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THE BIGGER PICTURE Deep learning has shown tremendous success in image and natural language pro-
cessing; however, attempts to apply the tools of machine learning to better understanding biological sys-
tems are still in the stage of early adoption. We propose a novel deep-learning tool that can be used to pro-
cess samples of RNA-sequencing data. By applying the Transcriptome State Perturbation Generator to
human samples, we show that deep learning derives insight into the gene expression shifts required for
transition between two biological conditions (e.g., normal versus tumor). RNA-sequencing data derived
from a single patient’s tumor were analyzed using this tool to determine gene expression aberrations spe-
cific to that patient’s tumor. As medicine shifts from cohort-based population studies to individual-based
precision treatments, our example demonstrates that deep learning is a powerful ally in the quest to under-
stand how complex biological systems have shifted for a single patient.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
We introduce the Transcriptome State Perturbation Generator (TSPG) as a novel deep-learning method to
identify changes in genomic expression that occur between tissue states using generative adversarial net-
works. TSPG learns the transcriptome perturbations from RNA-sequencing data required to shift from a
source to a target class. We apply TSPG as an effective method of detecting biologically relevant alternate
expression patterns between normal and tumor human tissue samples. We demonstrate that the application
of TSPG to expression data obtained from a biopsy sample of a patient’s kidney cancer can identify patient-
specific differentially expressed genes between their individual tumor sample and a target class of healthy
kidney gene expression. By utilizing TSPG in a precision medicine application in which the patient sample
is not replicated (i.e., n = 1), we present a novel technique of determining significant transcriptional aberra-
tions that can be used to help identify potential targeted therapies.
INTRODUCTION

Nearly 4 years prior to the completion of the Human Genome

Project,1 Francis Collins published an article that defined the po-

tential for a new field of precision medicine, titled ‘‘Medical and

societal consequences of the Human Genome Project.’’ Dr.

Collins made the preemptive observation that ‘‘The transition
This is an open access article und
from genetics to genomics marks the evolution from an under-

standing of single genes and their individual functions to an un-

derstanding of the actions of multiple genes and their control of

biologic systems.’’2 Although significant attempts have been

made to achieve this transition, the vast majority of cancer

research is often centered on the traditional reductionist

approach of looking for focused genetic mutations (e.g., tumor
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suppressors or oncogenes) that are highly correlated with the

heredity or progression of certain cancers.3 Identification of

these cancer-specific genetic aberrations has resulted in a revo-

lution in our understanding of cancer, although these revelations

only tell a part of the story. Every tumor presents complex

genomic changes that affect multiple genes through mutation

as well as alterations in their expression patterns, resulting in

unique genomic profiles of each individual patient’s cancer. It

is insufficient, therefore, to look for single genetic alterations

that can be linked to a cancer’s progression. Rather, cancers

are the result of complex and chaotic changes in the genomic

and epigenetic homeostasis of cells that resemble Rube-Gold-

berg devices with many intricately interconnected compo-

nents.3–5

Seeking to provide context to these genomic interactions,

there have been several initiatives in recent years to characterize

the genomes of different types of human cancers. The National

Institutes of Health pioneered the creation of The Cancer

Genome Atlas (TCGA) in 2005 in an effort to provide the molec-

ular and physical map of cancer aberrations to improve our abil-

ity to diagnose, treat, and prevent cancer.4,6 TCGA and other

data repositories including the Cancer Cell Line Encyclopedia

and the International Cancer Genome Consortium (ICGC) have

collected multidimensional data on thousands of samples of

different cancers.7,8 By grouping cancers by their relevant

genomic mutations, these resources have been used to identify

new mutations present in different tumors and are beginning to

characterize the different cellular pathways in which they

appear.9 Furthermore, the quantity of data that is now available

allows researchers to look at statistical averages within the

different groups of tumors, identifying significant aberrations

that are characteristic of a tumor subtype across many samples.

The flood of information that has resulted from these studies has

led to insights that are currently driving advances in therapeutic

strategies and diagnostic tools; however, the practical applica-

tion of this enormous volume of genomic information remains

largely unrealized.

Precision medicine promises to change the course of cancer

care by allowing doctors to select treatments that are most likely

to help patients based on a genetic understanding of their dis-

ease.10 This reflects a fundamental change in focus from the cur-

rent standard of medical practice, which largely relies on cohort-

based epidemiological studies in which the genetic variability of

individuals is largely ignored, resulting in population-based con-

clusions.4 As more knowledge is gathered about how genetics

affects cancer progression, it strengthens the conclusion that

each individual tumor has its own set of unique mutations, and

furthermore that it is this variation that makes similar types of

cancer respond differently to the same treatments. Coupled

with the fact that humans differ from one another by an average

of 6 million nucleotides in the genome, prior to the cascade of

unique changes that occur in the cancer transcriptome, it be-

comes clear that each person must be treated as a unique indi-

vidual and not as a statistical average if we are to begin to under-

stand the oddities of cancer on a case-by-case basis.11

One of the most challenging barriers in analyzing genomic

data is the remarkably low signal-to-noise ratio (SNR). Tumors

each harbor a combination of cancer-causing, or driver, muta-

tions and largely irrelevant passenger mutations that do not
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contribute to the oncogenic potential of the cells. Distinguishing

one from the other is critically important, but it is nearly impos-

sible to accomplish when looking at a single patient sample in

isolation. A precision medicine approach to cancer genomics

is therefore plagued with the fact that a single patient sample

is not replicated (i.e., n = 1).12 There is a need, therefore, for a

method of examining the entire genome of a patient-specific tu-

mor that leverages these large collections of genomic data to

mitigate the low SNR.

RNA sequencing (RNA-seq) provides a useful insight into the

gene expression state of a biological sample by measuring

tens of thousands of unique RNA transcripts.13 In cancer,

different tumors may have relatively similar protein coding

sequence (CDS) profiles, but the expression patterns of those

genes may be significantly different across tumors. This can

result in an even lower SNR in expression data than is seen in

exome CDS data while simultaneously increasing the variability

between samples.14 Traditional methods of high-dimensional

analysis are challenging to use on RNA-seq datasets on account

of this, as well as the high feature-to-sample ratio apparent in

biological systems.Modernmachine-learning and deep-learning

approaches have begun to surmount these obstacles and are

increasingly used to cluster and classify gene expression profiles

into meaningful groups that correspond with metadata labels

such as tissue source or particular phenotype.15–17

Deep learning18 has had tremendous success in image pro-

cessing19,20 and natural language processing21,22 tasks due to

its ability to abstract high level features from high-dimensional

and noisy datasets. Deep learning has also been used to develop

powerful generative models such as variational autoencoders

(VAEs)23 and generative adversarial networks (GANs).24 GANs,

a focus of this work, consist of a generator that captures a

data distribution and a discriminator that estimates the probabil-

ity that a sample came from the training data rather than the

generator. As training progresses, the generator produces

increasingly realistic data while the discriminator becomes

more adept at distinguishing real from fake. GANs have surged

in popularity in the field of computer vision due to several works

that can create exceptionally realistic images.25–27

While deep-learning models are being successfully applied in

a variety of fields, surprising vulnerabilities exist within trained

models. Adversarial samples (or adversarial examples) can be

designed to purposefully cause the deep-learning model to

incorrectly classify the sample.28,29 An adversarial sample con-

sists of a real sample, whose class is the source class, with an

added perturbation that causes the model to classify the per-

turbed sample as a different class, which is the target class. In

other words, adversarial samples are used to ‘‘trick’’ a neural

network into confidently choosing a target class. For example,

an image x, classified as a horse by a neural network, can be

subtly perturbed into xadv = x +p that is classified by the same

neural network as a human. Previous works29–31 have led to

Xiao et al.32 proposing AdvGAN, an adversarial sample genera-

tion framework, to produce perceptually realistic images in an

efficient manner using GANs.

