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THE BIGGER PICTURE Machine learning (ML) has been shown to be powerful in many artificial intelligence
tasks, so people expect it to be able to reveal patterns that even human experts may have difficulty discov-
ering. Scientists are enthusiastic in using ML to analyze the complex biology underlying various single-cell
genomics data, but most existing studies of this type are accustomed to relying on existing knowledge to
design experiments. Such practicesmaymiss important discoveries and leave the question open as to how
far ML and data may go beyond the sphere of existing knowledge.
This study uses the example of cell lineages in early embryonic development to investigate the feasibility of
machine-learning discovery of biological knowledge from data withminimum use of prior knowledge.We call
the tasks ab initio knowledge discovery. The strategy and observations can act as a baseline for future efforts
of discovering new knowledge from single-cell genomics data.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological
data, but most such practices are accustomed to relying on existing knowledge conditions to design exper-
iments. Investigations of the power and limitation of ML in revealing complex patterns from data without the
guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such
ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic
development. Results showed that a strategy combining unsupervised and supervised ML can reveal major
cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining
enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility,
significance, and limitation of ab initio ML knowledge discovery on complex biological problems.
INTRODUCTION

Machine learning (ML) has been shown to be powerful in many

pattern recognition tasks such as image analysis and computer

vision, natural language processing, medical data analysis, and

tasks in many other fields.1–5 The success of ML in those sce-

narios has led to scientists expecting it to be also powerful in

analyzing data in biological research.6 The task may look similar
This is an open access article under the CC BY-N
at first glance but in fact there is a significant paradigm shift in the

nature of tasks. We are not interested in letting machines learn

what scientists already know but hope that ML methods will

help us discover unknown patterns underlying the data that chal-

lenge human expert analysis. A typical task is to identify un-

known structures intrinsic in massive high-dimensional data

and to infer underlying principles without the guide of existing

knowledge or even without a clearly defined target. Instead of
Patterns 1, 100071, August 14, 2020 ª 2020 The Author(s). 1
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mimicking humans to complete certain tasks as in typical artifi-

cial intelligence scenarios, we expect ML methods to help

discover new knowledge that human experts cannot find.

Single-cell genomics is playing important roles in current bio-

logical studies. High-throughput single-cell RNA sequencing

(scRNA-seq) has generated a huge amount of high-dimensional

data that are far beyond the capacity of human experts to

analyze without the assistance of advanced computational

methods. Various ML methods have been playing a major role

in analyzing massive single-cell data.7–10 A typical pipeline for

single-cell genomic data analysis is gene selection, dimension-

ality reduction followed by clustering, visualization, and annota-

tion.10–13 In most (if not all) published single-cell genomics

studies, we are accustomed to relying on existing biological

knowledge, human expertise, and interactive tuning in steps

such as selecting genes, deciding on reduced dimensionalities,

choosing clustering granularity and visualization parameters, se-

lecting trajectory models, and annotation based on known

markers.13 Such practices are helpful for confirming the validity

of data and ensuring that analyses are compatible with existing

knowledge, but raise questions on the capacity of ML methods

in discovering new knowledge from the data alone. On the other

hand, emerging single-cell omics technologies are providing un-

precedented resolution in studying the molecular properties of

cells and are pushing the boundary of existing biological knowl-

edge in many directions. The reliance on existing knowledge

may bury the value of the new technology in revealing new

knowledge that could not be seen with previous technologies.

It is unclear in many scenarios whether discoveries from new

data have beenmisled by possible biases in existing knowledge.

Efforts are needed to systematically explore the power and lim-

itation of ML methods in discovering biological knowledge from

data in an ab initio manner with restricted or controlled involve-

ment of existing knowledge and subjective judgment by human

experts.

In this study, we selected a state-of-the-art scRNA-seq data-

set of early human embryonic cell development14 and designed

an experiment for ab initio knowledge discovery using basic ML

methods with controlled involvement of human knowledge. The

dataset contains scRNA-seq samples of embryonic day 3 (E3) to

day 7 (E7), the important period in embryonic development from

the 8-cell stage to pre-implantation embryos. This is a period rich

of biological events. The corresponding biological knowledge is

also rich, but many existing understandings were obtained from

mouse studies.15–17 It has been reported that there are notice-

able differences in many aspects of the early development of hu-

man and mouse embryos.14,18,19 We ignored all existing knowl-

edge of embryonic development except the basic assumption

that cells of a later day are developed from the earlier day in

some unknown lineages. We experimented on the discovery of

such lineages from the data using the combination of classic un-

supervised and supervised ML methods with minimum involve-

ment of prior knowledge or manual intervention. After a full

ML-derived understanding of the developmental process was

built, we compared it with existing knowledge and used the

knowledge to annotate the ML-derived understanding. Results

showed that ML-derived understanding can be well aligned to

the latest knowledge, except that the ML-derived understanding

included a new discovery on the differentiation of a small fraction
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of day-4 cells that can augment existing knowledge. We also

conducted similar experiments on a mouse dataset20 and a ze-

brafish dataset21 of embryonic development, and observed

various levels of success or failure in discovering more compli-

cated relationships. These experiments highlighted the power

and limitation of using current ML methods and scRNA-seq

data to discover complicated biological knowledge ab initio,

and showed the feasibility and significance of controlling the

involvement of existing knowledge and subjective adjustment

in mining new biological data.

RESULTS

The Task and Strategy
The task of this ab initio knowledge discovery experiment is to

identify the possible lineage relations among cells of each day

(or hour) in the early embryonic development data14 without

the guide of existing knowledge. We formulated it as a task of

clustering and classification: If cells of the same day are of

different lineages, there must be distinct clusters in cells of that

day; and if the clusters of different days belong to the same line-

age, there must be some correspondence between the clusters

so that we can classify the lineage on one day using the model

trained by the lineage on another day. We decomposed the

task into the following subtasks: (1) choosing one day as the

candidate reference day for other days; (2) building a candidate

developmental process by finding relations among cells of

different days based on the reference day; and (3) assessing

the plausibility of the candidate developmental process. As no

prior knowledge is taken in the experiment, it is difficult to decide

beforehand which day is a proper reference for the other days.

We took each day as the reference and fulfilled the task for

each reference. In this way, we would obtain multiple candidate

versions of the development process. We developed a method

to infer which one is the most plausible by evaluating the self-

consistency of each one.

Figure 1 illustrates the overall scheme of the proposedmethod

for ab initio discovery of developmental processes based on a

number of samples collected at several time points in a develop-

mental interval. Details of the method are described in Experi-

mental Procedures.

We used human early embryo development data14 for the sys-

tematic experiment and analyses of this study. Most of the

following subsections are based on this dataset. Extra experi-

ments on the mouse and zebrafish data are discussed in the

last two subsections.

Number of Clusters for Each Day
We conducted k-means clustering22 on cells of each day by ex-

perimenting from k = 1 to k = 9. Figure 2 shows the scree plot of

the sum of errors with regard to the choice of k for each day, and

Table 1 shows the Silhouette scores23 (S-scores) for each day.

