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Supplementary Information 

1. Supplemental Figures: 

Figure S1. Training with only normalization and augmentation and comparison of model 
performance with normalization and augmentation than original.  

 
(A) and (B) show the dynamics of training and testing loss during 100 epochs of training process for models 
applying only normalization and data augmentation. Models achieved the lowest test loss were obtained to 
avoid underfitting and overfitting to the training set. Lowest test loss achieved were denoted and marked 
by red crosses. (C) and (D) show the pairwise comparison of AUROCs between models using raw signal 
(neither normalization and augmentation) and with only normalization/only augmentation during 
bootstrapping. (E) shows the bootstrapped AUROCs between applying only augmentation and applying 
both augmentation and normalization. (A). Training and test loss within 100 epochs during training of 
models with only normalization. (B). Training and test loss within 100 epochs during training of models with 
only augmentation. (C). Pairwise comparison between models using raw (original) and normalized walking 
records (+normalization). (D). Pairwise comparison between models using raw (original) and augmented 
walking records (+augmentation). (E). Pairwise comparison between models using augmented walking 
records (+augmentation) and using both normalized and augmented records (+both). 



 

 

Figure S2. Comparison of training with 6 channels (with both gyroscope and accelerometer) and 
either gyroscope/accelerometer alone. 

 

(A). Comparisons of AUROCs using both gyroscope and accelerometer signals as input (6-channel) and 
using either signal alone. (B). Paired AUROC value comparison between using 6-channel and gyroscope 
signal as input (mean[SD], 0.8499[0.0017] vs. 0.8558[0.0015]). (C). Paired AUROC value comparison 
between using 6-channel and accelerometer signals as input(mean[SD], 0.8499[0.0017] vs. 
0.8552[0.0015]). No significant improvement was observed when using 6-channel input. (D). Demonstration 
of model with 6 input channels of accelerometer and gyroscope signals. (E). Demonstration of model with 
both accelerometer and gyroscope as input and concatenate at the last later. This model performs equally 
to using 6-channel input. 

 

 

 

  



 

 

Figure S3. Comparison of performance of different vgg-like models.  

 

(A). Comparison of AUROCs of our final model and two vgg models we tested in this study. (B). Paired 
AUROC value comparison between our final model and vgg 16 model.  No substantial difference was 
observed between two models (mean[SD], 0.8567[0.0016] vs. 0.8558[0.0015], p-value =0.81001), while 
our final model requires less training time as it contains fewer layers. (C). Paired AUROCs value comparison 
between our final model and vgg-like model. Our final model consistently performed better than the vgg-
like model (mean[SD], 0.8558[0.0015] vs. 0.8268[0.0017], p-value <1e-6). (D). Demonstration of VGG 
model (with three dense layers). (E). Demonstration of VGG-like model (with two dense layers)  

 
  



 

 

Figure S4. Comparison of performance of maximum and average pooling.  

 
(A). Comparisons of AUROCs using max pooling layers (our final model) and average pooling layers in 
CNN model. (B). Paired AUROC value comparison between using max pooling and average pooling layers. 
Max pooling consistently performed better than average pooling (mean[SD], 0.8558[0.0015] vs. 
0.8244[0.0016], p-value <1e-6). (C). Demonstration of model that replaces max pooling with mean pooling 
layers. 

 

 

 

 



 

 

Figure S5. Comparison of performance of adding/no dropout.   

 

(A). Comparisons of AUROCs adding dropout layers and no dropout layers. (B). Paired AUROC value 
comparison between using no dropout and after adding dropout layers. Adding dropout doesn’t show 
significant improvement in model performance (mean[SD], 0.8558[0.0015] vs. 0.7120[0.0019], p-value <1e-
6). (C). Demonstration of model that adds dropout layers (rate = 0.8). 

  



 

 

Figure S6. Comparison of performance of models using quiet standing records alone and all 
records.  

 

(A). Comparisons of AUROCs of models using only quiet standing (Rest) records and using all records 
(outbound walking, quiet standing and return walking) in 5-fold cross validation. (B). Paired AUROC value 
comparison between using quiet standing (Rest) records and using all records (outbound walking, quiet 
standing and return walking). No substantial difference was between using only quiet standing records and 
all records (mean[SD], 0.8558[0.0015] vs. 0.8548[0.0016], p-value = 0.24021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S7. Ten examples of original records and saliency maps of PD patients during the 
Outbound session. 

 



 

 

Figure S8. Ten examples of original records and saliency maps of healthy individuals during the 
Outbound session.  

