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THE BIGGER PICTURE We present the first, and to our knowledge only, approach for predicting sex differ-
ences in drug response corroborated by pharmacogenomic data. Our algorithm AwareDX identifies drugs
associatedwith increased rates of adverse events to either sex. AwareDX usesmachine learning to dampen
correlated covariates andmitigate confounding biases of sex. This approach has the potential to generalize
to understudied populations in many data science domains. We introduce a resource of sex-specific
adverse drug effects for use in drug discovery, repositioning, and pharmacogenetic studies and for further
analysis through electronic health records and clinical trials. Ultimately, such analyses could potentially
raise awareness of sex differences during clinical decision making.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Adverse drug reactions are the fourth leading cause of death in the US. Although women take longer to
metabolize medications and experience twice the risk of developing adverse reactions compared with
men, these sex differences are not comprehensively understood. Real-world clinical data provide an oppor-
tunity to estimate safety effects in otherwise understudied populations, i.e., women. These data, however,
are subject to confounding biases and correlated covariates. We present AwareDX, a pharmacovigilance
algorithm that leverages advances in machine learning to predict sex risks. Our algorithm mitigates these
biases and quantifies the differential risk of a drug causing an adverse event in either men or women.
AwareDX demonstrates high precision during validation against clinical literature and pharmacogenetic
mechanisms. We present a resource of 20,817 adverse drug effects posing sex-specific risks. AwareDX,
and this resource, present an opportunity to minimize adverse events by tailoring drug prescription and
dosage to sex.
INTRODUCTION

Adverse drug reactions (ADRs) are unwanted effects of drugs

that lead to injury and disease. In 2016, the cost of drug-related

morbidity and mortality was estimated at $528.4 billion.1 ADRs

are the fourth leading cause of death in the United States—

ahead of pulmonary disease and diabetes.2 Although half of all

ADRs are preventable,3 many population-specific ADRs remain

unidentified. This is largely because clinical trials have historical-

ly been conducted in homogeneous patient populations (e.g.,
This is an open access article under the CC BY-N
white males). Until 1993, the US Food and Drug Administration

(FDA) designated women as a special ‘‘subgroup’’ of patients

during clinical trials.4,5 A decade after this designation was lifted,

women remained severely underrepresented in clinical trials.6

Women have a 2-fold greater risk of developing ADRs than

men.7 This increased risk cannot be explained by the use of hor-

monal contraceptives.8 Rather, differences in pharmacokinetics

and pharmacodynamics induce increased drug bioavailability

and greater sensitivity to medication in women.9,10 For example,

it is well known that being female is a risk factor for developing
Patterns 1, 100108, October 9, 2020 ª 2020 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:nick.tatonetti@columbia.edu
https://doi.org/10.1016/j.patter.2020.100108
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2020.100108&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Drug Exposure Counts with Highest Disproportionatlity

in Sex from FDA’s Adverse Event Reporting System

Drug Male Female

avanafil 458 2

udenafil 458 2

degarelix 1,500 6

radium dichloride 2,403 16

abiraterone 15,210 96

enzalutamide 35,015 242

drospirenone 3 2,000

norethisterone 7 2,243

ospemifene 7 2,250

medroxyprogesterone and estrogen 17 21,776

drospirenone and ethinylestradiol 52 40,536

conjugated estrogens 176 57,524
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torsades de pointes from cardiovascular drugs.11,12 21 years af-

ter it was approved as an insomnia drug, the recommended

dosage of Zolpidem (Ambien) was halved for women due to their

decreased metabolic clearance.13 While a few sex risks such as

these have been clinically established, a comprehensive under-

standing remains lacking.

The FDA maintains post-marketing drug surveillance data

in its Adverse Event Reporting System (FAERS). This

resource presents an opportunity to systematically quantify

sex-specific risks of drugs. However, FAERS is subject to

many biases because of differential prescription and the

sex-specific nature of some diseases and drugs. When sex

risks are calculated using simple disproportionality analysis,

causative covariates can create selection bias that leads to

‘‘synthetic’’ associations being identified. A drug can show

a synthetic association with an ADR that is more appropri-

ately attributed to the sex-exclusive nature of the underlying

disease. For example, chemotherapy drugs for breast cancer

and prostrate cancer are commonly associated with sex-spe-

cific adverse drug effects (ADEs).14 Medications that have

sex-exclusive prescription can also confound drug-effect as-

sociations. Ethinyl estradiol, commonly found in oral contra-

ceptives, has many sex-specific effects simply due to differ-

ential consumption in women. These issues extend to other

confounding factors, such as age and co-medication. Elderly

age and concomitant drug use are known risk factors for

ADRs.15 Because women tend to live longer than men and

take more medications simultaneously, this can induce addi-

tional synthetic associations.