We can see that the elbow points on the scree plots are not

obvious for most days, which implies that the clustering struc-

tures on all days are not very crisp based on the genes we

used. Weak elbow points at k = 3 for day 5 and at k = 2 for

days 6 and 7 can be perceived, plus an even weaker elbow point

at k = 2 for day 4. This agrees with the highest S-scores on those

days in Table 1. The S-score at k = 2 is the highest for day 3 but



Figure 1. Overview of the Method

Unsupervised and supervised learning methods

were used for building ML-derived understandings

of the developmental process with each day as a

potential reference. The number of clusters in each

reference day can be decided using S-score and

scree plots (not shown in figure) or can be

exhaustively searched in a range. Multiple versions

of developmental processes were constructed. A

method was developed for comparing the multiple

candidate processes to choose the one with high-

est self-consistency as the final ML-derived un-

derstanding. Existing knowledge was used in the

last step to annotate theML-derived developmental

process and detect possible new findings.
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the scree plot of day 3 does not show any elbow point. It should

be noted that S-score can only be calculated for k R 2 by defi-

nition and therefore cannot be used to rule out the situation

that all samples should be taken as one cluster. Based on these

observations, we chose the number of clusters for days 3 to 7 as

2, 2, 3, 2, and 2, respectively, but took note that evidence for the

existence of two clusters on day 3 and day 4 are weak, especially

for day 3. To check the stability of k-means clustering, we did ex-

tra experiments with different initial centroids and found that the

results were stable (Tables S7–S9).

Candidate Developmental Processes Built on Each
Reference Day
Taking the clusters obtained for each day as the seeds for candi-

date lineages, we trained a support vector machine (SVM)24

classifier with the cells of each reference day and classified cells

of all other days to the seed clusters. In this way, each reference

day built up one candidate developmental process. We mapped

the clustering and classification results on the plane of the first

two principal components of each day to visualize the distribu-

tions of clusters and classes in the five candidate developmental

processes (Figure 3). Table 2 shows the number of cells in each

cluster or class of each day in the five candidate developmental

processes.

Five versions of developmental stories can be made up for the

five candidate developmental processes. For the one with day 3

as the reference (first row in Figure 3), we see that cells of day 3

are of two clusters in their gene expression patterns, but one

cluster disappeared on day 4 and there is only one lineage there-

after. This is biological nonsense considering the order of devel-

opment, but as we did not involve biological knowledge in this

phase we avoided this type of human judgment to evaluate the

candidate processes. What makes this candidate process not

acceptable from the data themselves is the fact that this story in-
dicates that all cells of other days are of

only one cluster. This is in strong conflict

with the observation on the number of

clusters on other days. For a candidate

developmental process to be plausible,

we expect it to provide consistent conclu-

sions on the nature of cell heterogeneity on

each day from the unsupervised clustering

and supervised classification.
The story based on day 4 as reference tells us that all cells are

of the same cluster on day 3 and that one new cluster appears on

day 4. The cluster on day 3 disappears in later development,

leaving most of the cells on day 5 and all cells on day 6 and

day 7 being of the other cluster. This candidate process offers

a richer storyline, but also has major conflicts with the number

of clusters observed for day 5, day 6, and day 7. Similar analyses

on the developmental stories based on the other three candidate

processes can be done in the same way. Table 3 presents a

summary.

By comparing the cell numbers in the unsupervised learning

results and supervised learning results, we can come to the

conclusion that the candidate developmental process derived

with day 5 as the reference is the most plausible. The develop-

mental process can be described in the following way. All cells

of day 3 are of the same type (cluster A5). A few cells of a new

type (cluster B5) appeared on day 4while most other cells are still

of A5. On day 5, the new B5 cluster becomes larger, a new cell

type (cluster C5) appears, and cells of the earlier A5 type become

a smaller fraction. On days 6 and 7, cells of the earlier A5 type

disappear and only cells of types B5 and C5 remain. Considering

the fact that the scree plot indicated the weakest evidence of

having two or more clusters on day 3, this story has no major

conflict with all other observations.

Quantitative Evaluation of the Candidate Development
Processes
The above analyses pointed out the most plausible ML-derived

understanding of the developmental process. The reasoning

was qualitative and required manual inference and judgment,

although no biological knowledge was used. We proposed the

following method for automatic judgment on the ML results.

We applied quantitative measurement of self-consistency on

each candidate process using the reliability scores we defined
Patterns 1, 100071, August 14, 2020 3



Figure 2. Scree Plots of Sum-of-Errors of k-Means Clustering on Each Day

The horizontal axis is the cluster number k. The vertical axis is the sum of errors of samples to cluster centers.Weak elbow points can be identified for day 4, day 5,

day 6, and day 7 but not for day 3.
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(Experimental Procedures). Table 4 shows the results. In agree-

ment with the above qualitative analysis, the quantitative evalu-

ation results clearly show that the developmental process with

day 5 as reference has the highest adjusted reliability scores

(ARSs) and is the most plausible, and we therefore took it as

the ML-derived knowledge discovered ab initio from the sin-

gle-cell gene expression data.

Exhaustive Searching of the Reference Day and Cluster
Numbers
The building of the above candidate developmental processes

was based on the selection of most proper cluster numbers

based on the S-scores and scree plots. To eliminate the influ-

ence of the uncertainty in determining the cluster numbers, we

conducted an exhaustive search of cluster numbers for each

day as a potential reference. For each day, we experimented

with cluster numbers k being set from 2 to 10, respectively,

and used the obtained clusters as reference to classify cells of

other days. For each setting, the predicted classes on target

days were compared with clustering results of those days to
Table 1. Silhouette Scores of Different Cluster Numbers in

Each Day

k Day 3 Day 4 Day 5 Day 6 Day 7

2 0.3052a 0.1275 0.1091 0.1440 0.1536

3 0.1417 0.1106 0.1139 0.0994 0.1274

4 0.1255 0.1065 0.1027 0.0810 0.0807

5 0.1339 0.0842 0.0781 0.0797 0.0808

6 0.1093 0.0840 0.0772 0.0625 0.0688
aThe numbers in bold fonts are the highest Silhouette score for each day,

respectively.
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obtain the concordance scores (‘‘concord’’) in the calculation

of the ARS for the particular reference day and cluster number.

In this way, we enumerated the best possible candidate devel-

opmental processes using each day as a reference and each

choice of cluster numbers within the given range. Table 5 sum-

marizes the ARSs for all enumeration results. We can see that

the developmental process derived using the three clusters of

day 5 as reference (‘‘day5_clu3’’ in Table 5) gives the highest

ARS among all enumerations. This confirmed the previous ana-

lyses based onmanually chosen cluster numbers and provided a

strategy for the inference with less manual intervention.

Verification of the Ab Initio Discovery and Alignment to
Known Biological Knowledge
Now that we had built up an ML-derived developmental process

of embryonic cells from E3 to E7, we compared it with the exist-

ing biological knowledge and annotated theML-derived lineages

with biological lineages. According to the current understanding,

from E3 to E7 human zygotes differentiate into three major em-

bryonic cell types named pre-lineage, trophectoderm (TE) line-

age, and inner cell mass (ICM) lineage.14,25 Cells of the pre-line-

age are those that have not started differentiation. TE lineage

segregates first, then primitive endoderm (PE) and epiblast

(EPI) cells come from the intermediate lineage of ICM.14,26 Cells

of different lineages play different roles in the embryogenesis.

Cells in E3 and E4 belong to pre-lineage according to the current

understanding. TE and ICM cells appear on E5 but there are still

pre-lineage cells remaining on E5. ICM further segregates into

EPI and PE on E5. By E6 and E7, all pre-lineage cells have differ-

entiated into cells of either TE or ICM (EPI and PE) lineages.