Within the field of molecular biology a limited amount of work

involving generative models has been reported. Ghahramani

et al.33 proposed a Wasserstein GAN34 to integrate epidermal

datasets by generating samples that cover the full diversity of



Table 1. Accuracy of Target Network on Perturbed GTEx

Datasets

Gene Set Genes Target Class f Accuracy (%)

Hallmark Hedgehog

Signaling

36 nerve-tibial 100

Hallmark Peroxisome 107 brain-spinal cord 100

Hallmark Apoptosis 161 lung 99.9

Hallmark E2F Targets 200 artery-coronary 99.8

Hallmark All 4386 thyroid 100

Hallmark All 4386 heart-left ventricle 100
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cell types. Additionally, the authors used the generative model

for both dimensionality reduction and to observe the effect of

cell state perturbations on gene expression. Ghasedi Dizaji

et al.35 introduced a semi-supervised approach to generate

gene expression profiles of target genes using landmark genes

and GANs.

In this report, we contribute to this emerging field by adapting

the AdvGAN framework to model the transition between source

and target tissue transcriptome states. Furthermore, we demon-

strate how a single patient sample can be perturbed to resemble

the expression state of a larger cohort by leveraging TCGA data

as the training set for the model. By using TCGA data to train our

network, we show that a model can be trained to recognize bio-

logically relevant patterns in RNA-seq data and can effectively

perturb a patient’s tumor RNA-seq sample to resemble the

expression patterns of normal tissue. Those perturbations can

then be analyzed to determine significant transcriptional

changes that occur during tumor progression, thus solving the

n= 1 precision medicine issue.
RESULTS

Validation of TSPG
We examined the raw adversarial generation capabilities using

50 Hallmark gene sets defined in the Broad Institute Molecular

Signatures Database (MSigDB).36 First, we extracted the RNA-

seq expression profiles for Hallmark gene subsets from the

normal human tissue Genotype-Tissue Expression (GTEx) re-

pository.37 Table 1 contains the results for various Hallmark

gene subsets expression profiles as feature input to the TSPG

framework and corresponding target sample class. The furthest

right column, f Accuracy, represents the target model accuracy

when the input is perturbed from any input source (i.e., all sam-

ples from the dataset) to the labeled target class. Thus the accu-

racy represents the ability of the generator to ‘‘trick’’ the target

model into classifying a sample as a specified class.

The high classification accuracy suggested that the generator

was able to exploit the decision boundary between any two clas-

ses in the target model. While this was in itself interesting, we

were led to three new questions concerning the nature of these

perturbations: (1) Do the perturbed samples follow the distribu-

tion of the target class? (2) Are these perturbations nonsensically

changing expression values to satisfy the criterion of tricking a

target model? (3) Do the most highly perturbed genes encode

biological function of the target condition?
To test whether the adversarial samples exhibited high-dimen-

sional structure similar to that of the original target samples, we

used the dimensionality reduction and visualization tool t-SNE (t-

distributed stochastic neighbor embedding).38 t-SNE allowed us

to determine whether perturbed samples clustered with the dis-

tribution of the target condition. In Figure 1, ten different classes

from the GTEx dataset were plotted as well as 100 randomly

chosen adversarial samples that were created from varying

source tissues in the original dataset. Each sample was originally

36 dimensions representing the 36 genes in the Hallmark Hedge-

hog signaling gene set. We observed that the original (unper-

turbed) Nerve-Tibial samples (dark cyan) and the adversarial

(perturbed) Nerve-Tibial samples (black) formed a cluster on

the left side of the plot. The adversarial (black) points were orig-

inally 100 different samples from the GTEx dataset of varying

class description. These were passed through the generative

process, transforming these points to the target condition. It is

evident from Figure 1 that the perturbed samples follow a similar

data distribution as the original target condition.

The right side of Figure 1 shows the step-by-step process of

generating an adversarial sample. In this case, x is a heatmap

of gene expression values from an original sample from the

GTEx dataset of class type Brain-Hippocampus. x was passed

through the generator to produce P, which was then added to

x to create adversarial sample xadv. P ranges between ½ �1; 1�
to allow the generator to entirely ‘‘activate’’ or ‘‘silence’’ any

gene. xadv was clipped to valid expression values in the range

of ½0;1�. This generated sample xadv was then classified as target

class t by a pretrained model (the target model). Perturbation

values P describing the exact gene expression changes re-

mained, on a per-gene basis, which occurred in order to trans-

form Brain-Hippocampus tissue to Nerve-Tibial tissue. Addition-

ally we show mT , the mean expression vector for the target class

(Nerve-Tibial in this example), for direct visual comparison be-

tween an adversarial sample xadv and the target class.

Figure 2 shows the application of TSPG to a larger input gene

set with all 4,386 Hallmark genes combined. In this case, the per-

turbed samples clustered with original samples of the target

class (Heart-Left Ventricle). Additionally, the similarity between

xadv and mT is apparent in the heatmaps. This experiment dem-

onstrates the ability of TSPG to generalize to arbitrarily sized

input gene sets. Figure S1 shows the results of the same exper-

iment using Muscle-Skeletal condition as the target class, vali-

dating TSPG’s ability to perturb toward varying conditions.

To clarify all applications of TSPG when perturbing toward

varying conditions, we adopted a naming convention of

Source/Target—Direction. For example, Whole-Blood/

Nerve-Tibial—UP would be used to reference a perturbation

from a Whole-Blood sample toward the class of Nerve-Tibial in

the positive direction. The gene would be turned up in this

case, indicating an activation of the gene during the transition to-

ward Nerve-Tibial.

The classification accuracy, t-SNE visualizations, and pertur-

bation heatmap results suggested that the perturbation of the

Hallmark gene expression patterns successfully shifted the state

of source tissue to target tissue. To test whether the perturbed

genes were relevant to the source or target tissue, we randomly

selected a sample from each of the 53 tissues available in the

GTEx dataset and passed it through the generator that was
Patterns 1, 100087, September 11, 2020 3



Figure 1. Adversarial Generation for Nerve-

Tibial Target Using the Hallmark Hedgehog

Signaling Gene Set

t-SNE plot of original and perturbed samples using

the Hallmark Hedgehog Signaling gene set (left).

Heatmap of cellular transformation from Brain-Hip-

pocampus to Nerve-Tibial (right). Perturbation (P)

ranges from ½ � 1; 1�, which is added to original

sample (X), then adversarial sample (Xadv) is clipped

to ½0; 1�. The mean expression vector (mT ) of the

target class (Nerve-Tibial) is shown.
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trainedwith Heart-Left Ventricle as the target class.We then took

the 20 most positively perturbed genes (Random/Heart-Left-

Ventricle—UP) and the 20 most negatively perturbed genes

(Random/Heart-Left-Ventricle—DOWN) for each of the 53

state transitions. Interestingly, a total of only 85 unique genes

were identified in the top 20 across all 53 GTEx experiments

out of the total 4,386 genes being positively perturbed. In other

words, a distinct group of 85 genes were consistently perturbed

in the positive direction moving toward the target tissue. This

suggests that the same genes tend to be perturbed toward the

target tissue, irrespective of the source tissue. On the other

hand, the 20 most negatively perturbed genes across all target

tissues combined to form 642 unique genes, suggesting that a

greater variety of genes must be ‘‘turned off’’ depending on the

phenotype of the source tissue.