Although systematic work in this domain remains very

limited, one seminal study used disproportionality analysis

on FAERS to identify drugs with higher odds of having an

adverse event for either sex.16 While the study corrected

for differential reporting bias, it did not account for other co-

variates, such as sex-specificity of diseases, differential pre-

scription, and demographic associations with sex. This anal-

ysis was limited because it only corrected for reporting bias

after finding significant associations and potentially missed

findings that remained hidden due to biases in the underlying

data. Moreover, the study did not include an independent
2 Patterns 1, 100108, October 9, 2020
validation that connected its findings to pharmacogenetic

mechanisms.

Here, we present an algorithm, AwareDX: AnalysingWomenAt

Risk for Experiencing Drug toXicity. AwareDX mitigates sex

biases in the data by using a machine learning adaptation of

propensity score matching. This approach has been used to

effectively identify ADRs caused by drug-drug interactions.17 A

random forest (RF) model predicts the likelihood of being

‘‘female’’ given confounding factors. Using this likelihood,

drug-exposed females are matched to drug-exposed males to

create balanced cohorts for downstream disproportionality anal-

ysis.We show that by building these cohorts, AwareDXmitigates

79% of underlying sex biases. Using this data-driven approach,

we successfully flagged significant sex-specific ADEs, many of

which were previously unknown. For independent validation of

our algorithm, we not only used clinical literature but also

explored the metabolic and genetic basis of sex differences in

drug response. Given a set of genes with differential expression

across sex18 and information about how their variants affect drug

response,19 we hypothesized that genes with sex-differential

expression should lead to sex-differential ADRs similarly to var-

iants of those gene. We show that AwareDX recovers these ex-

pected sex risks with high precision.

RESULTS

Adverse Event Reports Contain Many Confounding
Biases and Covariates of Sex
Of the 8.8 million patients in FAERS, 61.9% were female. Sex-

differential drug exposure was evident from the biased reporting

of sex for certain medications (Table 1). We characterized sex-

specific bias between drugs and adverse events by calculating

proportional reporting ratios (PRR). For sex-exclusive ADRs,

we calculated the PRR averaged over all drugs for each sex.

The sex bias for an ADR was quantified as the absolute differ-

ence in mean PRR across sex. Figure 2A visualizes adverse

events with the largest sex biases. We established age (two-

sample t test; t = 2.31, P = 0.0239) as a covariate of sex. No

significant association was found between concomitant drug

exposures and sex (Mann-Whitney U test; statistic = 5,388.0,

P = 0.0800).

Our Machine Learning Method Mitigates Sex Biases
Our algorithm mitigates biases in FAERS by using covariate in-

formation to build sex-balanced cohorts for drug-exposed sub-

populations (visualized in Figure 1). We used traditional machine

learning models to predict propensity scores (i.e., the likelihood

of being female) for each patient given information about drug

exposure, co-medications, and age. All models had similar per-

formance ( ± 2% accuracy) during cross-validation (see Table 2).

We selected random forest (RF) because its ability to predict out-

of-bag scores allowed us to conserve 100% of reports for

downstream disproportionality analysis. The RF model had an

out-of-bag score of 0.63 and area under receiver operating

characteristic curve (ROC-AUC) of 0.64. See Figure S2 for

feature importances and ROC curve.

To characterize the effectiveness of our approach in

migitating sex biases, we examined the PRR disparity before

and after applying AwareDX. We calculated the mean PRR for



Figure 1. How Does AwareDX Determine Sex

Risks?

AwareDX evaluates sex risks in three steps: pre-

dicting propensity scores, building cohorts that

mitigate bias, and doing disproportionality analysis.

Starting at the top, for each patient, drug exposure,

age, and co-medication features are curated from

adverse event reports. A random forest model uses

each patient’s features to predict their propensity

score, i.e., their likelihood of being female. These

propensity scores are used to mitigate biases when

evaluating sex risks. To analyze the sex risk of a

drug and adverse event, the following steps are

repeated for 25 iterations. The drug-exposed sub-

population is selected. Then propensity scores are

used to build sex-balanced cohorts of that sub-

population. The patients within the cohorts have

reported various adverse events, represented here

by green, purple, and orange circles. For the

adverse event of interest, a contingency matrix is

constructed. A chi-square test supplies the P value

for that iteration and the loge reporting odds ratio

quantifies the sex risk. After 25 iterations, if all

P values are significant, then the mean loge report-

ing odds ratio ± 95% CI are used to quantify the

sex risk. ADR, adverse drug event; F, female; M,

male; e, has adverse event; :e, does not have

adverse event.
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sex-specific ADRs on cohorts built using our adaptation of pro-

pensity score matching. Overall, 79.2% of PRRs were removed

or dampened after applying AwareDX. Figure 2B reinforces

this finding by showing that PRR disparity is significantly

reduced after applying AwareDX. Furthermore, we qualitatively

explored the distribution of propensity scores predicted by the

RF model for each sex (Figure 3). While the propensity scores

overlap for a large majority of patients, many subsets of patients

are clearly separated.
A Resource of Sex-Specific ADEs
Wepresent a resource of 20,817 ADEs that