Comparing this existing biological knowledge with the ML-

derived developmental story in our discovery, it is straightfor-

ward to infer that cluster A5 corresponds to the pre-lineage



Figure 3. Distributions of Clusters and Classes in Five Candidate Developmental Processes Derived Using Each Day as the Reference

The plot matrix contains clustering and prediction results of day 3 to day 7 with each day used as reference day. Plots with gray background along the diagonal

show the clusters of for each day used as seeds for candidate lineages. The other plots show the classification of cells of the other days to the seed clusters of the

reference day in the same row.
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because it is the sole cell type in E3. A minor disagreement be-

tween the ML-derived developmental process with the known

biological lineages is that cells in E4 should all be pre-lineage ac-

cording to the existing knowledge, but the ML-derived knowl-

edge identified 10 ‘‘outlier’’ cells (out of the 190 cells) of E4

that were already differentiated.

The correspondence of clusters B5 and C5 to TE or ICM line-

ages cannot be inferred from the above reasoning. This is where
Table 2. Numbers of Cells in the Clusters of Reference Days and in

Reference Day (No. of Clusters)

Number of Cells in Clusters/Clas

Day 3 Day 4

Day 3 (2) (70, 11) (190, 0)

Day 4 (2) (81, 0) (110, 80)

Day 5 (3) (81, 0, 0) (180, 10, 0)

Day 6 (2) (3, 78) (53, 137)

Day 7 (2) (4, 77) (145, 45)

The numbers in bold font at the diagonal are the numbers of cells in each clus

the numbers of cells classified to each class using the clusters at the diago
extra information is needed besides the data themselves. To

resolve this question, we took the clustering result of cells on

day 5 with k = 4 and compared it with the clusters of k = 3 (Fig-

ure 4). Based on the existing knowledge that the ICM lineage is

composed of two subtypes PE and EPI, we expected that one

of the three clusters in the result of k = 3 would be split into

two clusters when k = 4. Aswe can see in Figure 4, this happened

for cluster C5, indicating that cluster C5 corresponds to the ICM
the Classes of the Other Days

ses

Day 5 Day 6 Day 7

(377, 0) (415, 0) (466, 0)

(7, 370) (0, 415) (0, 466)

(104, 152, 121) (0, 261, 154) (0, 219, 247)

(212, 165) (239, 176) (209, 257)

(301, 76) (321, 94) (236, 230)

ter of each reference day. The numbers at other positions of thematrix are

nal location of the matrix as the reference.

Patterns 1, 100071, August 14, 2020 5



Table 3. Summary of the Five ML-Derived Candidate Developmental Stories

Story Index Reference Day Summary of the ML-Derived Developmental Process

Story #3 Day 3 Two lineages on day 3. One disappears on day 4 and all cells of days 4–7 are of the same lineage of day 3

Story #4 Day 4 One lineage on day 3. A new lineage appears on day 4. Most of the cells on day 5 and all cells on days 6 and 7

are of the new lineage from day 4. The lineage from day 3 almost disappears on day 5 and disappears

thereafter

Story #5 Day 5 One lineage on day 3. A minor new lineage appears on day 4. It becomes larger on day 5, and another new

lineage appears on day 5. The lineage from day 3 disappears on day 6 and thereafter and the two new lineages

continue

Story #6 Day 6 A major lineage and a minor lineage on day 3. The minor lineage becomes larger from day 4. The two lineages

continue thereafter

Story #7 Day 7 A major lineage and a minor lineage on day 3. The minor lineage becomes much larger from day 4. The two

lineages continue thereafter
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lineage and cluster B5 corresponds to the TE lineage. With this

extra step of inference guided by existing knowledge and human

reasoning, the ML-derived ab initio knowledge discovery in this

particular dataset has been fully verified and annotated.

New Discovery on Cell Differentiation in E4
The ML-derived understanding of the developmental process

indicates that a minor proportion of cells in E4 already differen-

tiated to TE cells (cluster B5). We drew the gene expression

heatmap of all E4 cells (Figure 5A), which shows that gene

expression patterns for those 10 cells are distinct from the ma-

jority of E4 cells. In Figure 5B, we drew the distribution of E5

cells in the plane of the first two principal components of E5

and mapped all E4 cells to this plane. We can see that while

most E4 cells map to the region of pre-lineage cells (cluster

A5), 10 3 104 cells map to the area of TE cells (cluster B5) on

E5. This confirmed the existence of TE cells on E4. We also

mapped all E3 cells to this plane, which mapped to the pre-

lineage region (cluster A5) (Figure 5B). It is interesting that

most E3 cells tend to map to the far end of the pre-lineage clus-

ter while the E4 cells are scattered in an almost linear manner in

the cluster with the 10 cells extending to the area of TE cells.

Considering the observations from the scree plots that the

distinction between clusters in the data are not sharp, we spec-

ulated that the gene expression patterns of pre-lineage cells

with those of the TE cells are of a continuum rather than a clear

switch. A minor proportion of E4 cells grow faster and differen-

tiate to cells with TE properties before E5.
Table 4. Concordance and Reliability Scores of Each Day and

Candidate Development Process

Reference

Day (r)

Concord (i|r) Reliab

(r)

ARS

(r)i = 3 i = 4 i = 5 i = 6 i = 7

Day 3 – 0 0 0 0 0 0

Day 4 0 – 0.008 0 0 0.002 0.003

Day 5 0a 0.04 – 0.78 0.73 0.38 0.39

Day 6 �0.05 0.44 0.44 – 0.75 0.39 0.25

Day 7 �0.06 0.07 0.11 0.36 – 0.12 0.18
aThe bold fonts highlight the row with the reference day that achieves the

highest ARS value.
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Experiments with Seurat Clustering
k-means is a classic clustering method that has been widely

used in many fields, but the clustering method in Seurat10 is

more widely used in single-cell data analysis. When we use

Seurat clustering to replace k-means by manually adjusting the

Seurat parameters for data of each day, the developmental

knowledge discovered is almost identical to that described

above (Figure S2). However, the tuning of parameters made

such a discovery in a non-ab initio manner. We then adopted

the exhaustive searching strategy to scan for parameters that

lead to results with the highest ARS. The detailed experimental

procedure is given in Supplemental Information. The top two

choices of the reference day are day 5 with four clusters

(ARS = 0.43) and day 5 with three clusters (ARS = 0.32). The cor-

responding stories visualized in principal component analysis

(PCA) plots are shown in Figures S3 and S4, respectively.