We then tested whether the 20 most positively perturbed

genes out of the pool of 4,386 genes were enriched (Benja-

mini-Hochberg false discovery rate [B&H FDR] q<0:0001) for bio-

logical function relevant to the target tissue (i.e., Heart-Left

Ventricle). A representative enriched term for each of the 16

term categories and the total number of enriched terms across

all 53 experiments is shown in Table 2. As observed, many of

the enriched terms are related to muscle and heart biology.

Conversely, we tested whether the 20most negatively perturbed

genes were related to the source tissue’s biology. Table S1

shows the most significant PubMed scientific articles that were

non-randomly associated with these genes. We found that the

source tissue is related to the PubMed articles associated with

these genes in most cases. All term enrichments for perturba-

tions toward a Heart-Left Ventricle target tissue can be explored

in Table S2.

To determine the efficacy of TSPG on more subtle transcrip-

tome state transitions, we tested TSPG on samples from the

same tissue of origin, namely healthy and cancerous kidney tis-

sue extracted from the TCGA project. Using all 4,386 Hallmark

genes as input, we examined the transcriptome transitions

from healthy (‘‘solid tissue normal’’) into one of three renal tumor

subtypes: clear cell renal carcinoma (KIRC), papillary renal cell

carcinoma (KIRP), and chromophobe renal cell carcinoma

(KICH) as shown in Figure 3. For each transition between healthy

and the three tumor subtypes, we identified the genes that were

among the top ten genes most positively and negatively per-
4 Patterns 1, 100087, September 11, 2020
turbed during transition and performed

functional enrichment to determine biolog-

ical function of those genes (Table S3). For

each case of the most negatively per-
turbed genes (Healthy-Kidney/KIRC/KIRP/KICH—DOWN),

the genes tended to be enriched for top expressed genes in kid-

ney tissue as defined by the GenitoUrinary Development Molec-

ular Anatomy Project database.39 In contrast to the negatively

perturbed genes appearing to have a normal kidney gene

expression pattern, the top positively perturbed genes

(Healthy-Kidney/KIRC/KIRP/KICH—UP) showed different en-

riched functions for each tumor subtype. A notable enriched

function in KIRC genes was an association with genes involved

in hypoxia, a hallmark of tumor progression whereby tumors

avoid senescence by increasing blood supply (e.g., MSigDB

hallmark hypoxia gene set was enriched). A notable function en-

riched in positively perturbed KIRP genes was an enrichment in

membrane-binding annexin activity (e.g., Rescher and Gerke40),

a dysregulated function in many cancers41 including renal carci-

noma.42,30 Finally, positively perturbed genes from healthy to

KICH exhibited an enrichment for genes upregulated by the es-

trogen receptor a (e.g., Stein et al.43), and estrogen-responsive

genes have been implicated in kidney cancer.44 These results

suggest that negatively perturbed genes exhibit similar functions

when transitioning to any renal cell carcinoma (RCC) subtype,

but the positively perturbed genes encode collective function

unique to each subtype. Simply put, negatively perturbed genes

are related to source tissue (i.e., healthy kidney) functionality,

while positively perturbed genes relate to functionality specific

to the target tissue (i.e., three cancerous kidney subtypes).

Applying TSPG to Precision Medicine
While these findings confirmed the efficacy of TSPG, we wanted

to make this tool relevant for individual patients. The goal

became to apply this deep-learning model to perturb a single

sample of patient tumor RNA-seq data toward the normal

phenotype of corresponding tissue, thereby determining pa-

tient-specific genomic aberrations from a single data sample.

A patient (designated BP) was diagnosed with RCC in 2014

when a large mass was discovered in his left kidney (Figure 4).

A month following the initial diagnosis BP underwent a total left

nephrectomy, or surgical removal of the left kidney. Further his-

tological analysis indicated that the cancer was stage 3 type I

papillary RCC (KIRP, or p1RCC) and that it had not metastasized

to the lymph nodes or other organs; however, it had infiltrated the

renal fascia. Following this official diagnosis, facing a high risk of



Figure 2. Adversarial Generation for Heart-Left Ventricle Target Using All Hallmark Genes as the Input Gene Set

t-SNE plot of original and perturbed samples using the all Hallmark genes (left). Heatmap of cellular transformations from Brain-Amygdala, Esophagus-Mucosa,

Pancreas, and Thyroid to Heart-Left Ventricle (right). Perturbations (P) range from ½ � 1; 1�, which is added to original sample (X), then adversarial sample (Xadv) is

clipped to ½0; 1�. The mean expression vector (mT ) of the target class (Heart-Left Ventricle) is shown.
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recurrence, BP obtained the RNA-seq data for his cancer as well

as a sample of healthy resected kidney.45

BP’s RNA-seq data was processed using the samemethod as

for the TCGA and GTEx samples. The two processed vectors of

BP’s tumor RNA-seq sample and healthy tissue were then ap-

pended to a larger gene expression matrix (GEM) that included

TCGA samples for KIRC, KIRP, and KICH, as well as the samples

for healthy ‘‘solid tissue normal’’ TCGA and GTEx samples. The

result was a normalized, comprehensive GEMconsisting of three

unique kidney cancer subtypes, healthy tissue data derived from

two different sources, and patient-specific tumor/normal sam-

ples. An overview of the samples included in this comprehensive

GEM is listed in Table 3.

To ensure that this comprehensive GEM had been properly

preprocessed so that BP’s samples clustered with their histolog-

ically defined tissue subtypes, we again used t-SNE visualization

to confirm that the unique vectors of expression data grouped

with their respective tissue groups. GTEx was grouped with all

other TCGA normal samples and given the common label of

‘‘Normal,’’ and was then compared against the other tumor sub-

types. Figure 5 shows BP’s normal sample clustering with the

combined normal samples from GTEx and the different TCGA

groups, as well as his tumor sample clustering with the relevant

KIRP subtype.

Following validation of the alignment of the comprehensive

GEM,we used TSPG to perturb the expression values of BP’s tu-

mor sample toward a normal target class. Defining our perturba-

tions in this direction allowed us to determine tumor-specific

transcriptional aberrations from a single sample (i.e., n = 1) of

patient data once the TSPG model had been trained. BP’s

normal sample was perturbed toward the target class of normal

as well, providing a naive comparison that displayed a narrower

distribution of less extreme perturbations when compared with
the perturbations from a tumor source (Figure 6). This histogram

shows that when given the task to perturb a normal sample to-

ward the normal class, the model makes significantly fewer

changes than when perturbing from a source to a target class.

In other words, the TSPG model does not generate significant

perturbations unnecessarily. Furthermore, this histogram shows

that themajority of genes in the tumor to normal transition remain

unperturbed, indicating that much of the essential structure of

the source tissue is maintained. Rather than nonsensically

altering all genes to trick the classifier, the model preserves a

great deal of transcriptional variation that is irrelevant to the dif-

ference between source and target.

