of segmentation mask shown in (II) to RR image map 

shown in (III)  to report functional outcomes from cytoplasm-related pixels only. (V) Cloned NAD(P)H image after 

application of segmentation mask for extraction of mitochondrial organization parameter. Scale bar is same for all 

images of figure.   
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Supplemental Figure 2. Automated methodology for quantification of function, Related to Figures 1,3-6 and 

STAR Methods.  A.  (I) Extraction of relevant metrics for each optical section of the sampled epithelial volume after 

appropriate preprocessing steps for each marker as described in Methods. Scale bar is same for all images of panel. 

(II) Plotting epithelial depth-dependent profiles. (III) Calculation of epithelial depth-dependent statistical metrics. (IV) 

Evaluation and utilization of extracted parameters for automated classification. B. Mean overall intrafield 

heterogeneity redox ratio outcomes derived from the epithelial RR heterogeneity average of each optical tissue stack 

for the Healthy, LSIL and HSIL cervical tissues examined. Healthy versus SIL comparisons are also presented. Data 

are presented as quantile boxplots with median (white line) and 95% confidence diamond around the mean (gray 

diamond). Each point represents one optical image stack.  
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Suppl. Figure 3. Multivariate analyses, Related to Figures 5-6 and STAR Methods. A. Scatterplot Matrix 

reporting covariances for each classification group and each pair of covariates. Observations vary differentially across 

classes and covariate pairs, supporting the selection of a QDA model. B. Multicollinearity diagnostics through 

pairwise correlations suggest lack of multicollinearity (correlation coefficients < 0.7) indicating no offending 

variables. Correlations coefficients for each pair of covariates is shown within each matrix block.  
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Suppl. Figure 4. QDA classidications, Related to Figures 5-6 and STAR Methods. A. Detailed outcomes for each 

randomized run for the predictive model as shown in summary in figure 5A for prospective classification. For each 

run a randomized separation 70% training SIL stacks/30% training–test SIL stacks was per performed, while the 

healthy stacks were always part of the training set. For each run original classification outcomes are shown for the 

training sets along with the prospective classification outcomes for the blinded, validating sets. B. QDA analysis at 

the Healthy vs. SIL levels utilizing only morphological (I) or only functional (II) markers as shown in Figures1,3-4. 

(top panels) Respective 2D canonical QDA scatterplots showing the tissue separation of Healthy (blue) and SIL (gray) 

tissue stacks. (bottom panels) Extracted sensitivity and specificity outcomes are also presented.  
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Supplemental Figure 5. QDA classidications, Related to Figures 5-6 and STAR Methods. QDA analysis at the 

Healthy (blue), LSIL (light gray), and HSIL (dark gray) levels utilizing only morphological (A) or only functional (B) 

markers as shown in Figures 1,3-4 and Suppl.Table 1. (left panel) 2D canonical QDA scatterplot showing in space the 

tissue separation of the Healthy (blue), LSIL (light gray), and HSIL (dark gray) tissue stacks. Colored ellipsoids 

represent 50% of data coverage. (right panel) ROC analysis of the QDA discrimination model at the Healthy (blue), 

LSIL (light gray) and HSIL (dark gray) level. Area under the ROC curve for each tissue group is also shown, indicating 

discrimination accuracy. (bottom panels) Original classification outcomes based on the comparison of the QDA model 

predictions at the Healthy (blue), LSIL (light gray) and HSIL (dark gray) level and merged classification outcomes at 

the Healthy (blue) and SIL (gray) level with corresponding histopathological evaluations and extracted sensitivity and 

specificity outcomes.  
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Supplemental Figure 6. QDA classidications, Related to Figures 5-6 and STAR Methods.  QDA analysis at the 

non-HSIL vs. HSIL levels utilizing only morphological (A) or only functional (B) markers as presented in Figures 

1,3-4 and Suppl.Table 1. (top panel) 2D canonical QDA scatterplot showing the tissue separation of the non-HSIL 

(blue) and HSIL (gray) tissue stacks. (Middle and bottom panels) Extracted sensitivity and specificity outcomes are 

also presented. ROC analysis of the QDA discrimination model at the non-HSIL (blue) and HSIL (gray) level. Area 

under the ROC curve for each tissue group is also shown, indicating discrimination accuracy.  
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