It is interesting that the developmental stories with these two

solutions are generally compatible with each other and with the

story #5 discovered with k-means clustering, except that there

is a minor new cluster D discovered among cells of days 3 to 5

in the new top story. Annotating with the prior knowledge, this

new cluster tells us that a tiny portion of the pre-lineage cells

on day 3 and day 4 belongs to a special subtype. This subtype

can be found in a slightly larger proportion among cells on day

5 but disappears from day 6 onward. This subtype has not

been reported in the literature but shows noticeable differences

in gene expression profiles (Figure S5), perhaps implying some

subtle heterogeneity among the pre-lineage cells.
Experiments on Mouse Embryonic Development Data
Weapplied the same strategy aswe did on the human data for ab

initio discovery of the candidate developmental processes to the

mouse embryonic development data.20 The dataset contains

1,724 cells captured at embryonic days 5.25, 5.5, 6.25, and 6.5

(referred to as E5.25, E5.5, E6.25, and E6.5). The S-scores and

scree plots indicated that the best cluster numbers for E5.25,

E5.5, E6.25, and E6.5 are 3, 3, 3, and 2, respectively (Table S2

and Figure S6). Using these choices of cluster numbers to infer

the candidate developmental process, the highest ARS (2.00)

was obtained for the one with E5.25 as the reference, but the

ARSs of candidate processes with references of E5.5 and



Table 5. Adjusted Reliability Scores (ARS) of Each Enumerated Candidate Developmental Process

Reference Day and

Cluster Numbera ARS

Reference Day and

Cluster Numbera ARS

Reference Day and

Cluster Numbera ARS

day3_clu2 0 day4_clu8 0.1367 day6_clu5 0.1426

day3_clu3 �0.0002 day4_clu9 0.2079 day6_clu6 0.2565

day3_clu4 �0.0003 day4_clu10 0.2045 day6_clu7 0.1824

day3_clu5 �0.0003 day5_clu2 0.4220 day6_clu8 0.1848

day3_clu6 �0.0013 day5_clu3b 0.4674b day6_clu9 0.1812

day3_clu7 �0.0002 day5_clu4 0.1936 day6_clu10 0.1655

day3_clu8 �0.0004 day5_clu5 0.2130 day7_clu2 0.2434

day3_clu9 �0.0004 day5_clu6 0.1703 day7_clu3 0.1706

day3_clu10 �0.0003 day5_clu7 0.2463 day7_clu4 0.2497

day4_clu2 0.0011 day5_clu8 0.2408 day7_clu5 0.2199

day4_clu3 0.0166 day5_clu9 0.2124 day7_clu6 0.2552

day4_clu4 0.0256 day5_clu10 0.2317 day7_clu7 0.1693

day4_clu5 0.1123 day6_clu2 0.4099 day7_clu8 0.2074

day4_clu6 0.0479 day6_clu3 0.2362 day7_clu9 0.2031

day4_clu7 0.0610 day6_clu4 0.1543 day7_clu10 0.1816
aday3_clu2 means using day 3 cells of 2 clusters as the reference for other days for building the candidate developmental process. The ARSmeasures

the plausibility of each candidate story.
bThe bold fonts highlight the reference day and cluster number that achieves the highest ARS among all exhaustive search results.
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E6.25 are 1.94 and 1.91, respectively, both very close to the

highest ARS (Table S3). This suggests that those two time points

may also be reasonable choices of reference. Figure 6 shows the

plot matrix of the four candidate developmental processes in the

same way as for the human data in Figure 3. Table S4 shows the

number of cells in each cluster or class of each time point in the

four candidate developmental processes.We can see that in fact

the ML-derived developmental stories using E5.25, E5.5, or

E6.25 as references are almost identical.

We also experimented with the exhaustive searching strategy

for all four time points and cluster numbers from 2 to 10. Results

also gave the highest ARS (2.2598) for ‘‘day5.25_clu3’’ (Table

S5). This confirms that the most plausible developmental pro-

cess is the one built with the three clusters of E5.25 cells as refer-

ence. This ML-derived development process tells us that there

are three lineages from E5.25 to E6.5, without a significant differ-

entiation event. Looking into the literature,20 we learned that

there are three lineages in the mouse embryonic development

from E5.25 to E6.5: epiblast (EPI), extraembryonic ectoderm

(ExE), and visceral endoderm (VE). By comparing our data with
A B
the lineages reported in the original paper (EPI, ExE, and VE),

we found that the ML-derived lineages (clusters A, B, and C)

can be annotated with the biological lineages based on their pro-

portion of cells (Table 6). We can see that both the fixed-k strat-

egy and exhaustive-search strategy work well on this dataset in

discovering the basic development knowledge ab initio.

It is interesting that differences between top and following ARS

values in the mouse dataset (Table S5) are relatively smaller than

those in the human dataset (Table 5). This reflects the different

levels of complexity in the two datasets. The human data

covered a period when cells develop from one lineage to three

lineages, while the mouse data covered a period when cells

remain in three lineages.

Experiments on Zebrafish Embryonic Development Data
We conducted the same series of experiments on the zebrafish

embryonic development dataset.21 This contains 36,749 cells

collected at seven time points during the zebrafish embryonic

development, i.e., 4, 6, 8, 10, 14, 18 and 24 h post fertilization

(hpf). We observed that S-score and scree plot tend to indicate
Figure 4. Comparison of Clustering Results

on E5 cells with k = 3 and k = 4

(A) PCA plot of the three clusters.

(B) PCA plot of the four clusters. The cluster C5 when

k = 3 is further separated into two subclusters C5 and

D5 when k = 4.
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A B Figure 5. Visualization of the New Discovery

on Cell Differentiation in E4

(A) Expression heatmap of E4 cells. Each row repre-

sents one gene and each column represents one cell.

The color of scale bar on the right shows the

normalized expression level. The 10 ‘‘outlier’’ cells

that have been speculated as early TE cells on day 4

by our ab initio discovery are shown at the leftmost

side of the heatmap.

(B) PCA plot of day-5 cells with day-3 and day-4 cells

mapped onto it. We can see that all E3 cells map to

the pre-lineage region of E5 cells, and most E3 cells

are in the far end of this cluster. Most E4 cells map to

the pre-lineage region along a linear shape, with 10

cells extended into the TE region.
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small cluster numbers (mostly 2–3) for cells of each time point,

but exhaustive searching picks up references with larger cluster

numbers as themost plausible references. The highest ARSs ob-

tained in the exhaustive searching are also much higher than

highest ARSs obtained using the fixed-k strategy. We therefore
Figure 6. Distributions of Clusters and Classes in Four Candidate Mou

Reference

The plot matrix contains clustering and prediction results of E5.25 to E6.5 with eac

show the clusters for each time point used as seeds for candidate lineages. The

clusters of the reference time point in the same row.
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chose to use the exhaustive searching result as the most plau-

sible candidate developmental process.

With the zebrafish dataset, an exhaustive search identified the

time point of 10 hpf of five clusters as the most plausible refer-

ence. Figures S7 and S8 show the PCA and t-distributed
se Developmental Processes Derived Using Each Time Point as the

h time point used as reference. Plots with gray background along the diagonal

other plots show the classification of cells of the other time points to the seed



Table 6. Numbers of Cells in Biological Lineages andML-Derived

Clusters

Total Numbers of

Cells in Lineages

Reported in

Cheng et al.20

768 (lineage

EPI)

285 (lineage

ExE)

671 (lineage

VE)

Total numbers of

cells in the ML-

derived lineage

clusters

789 (cluster A) 285 (cluster B) 650 (cluster C)
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stochastic neighbor embedding (tSNE) plots of cells at each time

point colored with the predicted classes. The ML-derived story-

line of the developmental process is as follows. There are two lin-

eages (clusters C and D) at 4 hpf. These two lineages continue all

the way to 24 hpf. Two new lineages (clusters B and E) appear at

6 hpf, and another new lineage (cluster A) appear at 8 hpf. All

these lineages continue to 24 hpf. In the original paper that pub-

lished the data,21 the authors identified a total of 198 clusters at

all time points (from four clusters in cells of 4 hpf to 72 clusters in

cells of 24 hpf), but manually annotated them into 10 cell types

using a series ofmarker genes. The cell types containmany scat-

tered clusters in the tSNE plots, indicating complicated subtype

structures and lineage relations. The ML-derived developmental

process cannot be annotated to the biological lineages pre-

sented in the original paper because the resolutions are different.