AwareDX predicted as posing sex-specific

risks (Table S1). This resource comprises

of 792 unique drugs and 297 unique

ADRs. The sex risks are summarized using

a volcano plot (Figure 4) and histogram

(Figure S1). 62.7% of significant hits posed

increased risks to women. Each drug was

associated with 26 sex risks of ADRs on

average. For the 10 most prescribed drugs

in the US,20 this average increased to 66

ADRs per drug. For the 10 drugs with the

highest adverse event reports in FAERS,

there were 87 sex-specific ADR risk asso-

ciatedwith each drug.We identify themost

prominent sex risks in Table 3, which

shows the top 5 drug-ADR pairs that

pose the highest risk to each sex. The

‘‘highest risk’’ ADEs were defined as those

with the largest absolute logarithm of the

reporting odds ratio (logROR) where the

associated ADRs had a severity score21
greater than 0.5. Table 4 shows the most prominent risks to

each sex from the 10 most prescribed drugs. A complete data-

base of all 287,605 sex risks evaluated by AwareDX is included

in the Supplemental Information (Table S2).

Distribution of Sex Risks by Disease Indications and
Drug Mechanisms
We characterized the variation of sex risks within drug and

adverse event classes. To explore the variation of adverse
Patterns 1, 100108, October 9, 2020 3



Table 2. Performance of Machine Learning Models at Predicting

Propensity Scores

Model Specification Accuracy

Support vector machine Radial basis function 0.62 ± 0.0038

Polynomial (p = 3) 0.62 ± 0.0038

Linear 0.65 ± 0.0058

Random forest Gini impurity 0.63 ± 0.0037

Entropy 0.63 ± 0.0039

Logistic regression L1 0.65 ± 0.0064

L2 0.65 ± 0.0063

ElasticNet (ratio = 0.5) 0.65 ± 0.0063
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events within disease indication groupings, we compared the

distribution of drug-event pairs by sex in each system organ

class (SOC). Figure 5 shows the top SOCs with the most dispro-

portionate distribution in each sex. Women are at greatest risk

for experiencing disorders of musculoskeletal and connective

tissue; of skin and subcutaneous tissue; and of the eye. On the

other hand, men are vulnerable to congenital and genetic disor-

ders; benign andmalignant neoplasms; and blood and lymphatic

system disorders. Figure 5 demonstrates a nuanced under-

standing that goes beyond simply assigning the risk of an SOC

to either sex. Across ADR classes, the yellow dots (indicating

SOC risks) are much closer to zero than the dark gray dots (indi-

cating high level group term [HLGT] risks). Sex risks have amuch

smaller effect size (logROR) at the SOC level than the HLGT level.

Similarly, we analyzed the distribution of drugs when grouped

by mechanism at the ATC 4 level. Figure 6 shows the top drug

classes with the most disproportionate risk distribution across

sex. Men are at greatest risk from taxanes, pyrimidine deriva-

tives, and calcineurin inhibitors. Cardiac glycosides (digitalis);

alpha and beta blocking agents; fast-acting insulins and analogs

for injection pose the largest risk of ADRs to women. Across drug

classes, there is an even mix of yellow dots (indicating ATC 4

risks) and dark gray dots (indicating ATC 5 risks). This signals

that effect sizes (logROR) are relatively similar for individual

drugs and those grouped by mechanism.

Clinical and Pharmacogenetic Validation Show that
AwareDX has High Precision
To validate our algorithm, we used ADEs known to have sex dif-

ferences according to clinical literature and pharmacogenetic

mechanisms. We curated 22 expected sex differences in

drug-ADR pairs from clinical literature. Of these, 3 drugs had

insufficient patient data to test reliably. Of the remaining 19 asso-

ciations, AwareDX recovered 1 male and 8 female sex risks

correctly and the rest were predicted as no risk (see the Confu-

sion matrix in Table 5). Our method had perfect precision but low

recall (see Performance in Table 5). Critically, AwareDX did not

classify expected male risks as female or vice versa since incor-

rect predictions were limited to predicting ‘‘No Risk.’’ The exact

odds and confidence intervals (CI) predicted for each drug-ADR

pair are listed in Table S4.

For further validation, we explored genes with sex-differential

expression and pharmacogenetic variants of these genes. We

tested whether AwareDX could recover sex risks expected

according to pharmacogenetic mechanisms. We curated 28
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expected sex differences in drug-ADR pairs using reported

sex-differential expression in hepatic metabolism and transport

genes18 and knowledge from PharmGKB19 on their pharmaco-

genetic effects. Of these, 2 drugs were not found in FAERS and

2 drugs had insufficient patient data to test reliably. Our algo-

rithm correctly recovered 9 of the remaining 24 risks and found

no significant associations with the other 15. To ensure that our

method was not predicting excessive false positives, we tested

AwareDX against negative examples (i.e., drugs known not to

have sex differences). Because a proper negative control set

did not exist, we generated a set of pseudo-negative examples

from variants without statistically significant associations in

PharmGKB. Of the 14 pseudo-negative examples, 1 drug was

not found and the remaining were correctly predicted as having

no risk. The Confusion matrix in Table 6 combines results for

positive and pseudo-negative examples. As with literature vali-

dation, AwareDX had 100% precision and low recall for both

sexes. After including the no risk category, the weighted

average precision was 81% and recall was 59% (see Perfor-

mance in Table 6). As with literature validation, no false posi-

tives were predicted for the male and female categories. To

the best of our knowledge, our algorithm is the first and only

pharmacogenetically validated method for predicting sex risks.