To isolate the significant changes to the transcriptome state of

BP’s tumor compared with otherwise healthy kidney tissue, we

isolated the perturbations determined by TSPG that lay more

than two standard deviations outside of the mean. These genes,

which had been significantly up- or downregulated in the change

from tumor back to normal transcriptome states, were then

divided by the direction of change. Positive perturbations re-

flected changes in those genes that needed to be upregulated

to make the transcriptional state transition from tumor toward

healthy kidney tissue (Tumor/Normal—UP). It is important to

note that the experimental design for these patient-specific per-

turbations is reversed from the original kidney experiments re-

flected in Figure 3, as the purpose is no longer to test the efficacy

of TSPG but rather to apply TSPG to an individual tumor sample,

which means perturbing the tumor sample to appear normal. Tu-

mor/Normal—UP perturbations, therefore, can be considered

equivalent to Normal/Tumor—DOWN. Given the focus of these

experiments was to consider tumor heterogeneity, we will there-

fore refer to all positive perturbations as tumor-downregulated

genes. Simply put, tumor-downregulated genes are those which

are expressed in lower levels in tumors relative to normal.
Patterns 1, 100087, September 11, 2020 5



Table 2. Enriched Biological Functions of the Top 20 Most

Positively Perturbed Genes Leading to the Target Condition

Heart-Left Ventricle

Term Category

Enriched

Terms First Hit Term Description q Value

Coexpression 933 rat breast_Giusti09

_300genes

1.72 3 10�25

Coexpression 985 heart muscle 8.01 3 10�22

Computational 315 neighborhood of MYL2 5.29 3 10�22

Disease 969 cardiomyopathy,

familial idiopathic

1.47 3 10�9

Drug 1522 doxorubicin 2.88 3 10�11

Gene family 22 F-type ATPases

|mitochondrial

complex V

2.28 3 10�11

GO: BP 3311 striated muscle

contraction

2.01 3 10�15

GO: CC 852 sarcomere 2.53 3 10�15

GO: MF 225 structural constituent

of muscle

8.08 3 10�6

Phenotype 867 sudden death (human) 2.04 3 10�7

Interaction 280 VDAC1 interactions 1.94 3 10�5

MicroRNA 1 Hsa-miR-610:mirSVR 3.77 3 10�5

Phenotype 1419 cardiac hypertrophy

(mouse)

2.47 3 10�9

Pathway 1340 cardiac muscle

contraction

4.01 3 10�14

PubMed 10,774 clinical features

and outcome

of hypertrophic

cardiomyopathy

associated with triple

sarcomere protein

gene mutations.

1.13 3 10�19

ToppCell

Atlas

209 mouse multiple

adult muscle

2.90 3 10�18

subtype heart_cardiac

muscle cell

TFBS 21 V$MEF2_02 8.40 3 10�6
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Conversely, negative perturbations reflect changes in the genes

that were most significantly downregulated when perturbing to-

ward the class of normal kidney tissue (Tumor/Normal—

DOWN). These genes will henceforth be referred to as tumor-up-

regulated genes, as these can be considered the genes more

highly expressed in tumors relative to normal. TSPG identified

444 significant tumor-upregulated genes and 418 tumor-down-

regulated genes for BP’s sample out of the total 18,368 included

in the GEM.

Two particular genes of note, MET and ERRFI1, are of known

relevance to RCC.46 Of the patients evaluated, four showed

expression of the MET gene to be perturbed greater than one

standard deviation from the mean degree of perturbation in the

tumor-upregulated direction. Furthermore, five exhibited pertur-

bations greater than one standard deviation in the tumor-down-

regulated direction for the ERRFI1 gene.
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Functional enrichment was then performed on these two gene

lists to search for biological functions relevant to the most highly

perturbed genes in each direction (B&H FDR q<0:0001). Enrich-

ment results for the tumor-downregulated list can be seen in Ta-

ble 4, and results for the tumor-upregulated list are presented in

Table 5. By performing functional enrichment for each perturba-

tion direction independently, biological significance for source

and target tissue can be separated. The 418 genes that were sig-

nificant in the tumor-downregulated direction are involved in bio-

logical functions indicative of normal kidney function, while the

444 significant genes being perturbed in the tumor-upregulated

direction indicate abnormal functions that may be representative

of tumor-related functions. All significant enrichment results for

both the tumor-upregulated and tumor-downregulated direction

can be explored in Table S4.

Comparison of TSPG Results between Patients
To examine the generalization of TSPG to multiple different vec-

tors of similar data, we repeated this process with five other

unique patient samples. Other patients were obtained by

isolating TCGA samples that had correlating tumor/normal sam-

ples. The five other patients were chosen at random from the

KIRP dataset. For each patient a unique comprehensive GEM

was created by removing their normal and tumor samples to

ensure mutual exclusivity between training and testing data.

Creating a unique GEM for every patient’s TSPG experiment

maximized the amount of available training data for the model

by including every tumor and normal sample that was not the pa-

tient’s own while training the network. While generating unique

input data for each experiment ensured optimal performance

of the model, this posed a computational bottleneck resulting

in our selective analysis of five TCGA patients. Despite selective

analysis of only five patients, the design of TSPG leveraged the

transcriptome data of 157 normal samples and 235 KIRP sam-

ples for each uniquely trained model while preserving one sam-

ple of each class for testing. These five experiments are highly

parallel in nature and are therefore not to be understood as an

attempt at a global analysis but rather as five replicates to

demonstrate TSPG’s applicability to many patients. Metadata

was pulled from the Genomic Data Commons Data Portal, which

houses the TCGA dataset,47,45 to convey patient demographic

information, listed in Table 6. The complete TSPG results for all

five TCGA patients, as well as those for BP, are available in Table

S5.

All six TSPG results were compared against each other to

determine overlap of the different perturbations between pa-

tients. For both the tumor-upregulated and tumor-downregu-

lated directions, corresponding genomic perturbations were

visualized to a heatmap in Figures 7 and 8. The comparison

was performed by isolating the list of significant genes TSPG

identified for patient a, appending the results from patient b,

then taking the unique set of genes identified. The ratio then

became (duplicate genes)/(all unique genes). Interestingly,

although the general ratio of overlapping genes to total unique

genes was similar between tumor-upregulated and tumor-

downregulated genes, TSPG consistently isolated a wider varia-

tion between patients in different tumor-upregulated genes than

it did tumor-downregulated genes, resulting in a larger set of to-

tal genes for the tumor-upregulated direction. The exception to



Figure 3. Adversarial Generation for Three Subtypes of Kidney Cancer Using All Hallmark Genes as the Input Gene Set

t-SNE plot and corresponding heatmap of cellular transformation from healthy to KIRP (A), healthy to KIRC (B), and healthy to KICH (C). Perturbations (P) range

from ½ � 1; 1�, which is added to original sample (X), then adversarial sample (Xadv) is clipped to ½0;1�. Themean expression vector (mT ) of the target class is shown.
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this case is TCGA sample TCGA-BQ-7051, which can be ex-

plained by the fact that this is the only case in which TSPG gener-

ated more perturbations in the tumor-upregulated direction than

in the tumor-downregulated direction (see Table 7). There is an

evident pattern of TSPG identifying more unique tumor-upregu-

lated genes than tumor-downregulated genes between patients.

Statistical analysis by paired t test showed that TSPG identified

significantly (p<0:0001) more unique tumor-upregulated genes

between different patients (x = 953) than tumor-downregulated

genes (x = 608), as is visualized in Figure S2. Genes upregulated

in tumors relative to healthy kidney tissue are more unique be-

tween patients, being relevant to highly individualized cancer

function, than those that are regularly downregulated across

many patients.

Comparing TSPG with Differential Gene Expression
To further validate the perturbations generated by TSPG,we per-

formed differential gene expression (DGE) analysis on the TCGA

KIRP dataset compared with the GTEx normal kidney data and

TCGA normal correlating tissue. DESeq2 was used perform the

DGE analysis, which uses the negative binomial probability dis-

tribution to determine a reference by which to compare differen-

tial expression between classes.48 This type of statistical anal-

ysis is the standard for determining genetic differential

expression between classes (e.g., tumor versus normal); howev-

er, it requires a large number of samples to achieve this binomial

reference distribution. We therefore aimed to demonstrate that

TSPG can achieve similar results by using a single sample on a

pretrained model. The same data as listed in Table 3 was
used, resulting in 236 KIRP samples being compared against

61 normal kidney samples for differential expression. A total of

6,863 genes were determined to be differentially expressed be-

tween KIRP and normal (padj<0:0001). Of those, 4,001 had a pos-

itive log2 fold change when comparing KIRP expression levels

with a normal reference. These genes, being more transcription-

ally active in a statistical majority of KIRP samples than in normal,

can be correlated with those genes classified as tumor-upregu-

lated from TSPG patient analyses. Alternatively, 2,862 of these

genes had a negative log2 fold change identified by DGE. These

genes can be correlated with those genes which TSPG per-

turbed in the tumor-downregulated direction, as these are the

genes more highly expressed in the normal kidney tissue than

in KIRP samples. Complete DGE results are listed in Table S6.