 



 

 

Figure S9. Ten examples of original records and saliency maps of PD patients during the Rest 
session. 

 



 

 

Figure S10. Ten examples of original records and saliency maps of healthy individuals during the 
Rest session. 

 



 

 

Figure S11. Ten examples of original records and saliency maps of PD patients during the Return 
session. 

 



 

 

Figure S12. Ten examples of original records and saliency maps of healthy individuals during the 
Return session. 

  



 

 

2. Supplemental Experimental Procedures 

2.1 Cross-validation by Separating Individuals 
Since walking and quiet standing records of the same person often show similar patterns, randomly 

dividing the data at the record level into training and testing sets may lead to overfitting and over-estimation 
of model performance. Thus, in the 5-fold cross-validation, we divided the training and testing set by 
individuals. Because the training and testing are done at the record level, we further mapped each record 
to the individual. The evaluation of the performance was the Area Under the Receiver Operating curve 
(AUROC) for classifying PD patients. 

2.2 Nested Training for Calling Back Optimal Parameters 

To simplify the training process, we zero-padded all matrices to 3✕4000. For each cross-validation, the 

training samples from walking and quiet standing were randomly divided into the training set (50%) and 
validation set (50%), respectively. The best model generated through the epochs was called back by the 
validation set. This process was repeated by reseeding the training and validation set for five times 
separately for walking and quiet standing, generating five models for each. The training records were then 
resampled to balance the positives (with PD) and negatives (without PD) by bootstrap resampling. We 
trained the models for 50 epochs, equivalent to reading through approximately 750,000 samples during 
training, using Adam optimization and an initial learning rate of 0.0005. Relu activation was used in all 
intermediate convolution layers, and sigmoid is used for the last layer.  

2.3 Quantile normalization of walking records 

Before being fed into the feedforward neural network, the walking records were normalized by axis-
wise quantile. For the original padded record with axis x, y and z, the original record R is: 

 

The normalized record R’ will be generated by quantile, which is adjusted to the average and then 
divided by the standard deviation: 

 

2.4 Loss-included Data Augmentation by time-series and magnitude rescaling 

To simulate the perturbation on speed or range of movement by different individuals in a real-world 
situation, we randomly rescaled the original record by 0.8-1.2 by time series fold using Python OpenCV 1, 
and then padded/cropped to the original size. The time series rescaling might lose part of the information 
due to cropping. 



 

 

2.5 Loss-free Data Augmentation by Random Rotation 

To simulate the records in different reference frames, we rotated the original signal reference frames 
by random angles based on Euler’s theorem. Each time, we seeded three random numbers i, j, and k 
between 0 to 1, and then defining a normalized axis = (i’,j’,k’) by: 

 

 

 

Next, we seeded a randomized angle θ between 0 to 2π: 

 

Then, we generated the rotation matrix: 

 

The above rotation matrix represented the difference between a new reference frame and the reference 
frame of the phone, which allowed us to sample the reference frames at all possible orientations. By 

multiplying the rotation matrix to the original record R of 3✕4000, we could produce a new record of the 

same size but under a different reference frame: 

 

2.6 Calculation of AUROC and Significance Tests for Comparing Models 

The Area Under the Receiver Operating Characteristic curve (AUROC) is a measurement of the 
accuracy of binary classifiers 2. It is calculated by plotting the true positive rate (TPR) against the false 
positive rate (FPR) at various thresholds and calculating the accumulated area under the curve. We used 
sklearn.metrics module in Python to calculate the AUROCs of the five-fold cross validation and the 
bootstrapping significance tests. 

The five-fold cross-validation also allowed us to carry out bootstrapping to estimate the p-values of 
differences between models. The bootstrapping was carried out by resampling the predictions on the 
subjects from the summation of the five test sets in the five-fold validation process, which was also the 
complete dataset used in this study. We carried out 1,000,000 bootstrapping for pairwise significance tests 
in this study to choose the optimal models. The p-value and 95% confidence interval were calculated based 
on the empirical probability during the 1,000,000 bootstrapping operations. 

2.7 Visualization of Saliency Maps 

To better interpret the deep learning neural network’s understanding of PD movement pathology, we 
pulled out the saliency maps to show the attention of the neural network. The saliency was computed from 
the gradient of the sum of the outermost layer corresponding to the input. The gradients were computed by 



 

 

the threano.grad function 3. Then we visualized the saliency map as well as the original input using ggplot2 
in R (Figure 4). More examples of the saliency maps we extracted from PD patients and healthy controls 
were shown in Figure S7-12. 
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