Predicted odds and CI for all expected sex risks are available

from the Supplemental Information.

AwareDX Recovers Known Pleiotropic Effects of Gene
ABCB1 for Adverse Events across Sexes
During validation against pharmacogenetic mechanisms, our

algorithm confirmed that a single gene can pose disparate risks

for men and women. ABCB1 was expected to pose a risk to men

from simvastatin and another to women from risperidone (Fig-

ure 7). AwareDX correctly recovered both risks, thereby showing

that sex-differential gene expression can have complex down-

stream effects on pharmacokinetics and pharmacodynamics

(Figure 7).

Sex Risks Identify Genes that Could Be Potentially Very
Important Pharmacogenes
After independently validating AwareDX, we leveraged its find-

ings to identify genes that could have variants with important,

and possibly undiscovered, pharmacokinetic and pharmacody-

namic effects. For each gene, we compared the counts of drugs

associated in DrugBank to the count of significant sex risks iden-

tified by AwareDX (Table 7). Applying linear regression to both

log counts resulted in line with a coefficient of 0.941 and inter-

cept of �0.0373 (y = 0.941x � 0.0373). Each gene’s level of

importance as a pharmacogene was quantified as the residual

from this line. The top 5 genes were CYP2A13, FMO1, ALDH5A1,

CYP27A1, and FMO3 (see Figure S4).

DISCUSSION

AwareDX Identifies and Mitigates Confounding Biases
in Underlying Data
The effectiveness of AwareDX in correcting sex biases is evident

in (1) the ability of the RF model to clearly separate patients by

sex and (2) the improvement in the sex disparity of PRRs for

sex-specific ADRs. We used an RF model to predict propensity



Figure 2. AwareDX Mitigates Sex Biases

To quantify sex biases in FAERS, we selected adverse events that were sex-exclusive and calculated their PRR for each sex averaged over all drugs. In (A), sex

biases in the original data are evident from the large disparity in PRR between males and females. AwareDX corrects sex biases by building balanced cohorts by

sampling from propensity scores. (B) Shows sex biases (PRR disparity) in original data (‘‘Before’’ column) and after applying our algorithm (‘‘After’’ column). Sex

disparity across adverse events was significantly reduced after applying AwareDX. Thus, AwareDX effectively mitigated the effect of confounding biases and

covariates of sex. PRR, proportional reporting ratio; FAERS, FDA Adverse Events Reporting System.
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Figure 3. Distribution of Propensity Scores

For each patient, a random forest model was used

to predict a propensity score, i.e., the likelihood of

being female. Both histograms visualize propensity

score (x axis) against density or normalized fre-

quency (y axis). (A) The distribution of propensity

scores where the true sex label wasmale and (B) the

distribution of propensity scores where the true sex

label was female. There is clear separation for some

subsets of patients, with the propensity scores for

females tending toward 1 and those for males

tending toward 0.
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scores (i.e., the likelihood of being female) from drug exposure,

co-medication, and age features. Analyzing the feature impor-

tances (Figure S2A) showed that the top features were logically

linked to knowledge of sex. For example, Niraparib, the fourth

most important feature, is used to treat ovarian cancer. This sug-

gests that propensity scores were generated by using informa-

tion from confounding factors, as expected.

The propensity scores generated by the RF model demon-

strate the high predictive ability of the curated features for

some patients. The distribution of propensity scores (Figure 3)

shows clear separation for some subsets of patients, with the

propensity scores for women tending toward 1 and those for

men tending toward 0. The model clearly singled out patients

associated with sex biases using covariate features. Further-

more, we used the sex disparity in the PRR of MedDRA’s

gender-specific ADRs to quantify sex bias in FAERS. Applying

AwareDX reduced or removed 79.2% of these PRR differences.

Thus, our machine learning approach was able to identify pa-

tients associated with covariates and effectively dampen these

biases.