We then compared the genes that TSPG had most signifi-

cantly perturbed from all five TCGA patients, as well as BP’s,

KIRP expression vectors with those DGE identified to be statis-

tically significant to determine the overlap between the two

different algorithm’ sets of results as depicted by Table 7.

Notably, a large percentage of genes in the tumor-downregu-

lated direction as determined by TSPG were also identified as

statistically significant by DGE. Interestingly, however, a signifi-

cantly lower percentage of genes identified by TSPG in the tu-

mor-upregulated direction for each patient were deemed signif-

icant in the correlating direction by DGE.

The high correlation between the established method of DGE

and the novel deep-learning model of TSPG in the tumor-down-

regulated direction further supports the efficacy of TSPG as

a proposed alternative method of determining differential
Patterns 1, 100087, September 11, 2020 7



Figure 4. Computed Tomography Image of

Patient BP’s Renal Cell Carcinoma

Imaged in February of 2014, this thoracic computed

tomogram with intravenous contrast shows a 5.7 3

4.8-cm mass in the left kidney.
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expression when given only one sample. Furthermore, it implies

that the genes which TSPG independently identifies as being

downregulated in tumors relative to normal tissue (tumor-down-

regulated) for each individual patient’s tumor are in large part the

same genes that are downregulated for the statistical majority of

KIRP tumors as identified by DGE. In stark contrast, there is

significantly less agreement between the genes that TSPG per-

turbed in the tumor-upregulated direction for each patient and

those genes identified by DGE in the correlating direction using

the binomial reference distribution.When considered in conjunc-

tion with the results from comparing the TSPG results from one

patient to another, this further supports the conclusion that the

genes perturbed in the tumor-upregulated direction are highly

unique to each patient’s tumor. While the genes perturbed in

the tumor-downregulated direction largely match statistical av-

erages of other KIRP tumors, the genes perturbed in the tu-

mor-upregulated direction exhibit inherent heterogeneity both

when compared directly with other tumors and when compared

with statistical averages of all related tumors.

DISCUSSION

Efficacy of TSPG
Weadapted and added criteria to the AdvGAN framework, which

originated from within the computer vision community, to pro-

duce meaningful biological state transitions. While we used L2
regularization (Equation 3) to limit the magnitude of the perturba-

tion, we observed that adding Ltd (Equation 4) to the generator

loss function significantly improved the biological plausibility of

the results. Furthermore, our experiments confirmed that neural

networks used for classification of RNA-seq data are indeed

vulnerable to adversarial ‘‘attacks.’’ The results of Table 1

show that it is actually quite trivial for the generator to ‘‘trick’’

the target model into a specific classification no matter what

the input is. This is likely due to the fact that the target model

is relatively simple and was not trained using any defensive stra-

tegies against attacks.

It is noteworthy that Szegedy et al.28 demonstrated that the

fundamental nature of adversarial samples does not differ across

models trained on different subsets of data or models that had

varying hyperparameters (e.g., number of layers, number of neu-
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rons in each layer, weight normalization

schemes). Thus, we decided it was not

necessary to test across many different

neural network architectures. Additionally,

an important condition for adversarial at-

tacks in image processing is that the

perturbation should be small in magnitude

(Equation 3); that is, the perturbation to an

input should not be noticeable to the hu-

man eye. While this criterion is essential
for adversarial attacks in the computer vision domain, we are

more interested in making meaningful transitions from source

to target states, not in meaninglessly fooling a neural network.

Therefore, despite using L2 regularization to stabilize training, it

was not imperative that the perturbations be small in magnitude,

since a large shift in gene expression may be required to transi-

tion between disparate tissue expression states.

What do these results mean for the study of biological sys-

tems? While the results of this analysis pointed to the near per-

fect adversarial attack rates (Table 1) and clear correspondence

of the perturbed gene expression patterns to the target condition

(Figures 1, 2, and 3), we were initially concerned that we had

nonsensically transformed biological states. However, the

strong signal of biological function (Tables 2 and S2) and

continued selection of the same positively perturbed genes lead-

ing to the target gene expression pattern suggest that the algo-

rithm shifts the expression patterns in a biologically meaningful

way. Thus, we propose TSPG as a novel method to detect ge-

netic subsystems that are responsible for differentiating between

both differing tissues and wild-type and aberrant tissue states.

Generative models, particularly GANs, have been sparingly

used in the field of biology due to amultitude of factors, including

the limited number of adequate datasets and the highly prepro-

cessed nature of RNA-seq data as compared with images and

audio. This work serves as a demonstration that GANs can be

applied to RNA-seq data to uncover meaningful gene expression

patterns between different human tissue samples. We believe

that GANswill enable novel approaches in the study of molecular

biological systems.

TSPG as an Alternative to Differential Gene Expression
Analysis
The transcriptional state of tissue-specific cells is highly dynamic

in nature, and its overwhelming complexity has been a barrier to-

ward bringing this sequencing method to clinical applications.

Given a single sample of patient data, it is extremely difficult to

distinguish noise from relevant genomic information. Further-

more, statistical significance cannot be determined from a single

data point, making it difficult to prove the validity of many find-

ings. Therefore, it is of critical importance to develop novel

methods to analyze the wealth of information provided by a



Table 3. Sample Counts Included in the Comprehensive Kidney

Cancer GEM

Tissue Type Dataset of Origin Count

KIRC tumor TCGA 475

KIRC normal TCGA 72

KIRP tumor TCGA 236

KIRP normal TCGA 29

KICH tumor TCGA 60

KICH normal TCGA 25

Kidney normal GTEx 32

BP tumor – 1

BP normal – 1
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single sample of patient RNA-seq data and transform it into clin-

ically applicable results.49

DGE analysis is a well established method of determining

differentially expressed genetic patterns between biological

samples on a gene-by-gene basis. TSPG is proposed as an

alternative approach to DGE that can identify differentially ex-

pressed genes using the global expression patterns. Thus,

TSPG is a parallel approach that is applicable to a single pa-

tient’s input after the model has been trained.
TSPG Quantitatively Defines Tumor Genomic
Heterogeneity
Malignancy of a cancer cell is largely understood to be the result

of sequential alterations in the genetic, epigenetic, and transcrip-

tomic architecture of the cell. Even within cancer types and sub-

types, the transcriptomic state is highly variable. It is this sto-

chastic nature of cancer that makes the response to various
treatments highly variable between different patients.50 Tools

such as DGE analysis lack the ability to evaluate the unique tran-

scriptional changes that occur during tumorigenesis, as the goal

of these tools is to look at changes that are evident in statistical

averages of a population. TSPG, however, can identify changes

that occur within a single sample.

Table 7 shows the similarity between genes identified by TSPG

as significantly perturbed in the tumor-downregulated direction

and those identified by DGE in the same direction as being differ-

entially expressed for all TCGA KIRP samples. The significant

overlap observed in this tumor-downregulated direction is evi-

dence that there is a distinct subset of particular genes that

are directly relevant to healthy kidney function and are repeat-

edly turned off during the progression of cancers. The tumor-up-

regulated direction, however, shows significantly less overlap

with the DGE results. The genes identified by TSPG for each pa-

tient as being upregulated in cancer are highly variable and do

not correlate as tightly with those that DGE identified as being

relevant for statistical averages of the population of KIRP tumors.