We used the differentially expressed genes (DEGs) among the

cell types reported in the original paper to manually annotate

the ML-derived developmental process (Table S6).

The ab initio discovery of the developmental process from this

dataset only covers a draft outline of the true biological knowl-

edge lineages with many details missed, and the annotation of

the ML-derived process needs the assistance of known DEGs.

We compared the nature of the human, mouse, and zebrafish

datasets we experimented on in this study to understand why

the proposed method works well on the first two datasets but

has limited success with the zebrafish data. Looking into the

basic knowledge on vertebrate development,27–30 we realized

that the sampling time points in the human data of 3–7 days

post coitum (dpc) are approximately from Carnegie stage 2 to

5, long before the development of the first somite. The mouse

data of 5.25–6.5 dpc are approximately from Carnegie stage

5–6, still before the first somite occurs. The zebrafish data from

4 to 24 hpf, however, actually span approximately Carnegie

stage 7–12. During this period, the zebrafish goes through blas-

tula (2.25–5.25 hpf), gastrula (5.25–10.33 hpf), and segmentation

stages (10.33–24 hpf), and enters the pharyngula stage.31 At the

end of 24 hpf, the zebrafish embryo already hasmore than 26 so-

mites. From these facts, we can conceive that the zebrafish

development data are beyond the scenario for which the pro-

posedmethodwas designed. The clustering of cells in the zebra-

fish data are decided not only by the developmental lineages but

also by many other developmental factors such as somites and

locations. Also, because of the complexity of the late develop-

ment processes, there is no single time point at which the cells

can represent all lineages that have appeared in the long devel-

opmental period. Although the ML-derived developmental pro-

cess from this zebrafish dataset makes basic sense as a coarse
outline, it reveals the limitation of the proposedmethod when the

assumptions underlying the method cannot be met.

DISCUSSION

ML has been shown to be powerful in solving many pattern

recognition tasks more efficiently than humans and has been af-

forded great expectations in mining complicated biological data

for possible new discoveries. Integrating data with existing

knowledge is a convenient strategy for mining the data but

may increase the possibility of biased discoveries if existing

knowledge is imperfect. It is valuable to have a systematic eval-

uation of the power and limitation of what can be discovered

from the data along with ML methods, without or with controlled

involvement of existing knowledge. In this work, we designed an

experiment to address this issue by conducting an ab initio

knowledge discovery experiment on a set of single-cell gene

expression data of early human embryonic development. We

developed amethod of integrating unsupervised and supervised

learning for discovering the possible lineages of embryonic cell

differentiation and invented a method to evaluate the reliability

of the discovery by checking its self-consistency. The basic

ML methods we used were k-means and SVM, but they could

also be replaced by other methods (Supplemental Information;

Figures S9 and S10). The purpose of these experiments was to

investigate to what extent reliable biological knowledge can be

derived ab initio from the data with minimum involvement of ex-

isting knowledge. Experimental results showed that with a prop-

erly designed methodology, ML can reveal the basic biological

knowledge from single-cell gene expression data in an auto-

matic manner. However, the discovered patterns need to be

annotated with the help of existing knowledge and manual

inference. This ab initio mining of single-cell data also revealed

a subtle but important new discovery that updates existing

knowledge.

We further explored whether the proposed method can be

made as a general strategy for ab initio discovery of develop-

mental lineages from time-series data along a developmental

course. The basic principle is to combine unsupervised and su-

pervised ML approaches to explore the gene expression hetero-

geneity of cells within and between time points to infer lineages,

and to assess the reliability of the inference based on its self-

consistency in the data. The major limitation of the method lies

in its basic assumptions: (1) gene expression patterns caused

by differentiation of lineages is the major source of heterogeneity

in the cells of each sampled time point; and (2) there is a single

sampling point at which the cell population can represent all

types appearing in the development period. The experiments

on the human and mouse developmental data showed that the

proposed method works well when the assumptions are gener-

ally true. Obviously they are not always true for all experiments,

as we have seen with the zebrafish data, which cover a much

longer and later period in the development. When multiple sour-

ces of heterogeneity exist and no single sampling point can cap-

ture cells of all lineages, we will need more sophisticated

methods, and more prior knowledge will probably have to be

involved in designing the methods.

Trajectory inference (TI) is a category of methods for inferring

developmental trajectories for a set of cells believed to be of
Patterns 1, 100071, August 14, 2020 9
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different developmental time.32 They are usually used for

ordering cells according to their inferred developmental time

(pseudo-time), visualizing tree structures of developmental line-

ages and helping to find markers or patterns for certain critical

events or processes along the trajectories. Different degrees of

prior knowledge and manual adjustments are needed for such

tasks. Although some TI methods are regarded as not requiring

prior knowledge such as starting points, they often rely on

manual choices such as selecting knownmaker genes, choosing

trajectory models (e.g., linear, branching, graph structure), and

fine-tuning parameters such as neighbor numbers to make a

learned structure better fit human knowledge. We experimented

with some TI methods on human early embryonic development

data. They could not give the expected lineage tree if the pack-

ages were run with default or inappropriate settings, but could

produce the expected tree at cell resolution after reasonable set-

tings or adjustments guided by the expectation of the result.

Currently most TI applications are not designed for the task of

ab initio discovery of developmental processes as we aimed at

in this study. Our experiments suggested a promising future so-

lution for finding the outline structure of lineages with the pro-

posed ab initioMLmethod and then using the structure to guide

the inference of detailed trajectories using TI methods.

There are many different scenarios that need the mining of un-

derlying patterns from massive complex data in biology and

other fields. Successful applications of ML in many fields may

give the illusion that ML has already been proved powerful for

knowledge discovery, but in fact most of the successes are the

joint products of ML and human knowledge. Involvement of

knowledge can come in many forms such as known markers,

models, or labeled training data.33 Efforts for using only ML

methods to discover knowledge from data are still rare not

only in biology but also in many other fields. In a recent work in

physics, scientists explored a neural network method for the

ab initio discovery of the basic physical understanding that Earth

orbits the Sun based on observations on movements of the Sun

and Mars appearing from Earth,34 otherwise known as ‘‘AI Co-

pernicus.’’35 Our experiment shows an example of the ab initio

discovery of knowledge on early embryonic development from

data with the integration of basicMLmethods. Themethod is still

in its infancy if expected to work on more complicated biological

processes, but its success sheds light on the future possibilities

of developing more advanced ML methods for ab initio scientific

discovery from data in fields that lack existing knowledge and

challenge manual interpretation. Such advancement will not

only empower the discovery of new knowledge in biology and

other fields of science but will also move machine intelligence

to the higher level of automatic knowledge learning and

discovery.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Xuegong Zhang (zhangxg@tsinghua.edu.cn).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The original scRNA-seq data of human embryonic cells and corresponding

ERCC spike-in reference data can be found at https://www.ebi.ac.uk/
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arrayexpress/experiments/E-MTAB-3929/. The original scRNA-seq data

of mouse embryonic cells and corresponding ERCC spike-in reference

data can be found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE109071 (GEO: GSE109071). The original scRNA-seq data of zebra-

fish embryonic cells can be found at https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE112294 (GEO: GSE112294).