Sex Risks Are Highly Precise and Consistent with
Clinical Literature
During both literature and pharmacogenetic validation (Tables 5

and 6), AwareDX had 100% precision for predicting male and

female sex risks. After including theNoRisk categoryduringphar-

macogenetic validation, the weighted average precision was

81%. Critically, there were zero false positives in themale and fe-

male categories. Furthermore, we identified the disease indica-

tions and drug mechanisms that most disproportionately affect

the sexes (Figures 5 and 6). Many of these results have been re-

ported previously in clinical settings. The discovery that women

are at risk of musculoskeletal and connective tissue disorders is

well known.22 Zopf and colleagues22 found that female patients

experienced a significantly higher incidence of musculoskeletal

system ADRs than their male counterparts. AwareDX predicted

that women are prone to ADRs from alpha and beta blocking

agents and from cardiac glycosides. Because of pharmacody-

namic differences, females are known to have greater sensitivity

and enhanced bioavailability of beta blockers.10 Digoxin, the

only cardiac glycoside that is frequently used in clinical settings,

notoriously causes increased mortality in women at high serum

concentration.10,23 Thus, the sex risks identified are precise and

broadly in accordancewith clinical literature. AwareDX is the first,

and to our knowledge only, approach for predicting sex risks that
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is not only in agreement with clinical literature but has also been

validated against pharmacogenetic mechanisms.

Sex Risks Increase with Increasing Specificity of ADRs
but Are Stable across Drug Mechanism Groupings
We clustered sex risks by adverse events and drugs to explore

patterns of incidence across sex risks. We studied the variation

in effect size (mean logROR) across groupings of adverse events

by etiology and of drugs by mechanism. For ADRs, effect sizes

were generally larger at the HLGT level than at the SOC level (Fig-

ure 5). The pharmacogenetic analysis, conducted at the preferred

term (PT) level, also found significant sex risks. This suggested

that neither sexwas at great risk for experiencing all eventswithin

the umbrella SOC term. Rather, sex risks increased with

increasing specificity of the ADR. Effect sizes were relatively

similar for drugs grouped by mechanism and for individual drugs

(Figure 6). Because drugs with the same mechanism of action

tend to have analogous metabolic pathways, they could pose

similar sex risks. This pattern may not hold on drug groupings

by therapy or pharmacology, such as ATC 3 and above.

Anakinra Poses Severe, Disparate, and Previously
Unknown Risks to Both Sexes
Anakinra is an interleukin-1 receptor antagonist that is most

commonly used to treat rheumatoid arthritis. Between 5% and

10% of patients on Anakinra experience severe side effects,

such as neutropenia and acute infections. Anakinra was associ-

ated with three of the 10 most prominent sex risks reported

(Table 3). AwareDX predicted that Anakinra puts men at risk

of a common disease of the colon: diverticular disorders

(logROR = 4.52; 95% CI = 4.51–4.54). Women exposed to Ana-

kinra are vulnerable to vascular inflammations (logROR = 3.25;

95% CI = 3.03–3.48) and musculoskeletal and connective tissue

deformities (logROR = 2.54; 95% CI = 2.37–2.71). To the best of

our knowledge, neither diverticular disorders nor vascular inflam-

mations have been associated with Anakinra in the past. The

highly disparate nature of the predictions suggests that AwareDX

is capable of predicting risks that are not skewed toward

either sex.

ABCB1 Provides a Pharmacogenetic Basis for Disparate
Sex Risks
The sex-differential expression of a single gene can lead to

complex ADEs in both sexes. Existing knowledge maintains

that a single gene, ABCB1, can pose disparate risks for men



Figure 4. Volcano Plot of Significant Sex

Risks

The volcano plot visualizes the magnitude of each

sex risks (logeROR; x axis) against their significance

(�log 10 adjusted P value; y axis). Each point rep-

resents a drug-adverse event pair. Blue points

indicate male risks. Pink points indicate female

risks. Gray points indicate sex risks that did not pass

the significance threshold (P% 0:05 after applying a

Bonferroni correction) or had a low magnitude

(ROR < 1.5). The significance threshold is denoted

by the horizontal dotted line and the magnitude

thresholds are denoted by the vertical dotted lines.

See also Figure S1.

Abbreviations: ROR, reporting odds ratio.

ll
OPEN ACCESSArticle
and women. ABCB1 is a very important pharmacogene that

codes for a hepatic efflux pump.24 It has been shown to have

a 1.13-fold higher expression in males.18 Based on information

about its variants, we expected ABCB1 to pose (1) an increased

risk to males for myalgia from exposure to simvastatin and (2)

an increased risk to females for prolonged QTc from exposure

to risperidone (Figure 7). AwareDX correctly predicted both

these results, thereby demonstrating that it can recover dispa-

rate sex risks that are grounded in pharmacogenetic mecha-

nisms. This validation of our algorithm lends further support

to putative sex risks that may be disparate, such as with

Anakinra.

Predictions of Pharmacogenes Are Supported by Known
Metabolic Pathways
We leveraged our results to flag genes that could be very

important pharmacogenes (see Table 7). All flagged genes

had zero to few clinical annotations on PharmGKB. We

explored whether clinical literature could establish drug-gene

interactions for the two most compelling genes: CYP27A1

because it was associated with the highest number of drug-

ADR pairs and FMO3 because it was associated with the

most number of drugs.

CYP27A1 was most strongly associated with cholecalciferol

(vitamin D3) and then with ergocalciferol (vitamin D2).