This low overlap between tumor-upregulated genes and those

identified by DGE as being differentially expressed in the same

direction is validation of the idea of tumor heterogeneity between

patients. We propose that these genes that TSPG identifies, yet

do not correlate with DGE findings, are not computational anom-

alies but rather can be indicative of patient-specific cancer bio-

markers. While the unique transcriptional changes observed in

BP may not signify genetic trends across all KIRP tumors, these

patient-specific perturbations can be considered as candidate

genes for targeted therapies specific to BP’s cancer. TSPG

can be used as a tool to identify novel biomarkers that are indic-

ative of any source tissue if the model can be trained with the

wealth of transcriptomic data available through publicly available

sources.
Figure 5. t-SNE Plot of Combined TCGA,

GTEx, and Patient Data

t-SNE visualization shows proper grouping between

all combined normal samples and different RCC

subtypes, with BP’s sample clustering with the

respective tissue group.
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Figure 6. Distribution of TSPG Perturbations

toward the Normal Target Class

TSPGgenerates perturbations toward normal target

tissue from a source of both BP’s KIRP sample and

sample of healthy kidney tissue. Perturbations from

BP’s normal sample toward the normal class show

few significant transcriptional changes when

compared with the perturbations from BP’s tumor

sample.
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Identifying Papillary RCC Type-Specific Alterations
The seminal paper by Linehan et al. on the genomics of papillary

RCC46 identified MET alterations as being largely characteristic

of p1RCC. According to their characterizations, 81% of the 75

p1RCCs studied contained some alteration in the expression

of theMET gene, which encodes a tyrosine kinase receptor pro-

tein. To this point, it was observed that BP’s tumor, along with all

five of the other patient tumors evaluated, showed overexpres-

sion of thisMET gene. TSPG results for all six patients identified

perturbations in the tumor-upregulated direction, and four of

those (BP’s included) showed perturbations greater than one

standard deviation from the mean degree of perturbation. While

this is a notably lower threshold than was considered for the ma-

jority of this study, it is worth noting that while the perturbations

were less extreme, TSPG consistently identified a gene of known

relevance to p1RCC to be overexpressed in all tumors evaluated.

This further validation is supportive of the fact that MET plays a

critical role in the progression of p1RCC and that TSPG is

capable of highlighting even subtle transcriptional changes.

Deletion of the chromosomal region including tumor suppres-

sor ERRFI1, a negative regulator of EGFR, was also observed in

11.1% of papillary RCCs.46 Of the six patients analyzed with

TSPG, five exhibited perturbations greater than one standard

deviation in the tumor-downregulated direction for this ERRFI1

gene. This would indicate that expression of the ERRFI1 gene

is significantly lower in papillary RCC when compared with

healthy kidney tissue, consistent with a deletion or silencing of

the gene. Although these are merely observational correlations,

it is notable that some of the most critical genetic alterations of

papillary RCC identified by Linehan et al.46 are independently

identified by TSPG. Papillary RCC is an extremely heteroge-

neous disease characterized by many modes of disease pro-

gression and unique genetic drivers. While type I papillary RCC

is the most commonly diagnosed, there remains a large array

of different histologically unique subtypes. The larger collection
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of non-type-I papillary RCCs is composed

of type II papillary renal carcinomas,

including duct carcinomas, medullary

renal cell carcinomas, the MiTF kidney

cancers (TFE3, TFEB), and hereditary leio-

myomatosis RCC-associated kidney can-

cers.51 All of these unique histologies

exhibit unique genetic profiles; however,

there is much to be learned about the

differentiating genetic characteristics of

each. Given that TCGA provides a com-

mon label to all papillary RCC tumors, it is

difficult to profile transcriptional changes in
a systematic method across each patient. As more becomes

known about the distinctive markers of each, and increasingly

specific labels can be provided to public data stores such as

TCGA, it will be possible to use TSPG to characterize these tu-

mors based on specific transcriptional aberrations. Future

studies should analyze patients of known histology, as was the

case with BP, to verify in more detail many of these transcrip-

tional changes.

Understanding the Transcriptional Aberrations of
BP’s p1RCC
Functional enrichment results for BP’s 418 significantly per-

turbed tumor-downregulated genes show consistent enrich-

ment for many functions that are relevant to kidney function

and development. Enrichment results for functions such as uri-

nation, circulating renin, kidney coexpression, and a diseased

state of nephrocalcinosis, as shown in Table 4, all indicate

that TSPG is in fact identifying genes that support biologically

relevant kidney function. Being that these are the genes being

downregulated in the tumor, expression of these genes must

be turned back up in order to reflect the transcriptional state

of healthy kidney tissue. It makes sense, therefore, that these

genes identified by TSPG as being extremely perturbed in the

state transition from tumor to healthy kidney be enriched for

kidney function.

To understand the transcriptional changes that occurred dur-

ing progression of BP’s p1RCC, we can analyze the 444 genes

that TSPG identified as being significantly perturbed in the tu-

mor-upregulated direction. Interestingly, consistent significant

enrichment for keratinization function was observed (see Table

5). Keratins are intermediate filaments of the epithelial cytoskel-

eton, and tubular epithelial cells have been previously identified

as highly differentiated renal cells essential for normal kidney

function.52 Keratins are known to be upregulated in various dis-

ease states including skin disease and cancer as well as



Table 4. Enriched Biological Functions of the 418 Significant

Tumor-Downregulated Genes Identified fromBP’s Tumor Sample

Term Category

Enriched

Terms

First Hit

Term

Description q Value

GO: MF 25 monovalent

inorganic cation

transmembrane

transporter activity

1.832 3 10�8

GO: BP 78 ion transport 3.206 3 10�12

GO: CC 7 intrinsic component

of plasma membrane

1.572 3 10�14

Human

phenotype

7 abnormal circulating

renin

8.091 3 10�6

Mouse

phenotype

24 abnormal urination 2.289 3 10�9

Pathway 2 ensemble of genes

encoding extracellular

matrix and associated

proteins

3.552 3 10�6

PubMed 56 activation of hypoxia

signaling in stromal

progenitors impairs

kidney developmenta

3.805 3 10�15

Coexpression

atlas

398 Kidney 5.459 3 10�40

TopCell atlas 83 epithelial—ts14

kidney of epithelial

7.531 3 10�24

Computational 3 heart, liver, kidney,

and pancreas metabolic

and xenobiotic

response gene.

4.467 3 10�7

Disease 4 nephrocalcinosis 4.656 3 10�6

aSecond ToppFun enrichment hit, noted because the first hit was a

PubMed article relevant to mouse phenotype rather than human.
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pancreatic and liver injury. Previous studies have identified ker-

atins as markers of renal epithelial cell injury, being upregulated

when renal cells are under stress.53 This indicates that the upre-

gulated genes in BP’s tumor are enriched for cellular function,
Table 5. Enriched Biological Functions of the 444 Significant

Tumor-Upregulated Genes Identified from BP’s Tumor Sample

Term Category

Enriched

Terms First Hit Term Description q Value

GO: MF 8 G-protein-coupled

receptor activity

2.935 3 10�11

GO: BP 22 keratinocyte

differentiation

1.732 3 10�15

GO: CC 5 cornified envelope 3.827 3 10�10

Pathway 8 keratinization 5.231 3 10�17

PubMed 3 human olfactory

receptor gene family

4.458 3 10�11

Gene family 2 keratins, type II 2.282 3 10�5

Coexpression 2 esophagus 7.487 3 10�6
which has been previously associated with kidney injury and

cancer.