All third-party software packages used in this study are listed in Table S1.

The pseudo-code of proposed self-consistency checking method is provided

in Supplemental Information.

Data

The main dataset we worked on was the human early embryo development

data published by Petropoulos et al., accession number ArrayExpress:

E-MTAB-3929.14 It includes single-cell gene expression data of 26,178 genes

in 1,529 cells from 88 human embryos obtained with the Smart-seq2 technol-

ogy.36 Cells were captured during E3 to E7. Numbers of cells on each day are:

E3, 81; E4, 190; E5, 377; E6, 415; and E7, 466. The average number of ex-

pressed genes in each cell is 8,500. We adopted a generic strategy to select

the top 490 highly variable genes across all cells as the data for our experiment

(Figure S1). All gene expression valuesweremeasured as log RPKM (reads per

kilobase of transcript per million mapped reads). A detailed data pre-process-

ing description is given in Supplemental Information. None of the pre-process-

ing steps is specific to any known biological knowledge or to the question to be

studied.

We also used amouse dataset and a zebrafish dataset for extra experiments

to validate the power and limitation of the proposed method. The mouse

embryonic development dataset (Cheng et al., accession number GEO:

GSE109071) contains 1,724 cells captured at E5.25, E5.5, E6.25, and

E6.5.20 The data were also obtained with Smart-seq2. We used the same

pre-processing steps on this dataset as we did on the human dataset.

The zebrafish dataset was published by Wanger et al., accession number

GEO: GSE112294.21 It contains 36,749 zebrafish embryonic cells collected

at seven time points during the development, i.e., 4, 6, 8, 10, 14, 18, and 24

hpf. The data were obtained with inDrops technology.37 We normalized library

sizes of cells from all time points and selected the top 500 variable genes using

Seurat v3.110 with default parameters. All gene expression values were

measured as log UMI (uniquemolecular identifier) counts. None of the pre-pro-

cessing steps is specific to any known biological knowledge or to the question

to be studied.

Building Candidate Development Processes with Unsupervised and

Supervised Learning

Figure 1 illustrates the overall scheme of the proposedmethod for ab initio dis-

covery of developmental processes based on a number of samples collected

at several time points in a developmental interval. It first builds multiple candi-

date developmental processes with each day as a possible reference, then

evaluates the plausibility of each candidate to make the final story. Unsuper-

vised learning is adopted to find clusters in the reference day as seeds for

the developmental process. We used the classic k-means clustering22 method

for this step. Other clustering methods can also be applied. For the purpose of

this study, we chose basic general-purpose methods for the experiments

rather than sophisticated methods specifically elaborated for the task.

Deciding the number of clusters for each reference day is a key issue. We first

adopted Silhouette score23 in combination with the scree plot of sum of errors

to help determine the most proper cluster number in each day, then extended

this to an exhaustive searching strategy to enumerate through a range of clus-

ter numbers.

Using clusters obtained on the reference day as seeds for candidate line-

ages, we trained a supervised MLmethod on the seed data to predict lineages

of cells of other days. We used the SVM24 with Gaussian kernel for this task.

When there were more than two clusters in the reference day, we adopted

the one-versus-all strategy to build a multi-class classifier with SVM. Other

classification methods may also be used. Details of the ML packages used

are provided in Supplemental Information.

Evaluating Self-Consistency of Candidate Development Processes

When there is no biological knowledge to judge which of the multiple versions

of developmental processes ismore plausible, the only information we can use

mailto:zhangxg@tsinghua.edu.cn
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3929/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3929/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109071
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109071
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294
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is information of the unsupervised and supervised learning.We reasoned that if

the differentiation of lineages is the major factor of cell heterogeneity and if an

ML-derived developmental process reflects the biological truth, the classifica-

tion results for each day should tend to be consistent with the clustering re-

sults. We designed the following method to check this self-consistency. The

pseudo-code is provided in Supplemental Information.

We used the adjusted random index (ARI) to measure the level of agreement

between two partitions on the same dataset.38 For example, when using day-r

clusters as the reference to predict classes on day i, we define the ‘‘concor-

dance of day i based on day r,’’ or concord score, as the agreement of the

day r-based classification of day-i cells with the clustering results of day-i cells

themselves. For the convenience of discussion, we denote the clustering re-

sults of cells in each day as Si, i = 3,.,7 in the case of the human early embry-

onic development data, and denote the classification of day i cells using day r

clusters as reference as Ci|r, i,r = 3,.,7, is r. The concord score on day i given

day r can then be written as:

concord (i|r) = ARI(Si,Ci|r).

The score is 1.0 when clustering scheme Si and classification result Ci|r are

identical for all cells of day i. The score is around 0 when classification result is

similar to random assignment of the day-i clusters and is <0 when the agree-

ment between two partitions is even less than random chance.

To measure the reliability of the clustering results of day i, we define the reli-

ability score (reliab) of day i as the average of concord scores of all other days

using day i as reference:

reliabðiÞ = average j = 3;/;7
js1

concordðjjiÞ:

This measures the compatibility of the clustering results of day i with all

other days.

A poor concordance of day i based on day rmay be due to the fact that clus-

tering result of day r is not suitable as a reference for day i, andmay also be due

to a bad clustering result of day i itself. To take both factors into consideration,

we further defined an adjusted reliability score (ARS) by weighting the concord

score with the reliab score of each target day, i.e.,

ARSðrÞ =
X

i =3;/;7

isr

ðreliabðiÞ , concordðijrÞÞ:

We use this ARS to measure the relative level of reliability for choosing the

clustering result of a particular day as the reference for building the lineages

of all other days. The higher the ARS, the more likely the day is a proper

reference.

This reliability evaluation of the reference day has taken into account the

classification prediction on all days. We use it as the measure of self-consis-

tency or plausibility of a candidate developmental process built upon the refer-

ence day. The one with the highest ARS is selected as the ML-derived devel-

opmental process we discovered ab initio from the data.

Besides the above quantitative evaluation, we also visualized the clustering

and classification results on the first two principal components or tSNE plots of

cells in each day, and manually inspected each candidate ML-derived devel-

opmental process to double-check the plausibility of the one selected with

high ARS. A storyline can then be made on the candidate developmental pro-

cess. If there is prior knowledge available, we compare this ab initio discovery

with the storyline of the known knowledge to evaluate the power and limitation

of the ML method for knowledge discovery.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100071.
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Supplemental Figures 

 

 

Figure S1. Selection of highly variable genes in human and mouse datasets. 

(A) and (B) are illustrations for human and mouse embryonic datasets, respectively. The 
horizontal axis is the average of normalized read count (𝑚). The vertical axis is the squared 

coefficient of variation (𝑐𝑣2). Each brown point represents one gene observed in the sequencing 

experiments. Blue points are the reference data. We chose the reference data with 𝑐𝑣2 larger 
than 3 and fitted negative binomial model, shown in red curve. We selected genes above the red 
curve as the highly variable genes. 

 

 

Figure S2. PCA plots of the top story using manually tuned Seurat parameters on the 
human embryonic data. 

The k-means clustering method is replaced by Seurat while the classification method is still SVM. 
We manually tuned Seurat parameters for clustering to get the maximum ARI with k-means 
results for each day. Then we calculated the ARS using each clustering result as reference and 
found day-5 is the best reference day. The resulting developmental story is presented here. The 
results are similar to those from k-means clustering and SVM classification. “*” indicates that this 
time point is used as reference. 