CYP27A1 had no clinical or variant annotations on PharmGKB.

The pharmacogenetic associations of CYP27A1 and vitamin D

are stated as ‘‘unknown’’ on DrugBank, and to the extent of

our knowledge, have not been discovered elsewhere. One func-

tion of CYP27A1 is to metabolize vitamin D; specifically having

vitamin D3 25-hydroxylase activity.25–27 A study showed that

vitamin D supplementation could impair organ function even in

hypovitaminosis D.28 In our findings, all (29 of 29) sex risks

from cholecalciferol were posed to women and the majority

(4 of 6) of sex risks from ergocalciferol were posed toward

men. Specifically, women might be at risk of coagulopathies
and bleeding diathesis (logROR = 1.61;

95% CI = 1.53–1.69) and gastrointestinal

conditions (logROR = 1.73; 95% CI =

1.63–1.82) from cholecalciferol. Men

exposed to ergocalciferol could be vulner-

able to cytogenetic investigations (log-

ROR = 0.93; 95% CI = 0.90–0.95). This
may suggest that women respond better to vitamin D2 and

men respond better to vitamin D3.

FMO3 was associated with three different drugs in our results:

clozapine, olanzapine, and dasatinib. Clozapine and olanzapine

are anti-psychotics that have very similar chemical structures.29

Dasatinib is a tyrosine kinase inhibitor used to treat leukemia. On

PharmGKB, FMO3 was only annotated as affecting the serum

concentration of olanzapine and no risks for ADRs from olanza-

pine were noted. Clozapine and dasatinib were not associated

with FMO3 on PharmGKB. FMO3 codes for a liver enzyme

that oxidatively metabolizes olazapine,30 clozapine,31 and

dasatinib.32 According to our results, all three drugs could be

associated with ADR risks to women: clozapine may cause uter-

ine, pelvic, and broad ligament disorders (logROR = 2.86; 95%

CI = 2.62–3.10); olanzapine may cause genitourinary tract disor-

ders (logROR = 0.82; 95% CI = 0.79–0.85); and dasatinib may

cause skin appendage conditions (logROR = 0.92; 95% CI =

0.88–0.95).

Limitations
Literature and pharmacogenetic validation showed that

AwareDX has a low recall, 47% and 59% weighted averages

respectively. In part, the low recall could be due to the algo-

rithm’s minimum data requirement of 250 patients per sex to

prevent oversampling of rare ADRs. The performance of our

method with respect to detecting rare events exhaustively

may be less reliable. Nevertheless, it is important to note that

sex differences in drug-induced adverse events are a relatively

rare phenomenon. In similar analyses we published in the

past,33–35,17 where we used data-mining algorithms to identify

and experimentally validate unexpected adverse effects, we

found similarly low recall. It is not recall that is critical in these

cases, but the enrichment of true positives against the predicted

positives (i.e., precision).

Our method assigns P values to each iteration of stochastic

sampling and risk calculation rather than drug-ADR pairs.
Patterns 1, 100108, October 9, 2020 7



Table 3. Top Sex Risks Predicted by AwareDX

Drug Description Indication ADR Sex logROR 95% CI

anakinra interleukin-1 receptor

antagonist

rheumatoid

arthritis

diverticular disorders M 4.52 (4.51, 4.54)

chlordiazepoxide benzodiazepine anxiety disorders central nervous system infections

and inflammations

M 3.86 (3.82, 3.91)

desoximetasone topical anti-inflammatory

glucocorticoid

skin irritation,

allergic reactions

miscellaneous and site unspecified

neoplasms

M 3.76 (3.73, 3.78)

sirolimus immunosuppressant transplant and

heart stent

non-hodgkin’s B cell lymphomas M 3.09 (3.04, 3.13)

misoprostol prostaglandin analog stomach ulcers metabolism disorders M 2.93 (2.91, 2.96)

anakinra interleukin-1 receptor

antagonist

rheumatoid

arthritis

vascular inflammations F 3.25 (3.03, 3.48)

rizatriptan triptan drug migraine headaches pulmonary vascular disorders F 3.14 (2.92, 3.36)

abatacept soluble fusion protein rheumatoid

arthritis

parathyroid gland disorders F 2.72 (2.54, 2.91)

phentermine atypical amphetamine weight loss central nervous system vascular

disorders

F 2.57 (2.41, 2.74)

anakinra interleukin-1 receptor

antagonist

rheumatoid

arthritis

musculoskeletal and connective

tissue deformities

F 2.54 (2.37, 2.71)

ADR, adverse drug reaction; CI, confidence interval; F, female; logROR, loge reporting odds ratio; M, male.
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When iterations are assimilated into the mean logROR with CIs,

the P values are lost. We apply strict cut offs to predicted risks by

ensuring that each iteration produces a significant P value before

labeling the drug-event pair as having a sex risk. While our

approach is extremely conservative, there remains potential to

develop a method that can quantify the significance of each

sex-specific ADE.