With this initial validation of the potential clinical relevance of

the genes that TSPG can identify, future studies should aim to

determine regulatory pathways that affect these genes, ulti-

mately aiming to identify therapeutics that specifically target

those pathways. Furthermore, future aims involve collaborating

with wet lab biologists to perform immunohistochemistry and

western blotting on BP’s preserved tumor tissue sample to

confirm that the identified candidate genes are in fact being over-

expressed in the cells. This study provides a computational tool

for analyzing gene expression data that can predict biologically

significant genetic aberrations. Further research should focus

on determining biological and clinical validity of these predic-

tions to establish a bench-to-bedside workflow. This is the ulti-

mate step in bringing TSPG to a clinically applicable setting

where precision medicine can be applied based on this deeper

understanding of transcriptional activity of cancer cells.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

F. Alex Feltus is the lead contact for this study.

Materials Availability

There are no physical materials associated with this study.

Data and Code Availability

a The source code for TSPG along with all documentation is available at

the following Github repository: https://github.com/ctargon/TSPG

b The normalized gene expression data (FPKM) from TCGA and GTEx

data are available on Figshare.54 https://doi.org/10.6084/m9.figshare.

5330593

c The exact parameters used in the workflow to process patient-derived

FASTQ data to be compared with public sources can be found at the

following Github repository: https://github.com/mrbende/RNAprep

d Maximum likelihood gene expression counts from TCGA andGTEx data

are available on Figshare.54 https://doi.org/10.6084/m9.figshare.

5330539
Input Data

We used two GEMs containing RNA-seq expression levels for human tissue

and tumor samples: (1) The GTEx dataset (11,688 samples by 56,202 genes

representing 53 uniquely labeled tissue types);37 (2) TCGA dataset (11,092

samples by 60,483 genes representing 33 unique tumor types).55 We per-

formed log2 transformation and quantile normalization on the GEM in Python

using scikit-learn.56 We then used the Broad Institute Molecular Signature

Database gene subsets (MSigDB v6.2) (MSigDB)36 to extract normalized

sub-GEMs from GTEx and TCGA. These sub-GEMs were normalized using

a min-max scaler, which scales each feature to the range ½0; 1�.

TSPG Design

The TSPG framework, shown in Figure 9, was adapted from the AdvGAN

model introduced by Xiao et al.32 TSPG consists of a generator G, a discrim-

inator D, and a target model f. The generatorG takes an n-dimensional sample

x, where n is the number of genes, and generates a perturbation GðxÞ. GðxÞ is
added to the original sample to produce an adversarial sample xadv = x +GðxÞ
which is then passed to both the discriminator and the target model. The

discriminator D outputs a prediction of whether the generated sample came

from the training data or the generator (whether xadv is ‘‘real’’ or ‘‘fake’’). The

goal of the discriminator is to encourage the generated sample xadv to be

indistinguishable from the training data, and this goal is quantified by the

loss term,

LGAN = Ex½logDðxÞ� � Ex ½logð1�Dðx + GðxÞÞÞ�: (Equation 1)
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Table 6. Patient Table for Each of the Randomly Chosen TCGA

Data Points and for Patient BP

Sample ID Age at Diagnosis Race Sex Stage

TCGA-BQ-5884 59 AA female I

TCGA-BQ-7051 74 white male II

TCGA-DZ-6131 31 white male III

TCGA-GL-7966 28 white female III

TCGA-Y8-A8RY 63 white male I

BP 59 white male III

AA, African American.
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For LGAN, we use the least-squares objective proposed inMao et al.57 to sta-

bilize training and boost results. The target model f outputs a class prediction

for input xadv based on its pretrained weights. The goal of the target model is to

learn a mapping from the training data to the training labels, and the goal of the

generator is to produce an adversarial sample xadv such that the target model

classifies xadv incorrectly as class t. The loss term for ‘‘tricking’’ the target

model in this way, proposed by Carlini and Wagner,30, is

Lf
adv = maxðmaxist fðxadvÞi � fðxadvÞt ; kÞ; (Equation 2)

where t is the target class, and we set confidence k = 0. This loss term encour-

ages the generator to produce data that fools f into predicting t.

We also use two terms, Lnorm and Ltd, which are used to stabilize training and

encourage xadv to fall within the target data distributionPt . Lnorm is simply the L2
norm placed on the generated perturbation GðxÞ:

Lnorm = kGðxÞk2: (Equation 3)

This loss term encourages the overall perturbation to be small and also sta-

bilizes training with better results. The final loss term, Ltd, is the L1 distance be-

tween an adversarial sample xadv and a randomly sampled target vector rt,

where rt � Nðmt ; StÞ. Nðmt ;StÞ is a normal distribution modeled with

the mean m and covariance matrix S of target class t. This loss term is

formulated as
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Ltd = jxadv � rt j: (Equation 4)

Ltd encourages the generator to create data more tightly within the bounds

of the target class distribution. Similar principles are used in Isola et al. and Zhu

et al.25,58 to reduce the space of possible mappings and create more realistic

data samples. Together, the loss for G can be summed as

L = LGAN + Ladv +Lnorm + Ltd: (Equation 5)

The architectures used by G and D are similar to those used by Xiao et al.,32

which draw influence from image-to-image translation architectures.25,58 G

uses an hourglass-shaped structure which contains three fully connected

layers of sizes 512, 256, and 128, followed by three residual blocks, followed

by two layers of sizes 256 and 512 and then a layer of the same shape as the

input dimension. Each dense layer is coupled with batch normalization and

rectified linear unit (ReLU) activation, and the output layer uses the hyperbolic

tangent (tanh). The tanh function allows the generator to produce a perturba-

tion ranging from ½ � 1; 1�. This perturbation can be interpreted roughly as a

normalized log2 fold change. The discriminator consists of three dense layers

of sizes 512, 256, and 128. Each dense layer is followed by a batch normaliza-

tion layer and a leaky ReLU activation function with alpha set to 0.2. The target

model used in the experiments contains three dense layers of size 1,024, 512,

and 128, each layer using the ReLU activation function.

All three networks were trained using the Adamoptimizer59 with learning rates

0.0002, 0.0001, and 0.001 for the generator, discriminator, and target model,

respectively. The target model used bootstrapping by randomly selecting 90%

of each class for training and holding out the remaining 10% for testing, and it

was trained for 30 epochs with a minibatch size of 32. Similarly, the generator

used an 80%/20% split and was trained for 150 epochs with a minibatch size

of 128. All three networks were developed in TensorFlow60 and trained on Clem-

son University’s Palmetto Cluster using NVIDIA V100 GPUs. Source code and

documentation for TSPG are available at Data and Code Record a.
TSPG Workflow

The TSPG workflow consists of three steps:

Train the Target Model

The target model is trained on the training data, which in our case is the com-

bined GTEx and TCGA GEM or a subset thereof. This is the model which as-

signs a class label to a sample of transcription data.
Figure 7. Heatmap Comparing the Overlap-

ping Genes Identified by TSPG between Pa-

tients in the Tumor-Upregulated Direction

Ratios are calculated as shared number of per-

turbed genes between two patients divided by the

total number of unique perturbed genes found in

both patients (numbers in parentheses).



Figure 8. Heatmap Comparing the Overlap-

ping Genes Identified by TSPG between Pa-

tients in the Tumor-Downregulated Direction

Ratios are calculated as shared number of per-

turbed genes between two patients divided by the

total number of unique perturbed genes found in

both patients (numbers in parentheses).
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Train the Perturbation Generator

The generator is trained (using the same training data as the target model) to

generate perturbations toward a given target class. The perturbed samples

should be classified as the target class by the target model and should be

indistinguishable from the training data according to the discriminator.