 



 

 

 

Figure S3. PCA plots of the top story using Seurat with exhaustive searching for 
parameters on the human embryonic data. 

The clustering method is replaced by Seurat while the classification method is still SVM. The 
clustering on reference day-5 was achieved with dims=1:5, k.param=10 and resolution=0.28. “*” 
indicates that this time point is used as reference. 

 

 

 

Figure S4. PCA plots of the second top story using Seurat with exhaustive searching for 
parameters on the human embryonic data. 

The clustering method is replaced by Seurat while the classification method is still SVM. The 
clustering on reference day-5 was achieved with dims=1:5, k.param=10 and resolution=0.14. The 
results are similar to those from k-means clustering and SVM classification. “*” indicates that this 
time point is used as reference. 

 



 

 

Figure S5. Expression heatmap of E5 cells in the story using day-5 with 4 clusters as 
reference on the human embryonic data. 

We identified differentially expressed (DE) genes for each cluster using Seurat and visualized the 
expression patterns of E5 cells with heatmap. Each row represents one gene and each column 
represents one cell. The bar above shows the cluster labels of cells. Top 30 DE genes for each 
cluster are drawn in thie heatmap.  

 

 

Figure S6. Scree plots of sum-of-errors of k-means clustering on each time point of the 
mouse embryonic data. 

The horizontal axis is the cluster number k. The vertical axis is the sum of errors of samples to 
cluster centers. Weak elbow points can be identified for all the time points. 

 

 

 

 

 

 



 

 

Figure S7. PCA plots of the h10_c5 story of zebrafish dataset.  

We used hour-10 cells of 5 clusters as reference for other hours. * means this time point is used 
as reference. 

 

 

Figure S8. tSNE plots of the h10_c5 story of zebrafish dataset.  

We used hour-10 cells of 5 clusters as reference for other hours. * means this time point is used 
as reference. 

 



 

Figure S9. PCA plots for the story #5 using GMM clustering and SVM classification on the 
human embryonic data. 

The clustering method is replaced by Gaussian mixture model (GMM) while the classification 
method is still SVM. The results are similar to those from k-means clustering and SVM 
classification. “*” indicates that this time point is used as reference. 

 

 

Figure S10. PCA plots for the story #5 using k-means clustering and logistic regression 
classification on the human embryonic data. 

The clustering method is still k-means while the classification method is replaced by logistic 
regression. The results are similar to those from k-means clustering and SVM classification. “*” 
indicates this time point is used as reference. 

  



Supplemental Tables 

 

Table S1. Software Used in This Study 

Algorithm or 
Calculation 

Package Version Parameters 

Feature Selection statmod5 (R) 1.4.32 default 

Feature Selection Seurat4 (R) 3.1 
nfeatures=500, other parameters as 

default. 

Silhouette Score 
scikit-learn6 

(Python) 
0.21.2 

metric='euclidean', other parameters as 
default. 

K-means 
scikit-learn 
(Python) 

0.21.2 
random_state=0, other parameters as 

default. 

Seurat Clustering Seurat (R) 3.1 
dims, k.param and resolution 

parameters are searched for the highest 
ARS. Other parameters as default. 

SVM 
scikit-learn 
(Python) 

0.21.2 
kernel = 'rbf', gamma=0.0001, other 

parameters as default. 

PCA 
scikit-learn 
(Python) 

0.21.2 
n_components=2, other parameters as 

default. 

t-SNE 
scikit-learn 
(Python) 

0.21.2 
random_state=100, other parameters as 

default. 

Plot Drawing Package Version Parameters 

Feature Selection ggplot27 (R) 3.2.0 - 

Other Plots 
Matplotlib8 

(Python) 
0.21.2 - 

 

  



Table S2. Silhouette scores of different cluster numbers in each time point of the mouse 
embryonic data 

k Day-5.25 Day-5.5 Day-6.25 Day-6.5 

2 0.3950 0.3187 0.4005 0.4160 

3 0.4159 0.3548 0.4343 0.4075 

4 0.4062 0.3160 0.4175 0.3623 

5 0.3453 0.2760 0.3239 0.3759 

6 0.2986 0.2694 0.2880 0.3282 

* Note: we marked the highest Silhouette score in each time point in bold. 

 

Table S3. Concordance and reliability scores of each time point and candidate 
developmental process in the mouse embryonic data 

Reference day (r) 

𝑐𝑜𝑛𝑐𝑜𝑟𝑑(𝑖|𝑟)  

𝑟𝑒𝑙𝑖𝑎𝑏(𝑟) 

 

𝐴𝑅𝑆(𝑟) 
𝑖 = 5.25 𝑖 = 5.5 𝑖 = 6.25 𝑖 = 6.5 

Day-5.25 - 0.97 1 0.65 0.88 2.00 

Day-5.5 0.91 - 0.95 0.70 0.85 1.94 

Day-6.25 0.95 0.83 - 0.71 0.83 1.91 

Day-6.5 0.61 0.42 0.52 - 0.52 1.32 

* Note: day-5.25 is selected as the reference day as it achieves the highest ARS value. 

 

Table S4. Numbers of cells in the clusters of reference time point and in the classes of the 
other time points in the mouse embryonic data 

Reference Day 

(# of clusters) 

Number of cells in clusters/classes 

Day-5.25 Day-5.5 Day-6.25 Day-6.5 

Day-5.25 (3) (137, 126,68) (108,114,47) (87,142,92) (304,411,88) 

Day-5.5 (3) (139,133,59) (109,116,44) (93,143,85) (335,388,80) 

Day-6.25 (3) (131,127,73) (96,120,53) (87,142,92) (304,395,104) 

Day-6.5 (2) (132,199) (87,182) (90, 231) (312, 491) 

 

  



Table S5. Adjusted reliability scores (ARSs) of each enumerated candidate developmental 
process in the mouse embryonic data 

Reference day 
& cluster 
number* 

ARS 
Reference day 

& cluster 
number* 

ARS 
Reference day & 
cluster number* 

ARS 

day5.25_clu2 1.9341 day5.5_clu5 1.5691 day6.25_clu8 1.5980 

day5.25_clu3 2.2598 day5.5_clu6 -0.0307 day6.25_clu9 1.5980 

day5.25_clu4 2.1879 day5.5_clu7 2.1482 day6.25_clu10 1.5560 

day5.25_clu5 2.0604 day5.5_clu8 0.0 day6.5_clu2 1.9338 

day5.25_clu6 2.0780 day5.5_clu9 1.1219 day6.5_clu3 2.2320 

day5.25_clu7 1.5770 day5.5_clu10 1.7041 day6.5_clu4 2.0019 

day5.25_clu8 1.5435 day6.25_clu2 1.9809 day6.5_clu5 1.4101 

day5.25_clu9 1.8974 day6.25_clu3 2.2160 day6.5_clu6 1.4213 

day5.25_clu10 1.8974 day6.25_clu4 2.1591 day6.5_clu7 1.3713 

day5.5_clu2 1.9951 day6.25_clu5 1.8837 day6.5_clu8 1.4347 

day5.5_clu3 2.0020 day6.25_clu6 1.6789 day6.5_clu9 1.5941 

day5.5_clu4 1.8394 day6.25_clu7 2.0547 day6.5_clu10 1.3081 

* Note: day5.25_clu2 means using Day-5.25 cells of 2 clusters as the reference for other days for building 
the candidate developmental process. The ARS measures the plausibility of each candidate story. The 
reference of day-5.25 with 3 clusters achieves the highest ARS value. 