Evaluation of side effect prediction algorithms, in general, is

not straightforward; no gold standard of known ADEs exists. In

lieu of a standard, we evaluated our proposed methodology

against known pharmacogenetic mechanisms and clinical litera-

ture. To compensate for the lack of a proper negative control set,

we generated a set of pseudo-negative examples from statisti-

cally insignificant pharmacogenetic mechanisms. Although

these methods of validation independently evaluated our algo-

rithm, they could not evaluate the resource of sex risks gener-

ated by said algorithm. Sex risks in validation were reported at

a lower MedDRA level compared with sex risks in our resource

(HLGT/SOC). Mapping these preferred terms (PT) up to HLGTs

or SOCs for validation would not be semantically consistent.

Furthermore, it was not practical to conduct the initial study us-

ing PTs due to statistical and data reasons mentioned in the

‘‘Data Processing and Mapping’’ section of the Experimental

Procedures. A publicly available resource of sex risks would

greatly enhance the evaluation of the sex risks identified in our

resource. Finally, our findings are limited by the data we use.

Because FAERS consists of reports from the US, these results

may not generalize to non-representative patient populations.

It would be valuable to compare the results of this and other al-

gorithms across adverse event reporting systems.

Future Directions
We present a new resource of sex-specific ADEs (Table S1). This

resource could vastly advance the consideration of sex during

drug discovery, repositioning, and pharmacogenetic studies.
8 Patterns 1, 100108, October 9, 2020
The sex risks proposed here could be examined retrospectively

in electronic health records or prospectively through pre-clinical

studies and clinical trials. Furthermore, unsupervised learning

techniques could be applied to identify patterns in sex-specific

ADEs. Ultimately, these analyses would contribute toward

advancing knowledge of sex differences during drug

prescription.

AwareDX is able to identify patient reports associated with co-

variates of sex and effectively dampen confounding biases. It

can be applied to systematically quantify sex risks from any

post-marketing surveillance dataset. The algorithm can also be

restructured to correct biases in any discrete variables of inter-

est. For instance, sex can be replacedwith age to study pediatric

ADEs. In essence, our method corrects for confounding biases

found in an understudied population. This approach of usingma-

chine learning to build balanced cohorts for disproportionality

analysis has the potential to generalize to many data science

domains.

Conclusion
Adverse reactions are the fourth leading cause of death in the US

and women have twice the risk of developing them as compared

with men. Unfortunately, sex differences in drug response have

neither been systematically studied nor clinically applied. Here,

we present an algorithm that is the first, and to our knowledge

only, validated approach for predicting sex risks. Our algorithm

AwareDX identifies drugs posing increased risks of adverse

events to either sex.We show that AwareDXmitigates confound-

ing biases in data and recovers known clinical and pharmacoge-

netic sex risks with high precision. Our resource of sex-specific

ADEs would be suitable for use in drug discovery, repositioning,

and pharmacogenetic studies. We believe that AwareDX could

vastly advance the incorporation of sex in considerations of

drug safety and efficacy. Knowledge of sex differences during

drug prescription has the potential to significantly reduce



Table 4. Top Sex Risks Posed by the 10 Most Prescribed Drugs in the US

Drug Indication ADR Sex logROR 95% CI

atorvastatin dyslipidemia glucose metabolism disorders (including diabetes mellitus) F 1.33 (1.33, 1.34)

vascular therapeutic procedures M 0.59 (0.61, 0.57)

levothyroxine

sodium

hypothyroidism synovial and bursal disorders F 0.94 (0.91, 0.97)

congenital cardiac disorders M 2.15 (2.17, 2.13)

lisinopril hypertension and

myocardial infarction

anterior eye structural change, deposit, and degeneration F 1.06 (1.04, 1.07)

suicidal and self-injurious behaviors NEC M 0.39 (0.40, 0.38)

gabapentin seizures aural disorders NEC F 0.58 (0.56, 0.60)

hemolyses and related conditions M 0.72 (0.74, 0.70)

amlodipine hypertension, coronary

artery disease, angina

anterior eye structural change, deposit, and degeneration F 0.74 (0.72, 0.76)

hepatobiliary neoplasms: malignant and unspecified M 0.91 (0.94, 0.88)

amoxicillin bacterial infections allergic conditions F 0.46 (0.45, 0.47)

fatal outcomes M 0.67 (0.69, 0.65)

omeprazole gastric acid-related disorders connective tissue disorders (excluding congenital) F 0.99 (0.96, 1.02)

hepatobiliary neoplasms: malignant and unspecified M 0.89 (0.92, 0.87)

metformin type 2 diabetes mellitus anterior eye structural change, deposit, and degeneration F 0.66 (0.65, 0.68)

hepatobiliary neoplasms: malignant and unspecified M 0.90 (0.92, 0.87)

losartan hypertension fractures F 0.77 (0.74, 0.79)

fatal outcomes M 0.62 (0.64, 0.61)

paracetamol moderate pain and fever connective tissue disorders (excluding congenital) F 0.73 (0.71, 0.76)

urethral disorders (excluding calculi) M 1.19 (1.23, 1.16)

