Supplementary Information

Impact of Related Genomes on MAG binning

By generating a phylogeny of universal single copy genes in our input genomes (Fig. S1) we analysed
the relationship between the presence of closely related genomes and the ability of the different MAG-
recovery methods to bin chromosomal sequences. Specifically, we regressed phylogenetic distance on
this phylogeny with per-bin chromosomal coverage (Fig. S2) and bin purity (Fig. S3). This identified
no clear relationship between chromosomal coverage (Fig. S2), or purity (Fig. S3), and the
phylogenetic distance to the nearest relative in the metagenome.
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Figure S1: Unrooted universal single-copy gene concatenation maximum-likelihood (IQ-TREE)
phylogeny. Percentage of ultrafast-bootstraps (n=1000) supporting each bifurcation are annotated on
each node. Phylogeny was visualised using iToL.
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Figure S2: Relationship between phylogenetic distance to closest neighbour input genome on genomic
coverage in MAG majority comprised of that taxon. Each dot represents the genomic coverage of a
particular genome and the branch distance on an 86-protein concatenated phylogeny between that
genome and its nearest neighbour. Rows indicate the binning software and columns the metagenomic
assembler. Regression line is a simple linear model fitted in seaborn with R’\2 values calculated and
annotated on each plot.
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Figure S3: Relationship between phylogenetic distance to closest neighbour input genome on bin
purity. Each dot shows the number of other input genomes detectable in a given MAG bin in relation to
the branch distance on an 86-protein concatenated phylogeny between the majority genome in that bin



and its nearest neighbour. McFadden’s pseudo-R"\2 calculated from fitted Poisson logistic regression
models are annotated on each plot.

Recovery of Specific Gene Content

We explored the ability of different approaches to find open reading frames (ORFs) within MAGs.
Overall, the total number of predicted ORFs in MAGs followed a similar trend (Fig. S4) as the
chromosomal coverage and purity (Fig. 2). Of the four binning tools, CONCOCT performed the worst,
finding <30% of the number of ORFs in our reference genomes used to construct the synthetic data.
MetaBAT?2 performed second worst at ~80%. DASTool recovered a similar number to our reference
and Maxbin2 detected 7-46% more genes. The Assembler method did not significantly impact the
number of genes predicted with the exception of Maxbin2, in which IDBA_UD was the closest to
reference and metaSPAdes predicted 46% more ORFs. Given that there is reason to suspect that there
are some issues with the ORF calling in the MAG:s. i.e., some tools produced more predicted ORFs
than reference, it could be the case that some of these sequences are present in the assemblies (with
errors/gaps), but are not being identified as ORFs, or are broken into multiple ORFs, leading to issues
downstream labeling them correctly as AMR/VF genes. Regardless of different tools producing a
different number of ORFs, the recovery of AMR/VF is pretty consistent regardless of how many ORFs
are predicted.
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Figure S§4: Predicted Gene Content. The total number of open reading frames (ORF) predicted
followed the same trend as chromosomal coverage and purity. The assemblers (colored bars) did not
contribute to variability in the number of ORF's detected. Of the 4 binners, CONCOCT recovered
<30% of our reference genome ORFs. DASTool and MetaBAT2 predicted a similar number as our
reference genomes.

Comparisons of Rates of Loss

Combining the performance metrics for Figs. 3, 4, 5, and 6 to compare the rates of loss of different
components emphasises some of the observed patterns (see Fig. S5). This highlights that genomic
components (GIs and plasmids) and plasmids in particular are lost at a higher rate than individual gene
types during MAG recovery.
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Figure S5: Comparison of rates of loss for different genomic components and gene types across
assemblers and binning tools. Each line represents a different component as indicated by the legend
with assemblers indicated by row and binning tool by column. This shows that regardless of approach
genomic components (GIs and plasmids) are lost at a higher rate than individual VF or AMR genes.



Depth

Detailed Simulated Read Depth Analysis
Depth of Simulated Reads By Species (A)
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Depth of Simulated Reads By Species (B)
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Figure S6: Average Read Depth Per Genome. Across all of the reference species (facet), the read depth
of plasmids (orange) is considerably higher relative to chromosomes (blue), likely due to the copy
number regime randomly assigned. Gls (green) exhibited relatively lower read depth compared to
chromosomes. The variability in read depth is notably higher in and around GIs and plasmids.



Per Base Depth of Simulated Reads By Species (A)
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Per Base Depth of Simulated Reads By Species (B)
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Figure S7: Per Base Read Depth Per Species. The per base (x-axis) read depth (y-axis) of each species
is plotted individually. Overall, the read depth of chromosomes (blue boxes) is much lower than the



read depth of plasmids (orange boxes). GIs within the chromosome are highlighted in green. At a per
base level, we see a much lower read depth at the beginning and the end of each replicon as well as a
higher variability in read depth for GIs and plasmids.
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