  



Table S6. Manual annotation on the ML-derived developmental process of zebrafish 
dataset 

Cluster Hour-4 Hour-6 Hour-8 Hour-10 Hour-14 Hour-18 Hour-24 

A - - Mesoderm Mesoderm Mesoderm  Mesoderm Mesoderm 

B - 
Mesoderm 

(Endoderm) 

Mesoderm 

(Other) 
Mesoderm Mesoderm Mesoderm Mesoderm 

C Unknown 

Epiblast, 
Mesoderm 

(Endoderm) 

Mesoderm, 

Neural 
(Other) 

Neural Neural Neural Neural 

D Epiblast 
Epiblast, 

Mesoderm, 
Endoderm 

Mesoderm, 

Other 

(Neural) 

Mesoderm Mesoderm Mesoderm Mesoderm 

E - Epidermal Epidermal Epidermal Epidermal Epidermal 
Epidermal 

(Mesoderm, 
Endoderm) 

Note: “-“ means this cluster does not exist at certain time point (or has very few cells). “Unknown” means we 
cannot not map this cluster to any lineage (differentially expressed genes do not exist in the reference gene 
list). Lineages are colored similarly as reported in the Wagner’s paper9. 

 

Table S7. ARIs between k-means clusters with different initial centroids on day-5 of the 
human data 

Experiment ID 0 1 2 3 4 5 

0 1 1 1 1 0.98 1 

1  1 1 1 0.98 1 

2   1 1 0.98 1 

3    1 0.98 1 

4     1 0.98 

5      1 

Note: Experiment 0 is the one reported in the main text. 

 

  



Table S8. ARSs for each day with different initial centroids in k-means clustering on the 
human data 

Experiment ID Day-3 Day-4 Day-5 Day-6 Day-7 

0 0.0 0.0034 0.4035 0.2633 0.1873 

1 0.0 0.0034 0.4022 0.2675 0.1904 

2 0.0 0.0034 0.4022 0.2675 0.1904 

3 0.0 0.0034 0.4022 0.2675 0.1904 

4 0.0 0.0033 0.4004 0.2638 0.1881 

5 0.0 0.0034 0.4022 0.2675 0.1904 

 

Table S9. Number of cells in each cluster with different initial centroids in k-means 
clustering on the human data 

Experiment ID Cluster 1 Cluster 2 Cluster 3 

0 152 121 104 

1 152 121 104 

2 152 121 104 

3 152 121 104 

4 151 121 105 

5 152 121 104 



Supplemental Experimental Procedures 

 

Data Pre-processing Descriptions 

As scRNA-seq data are sparse, noisy, and of very high dimensionality, original cell representation 
using all genes cannot highlight biological differences among cells. In this study, we selected 
highly variable genes that present significant differences in expression levels among cells, so that 
expressional patterns get enhanced. 

For the human and mouse embryonic development datasets, we followed the procedures and the 
model in original paper1,2 to select highly variable genes. Assuming the expression of a gene 

follows negative binomial distribution, the relationship between square of variance (𝑐𝑣2) and 
mean (𝑚) is: 

𝑐𝑣2 =
1

𝑚
+
1

𝑟
 

where r is the over-dispersion parameter following a negative binomial distribution. We filtered out 

reference data1,3 with 𝑐𝑣2  less than 3 and fitted the 𝑐𝑣2~𝑚 model to the remaining reference 
data. Then we used the reference model as the threshold to select genes with larger variances 
(Figure S1). We obtained 490 and 954 highly variable genes for human and mouse datasets, 
respectively, which were used as features to study the cells. 

For the zebrafish embryonic development dataset, we selected highly variable genes with the 
widely-used pipeline Seurat v3.1.4 We used the “FindVariableFeatures” function with “vst” 
selection method, which identifies genes with the highest standardized variance. We merged cells 
from all time points together and identify top 500 variable genes for the dataset. 

 

Experimental procedure of exhaustive searching with Seurat clustering 

Following the procedure of exhaustive searching on the reference day and cluster numbers using 
k-means, we conducted a new experiment and employed Seurat as the clustering method. There 
are 3 major parameters in Seurat that affect clustering results: “dims”, “k.param” and “resolution”. 
We used the exhaustive search strategy to look for the combination of parameters that results in 
the highest ARS after clustering and prediction. The search range is [5, 10], [10, 150], [0.1, 1.2] 
and the interval is 5, 10, 0.01 for “dims”, “k.param” and “resolution” parameters, respectively. It is 
similar to the exhaustive search we used for k-means, but here the Seurat clustering results with 
each parameter setting in each day are used as individual reference. So it is possible there are 
multiple candidate references for each day with the same cluster number. For each setting, the 
predicted classes on the target days were compared with clustering results of those days. We 
chose the clustering result that has the highest concord score with predicted clusters, and 
calculated the corresponding reliab score. In this way, we enumerated the best possible 
candidate developmental processes using each parameter combination as a reference. Results 
showed that the developmental process derived using the 4 clusters of day-5 as reference gives 
the highest ARS (0.43) among all enumerations. The reference of day-5 with 3 clusters gives the 
second highest ARS (0.32). We visualized these two stories in PCA plots (Figure S3 and S4). 

 

Consistency of k-means clustering in the experiments 

In this study, we employed k-means clustering to group cells of reference day into clusters. The 
initial centroids of k-means algorithm are set randomly, which may cause instability of results. To 
check the consistency of using k-means in our experiments, we repeated k-means clustering 
experiments with other 5 initial centroids (by setting different “random_state” parameter in sklearn 
package) on human embryonic data. We calculated ARI between clustering results on day-5 
(Table S7). Following the same procedure as previous work, we calculated the ARS for each day 



(Table S8) and the number of cells in each cluster (Table S9) for each replicated experiment. The 
highest ARS scores in all experiments pointed to the same conclusion, and their ARS scores are 
also close. Results show that we achieved nearly the same results in the 5 new runs of the 
experiment as our previous one, which indicates k-means is a consistent clustering method in our 
experiments. 

 

Experiments with other clustering and classification methods 

Besides k-means clustering and SVM classification methods as the basic unsupervised and 
supervised ML methods in the ab initio knowledge discovery strategy, we also used Seurat 
clustering, Gaussian mixture model (GMM) and logistic regression as the alternative clustering 
and classification methods, respectively. The experiments with Seurat clustering on human 
embryonic data is described in the main text and results are given in Figures S2 to S5. Using 
GMM to replace k-means and logistic regression to replace SVM produced the same results as 
we got with k-means and SVM. We drew the PCA plots of story #5 on human embryonic data 
(Figure S9 and S10). 

 

  



Pseudo-Code of Experiments 

 

Pseudo-Code for Self-Consistency Evaluation Method 

The self-consistency evaluation method calculates the adjusted reliability scores (ARS), which 
contains 3 algorithms. While running algorithm 3, we need to run algorithm 1 and 2 to obtain 
cluster labels, concord and reliab scores. 

 

 

  



Pseudo-Code for the Exhaustive Searching Method 

The exhaustive search method calculates the adjusted reliability scores (ARS) for multiple 
clustering results on each time point, which contains 2 algorithms. While running algorithm 2, we 
need to run algorithm 1 to obtain concord and reliab scores. 
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