Generate Sample Perturbations

The generator is used to perturb each sample in the test data to ‘‘appear like’’

the target class. The perturbed test samples are considered valid if they are

classified as the target class by the target model. These perturbations can

then be visualized or used for other downstream analyses such as functional

enrichment.

Initial Validation

To validate TSPG, we trained the target model and the generator on the com-

bined GTEx and TCGA data, then we perturbed 100 randomly selected sam-

ples from these training data along with the samples from 10 randomly

selected classes including the target class. t-SNE plots were used to visualize

both original and perturbed samples. Additionally, we used the mean vector of

a target class to visually inspect how similar an adversarial sample is to the

target class.

Unifying Patient Data with TCGA/GTEx

The process for unifying TCGA tumor data with GTEx tissue data was docu-

mented by Wang et al.,54 and the data are freely available from Data and

Code Record b. The following files were pulled for analysis:
Table 7. Percentage of Genes Identified by TSPG that Also Were

Deemed Statistically Significant by DGE and Ratio between

Overlapping Genes and All Significant Genes Identified by TSPG

Sample ID Tumor-Upregulated Tumor-Downregulated

TCGA-BQ-5884 21.4% (155/724) 64.1% (248/387)

TCGA-BQ-7051 32.9% (130/395) 78.6% (469/597)

TCGA-DZ-6131 26.9% (170/633) 70.7% (292/413)

TCGA-GL-7966 13.5% (136/1008) 75.5% (163/216)

TCGA-Y8-A8RY 39.4% (166/421) 82.4% (304/369)

BP 34.3% (152/444) 85.2% (356/418)
1. kich-rsem-fpkm-tcga.txt

2. kich-rsem-fpkm-tcga-t.txt

3. kirc-rsem-fpkm-tcga.txt

4. kirc-rsem-fpkm-tcga-t.txt

5. kirp-rsem-fpkm-tcga.txt

6. kirp-rsem-fpkm-tcga-t.txt

7. kidney-rsem-fpkm-gtex.txt

By pulling only relevant kidney data, the size of the dataset was minimized

while still providing several subtypes of kidney tissues for analysis to avoid

overfitting the TSPGmodel. These datasets were thenmerged along gene IDs.

Illumina RNA-seq was performed on both a biopsy sample of BP’s p1RCC

and healthy kidney tissue, resulting in two single-insert paired-end RNA-seq

datasets in FASTQ format. The normal sample was sequenced with 150M re-

quested reads and the p1RCC sample was sequenced with 300M reads.

These FASTQ samples were processed according to protocols used for pro-

cessing this GTEx and TCGA data.54 Alignment was performed using STAR

aligner v2.4.2a with the hg19 build of the University of California Santa Cruz hu-

man reference genome and the GENCODE comprehensive gene annotation

list.61 Quantification of gene expression data was performed using RSEM.62

These two expression vectors (normal and tumor) were then appended to

the larger GEM of GTEx and TCGA kidney data fromWang et al.54 and normal-

ized in the same way as described previously, so that the patient data were

accurately aligned with a larger collection of public data. To verify that BP’s

samples had been properly merged with the larger GEM while retaining real-

istic gene expression patterns, we used t-SNE visualization to validate proper

clustering of tissue types. The result of this unification is a single GEM consist-

ing of GTEx and TCGA data along with aligned patient-specific data. The exact

parameters used when running these workflows is available at the repository

listed in Data and Code Record c.

Functional Enrichment Analysis

To check for biological relevance, we used the ToppFun tool (https://

toppgene.cchmc.org)63 to perform functional enrichment analysis. Occasion-

ally, the HGNC symbol was not recognized for 1/20 genes in the list. Functional

labels were considered significant at q<0:0001.

Running TSPG on Patient-Specific Data

To perform the patient-specific analysis, we trained the target model and the

generator on the kidney data from GTEx and TCGA (i.e., excluding the
Patterns 1, 100087, September 11, 2020 13
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Figure 9. Architecture of Transcriptome

State Perturbation Generator
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patient’s data). This training set contained 158 normal samples, 60 KICH sam-

ples, 475 KIRC samples, and 236 KIRP samples. The generator was trained to

perturb the input to appear normal so that we could observe the transition from

the patient’s tumor sample to normal. After the target model and the generator

were trained, we generated perturbations for both the patient-normal sample

and the patient-tumor sample. A naive comparison was also performed by tak-

ing the difference between these two samples, which served as a baseline

against which to compare the actual results of TSPG. By making these pertur-

bations based on the 158 available normal samples rather than just the one pa-

tient-normal sample, TSPG was able to circumvent the high uncertainty asso-

ciated with an n= 1 analysis while retaining patient-specific information. All

genes from the patient sampleswere used in this analysis to avoid the potential

loss of relevant gene perturbations.

Differential Gene Expression Analysis

DGE analysis was performed using the Bioconductor package DESeq2.64

Rather than using normalized estimated expression levels, raw counts of

sequencing reads were used. These datasets were published by Wang

et al.54 alongside the normalized expression values and are available for down-

load from Data and Code Record d. DGE analysis was performed using the

‘‘kirp-rsem-count-tcga-t.txt’’ dataset as the source group, while ‘‘kirp-rsem-

count-tcga.txt’’ and ‘‘kidney-rsem-count-gtex.txt’’ were used together as the

target group. This was intended to replicate TSPG’s function of measuring

transitions between an aberrant source group toward a normal target group.

t-SNE visualization was again used to confirm proper clustering of source

and target groups. To analyze the results of DGE, we isolated statistical out-

liers that represented the most highly differentially expressed genes (both

up- and downregulated) (padj<0:0001). These were then separated by the di-

rection (positive value reflecting an upregulation in the shift from KIRP to

normal, negative reflecting downregulation) of the log2 fold change.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100087.
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Supplemental Figure S1. Adversarial Generation for Muscle-Skeletal Target Using 
all Hallmark Genes as the Input Gene Set. t-SNE plot of original and perturbed 
samples using the all Hallmark genes (left). Heatmap of cellular transformations from 
Brain-Cerebellum and Liver to Muscle-Skeletal (right). Perturbations (P) range from [-
1,1], which is added to original sample (x), then adversarial sample (xadv) is clipped to 
[0,1]. The mean expression vector (μT) of the target class (Muscle-Skeletal) is shown. 
 
 
  



 
Supplemental Figure S2. Uniquely Perturbed Genes in Kidney Tumors. 
Comparison of TSPG results between patients shows a pattern of more unique tumor-
upregulated genes being identified than tumor-downregulated genes.  
 


	PATTER100087_proof_v1i6.pdf
	Cellular State Transformations Using Deep Learning for Precision Medicine Applications
	Introduction
	Results
	Validation of TSPG
	Applying TSPG to Precision Medicine
	Comparison of TSPG Results between Patients
	Comparing TSPG with Differential Gene Expression

	Discussion
	Efficacy of TSPG
	TSPG as an Alternative to Differential Gene Expression Analysis
	TSPG Quantitatively Defines Tumor Genomic Heterogeneity
	Identifying Papillary RCC Type-Specific Alterations
	Understanding the Transcriptional Aberrations of BP's p1RCC

	Experimental Procedures
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Input Data
	TSPG Design
	TSPG Workflow
	Train the Target Model
	Train the Perturbation Generator
	Generate Sample Perturbations

	Initial Validation
	Unifying Patient Data with TCGA/GTEx
	Functional Enrichment Analysis
	Running TSPG on Patient-Specific Data
	Differential Gene Expression Analysis

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