ADR, adverse drug reaction; CI, confidence interval; F, female; logROR, loge reporting odds ratio; M, male; NEC, not elsewhere classified.
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adverse events, making AwareDX a valuable tool for the

advancement of precision medicine.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the Lead Contact, Nicholas Tatonetti (nick.

tatonetti@columbia.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All source data used in the paper are publically available. We downloaded the

following: (1) FAERS from openFDA; (2) Gender Specific Adverse Events List

from MedDRA; (3) Severity Scores for MedDRA Adverse Events from Table

S2 from Gottlieb and colleagues21; (4) Sex Differences in the gene expression

from supplementary materials from Yang and Li18; and (5) a vocabulary linking

MedDRA, SNOMED CT, and RxNorm from OHDSI Athena. The exact data-

base used in this study is available on request. The published article includes

all datasets generated during this study. See Tables S1 and S2 for sex risks

generated by AwareDX and Tables S3 and S4 for expected sex risks curated

fromPharmGKB and literature. The code generated during this study are avail-

able on our GitHub repository tatonetti-lab/sex_risks.

Data Processing and Mapping

Using an API key with extended permissions, we extracted and processed all

available drug-event json files through the second quarter of 2019 from FAERS.

Wedevelopedanextraction, transfer, and loadpipeline toget the jsonembedded

data ina tabular format for conversion intoanSQLdatabase.Thecode topull em-

beddings and to generate the database can be found onGitHub openFDA drug-

event parsing and TABELIZER!, respectively. From the FAERS data, all patients

withmissingsexwereexcluded fromthisanalysis.Patientsover theageof85and

under the age of 18 were excluded, which led to 5.25% of patients being

excluded. Ultimately, the dataset consisted of 8,860,677 patients.
In FAERS, drugs and adverse events are identified using RxNorm and

MedDRA, respectively. Although AwareDX can be applied to any vocabu-

lary, we mapped drugs and ADRs in the following manner to ultimately

allow for effective generalization of our results. We mapped drugs from

RxNorm to ATC using Athena by OHDSI. A total of 1,458 drugs were iden-

tified at the ATC 5 level, and were mapped to 481 drug classes at the ATC

4 level.

AwareDX can be applied at any MedDRA level, including PTs, HLGTs,

and SOCs. Although FAERS data are reported at the PT level, we leveraged

the MedDRA heirarchy to reduce noise and errors by mapping PTs to

HLGTs and SOCs. Analyzing SOCs and HLGTs required only 700,000

tests, as opposed to 35 million tests with PTs. With only 8.8 million adverse

event reports, mapping to higher levels allowed us to preserve the power of

our analysis. By aggregating up to SOC/HLGT, we leverage information

theory to reduce the effect of noise at the PT level. Many PTs can be syn-

onymous with other PTs and the choice of a term may be arbitrary and

dependent on the specific reporter or the specific data abstractor at the

FDA. For example, the following PTs all encoded a specification of heart

failure but had noisy and imbalanced reporting: Cardiac failure (36,404 re-

ports), Cardiac failure acute (2,559), Cardiac failure chronic (1,359), Car-

diac failure congestive (53,487), Cardiac failure high output (75). All of these

terms mapped to the HLGT ‘‘Heart failures’’ and the SOC ‘‘Cardiac disor-

ders.’’ These higher-level terms served as more robust statistics that coun-

teracted semantic and reporting variations in the FAERS dataset. Because

of these merits, we mapped ADRs from 18,335 PTs to 335 MedDRA HLGTs

and 27 SOCs. If a PT belonged to multiple groups, it was mapped sepa-

rately to each higher-level group. Severity scores in Gottlieb and col-

leagues21 were reported for MedDRA PTs. At the HLGT and SOC level,

we calculated severity scores as the mean severity score across PTs within

that grouping.

Sex Biases

To understand the relationship between sex, drugs, and adverse events, we

explored the distribution of ADRs that are known to differentially occur in either

sex. We selected sex-exclusive ADRs from MedDRA’s Gender Specific
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Figure 5. Variation in Sex Risks of Adverse Events Grouped by Etiology

For each sex, the three SOCs that posed themost disproportionate risk of ADRs to that sex are visualized here. The SOCs posing greatest risk to women (left) are

separated from those posing risks to men (right) by a dashed line. Each individual swarm plot visualizes the distribution of sex risks within the labeled SOC.

Positive sex risks are associated with women and negative risks are associated with men. Each point represents a significant sex risk from one drug-ADR pair.

Yellow dots indicate that the ADR was at the SOC level. Gray dots indicate that the ADR was at the HLGT level.

SOC, system organ class; HLGT, high level group term; logROR, loge reporting odds ratio.
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Figure 6. Variation in Sex Risks of Drugs Grouped by Mechanism

For each sex, the ATC 4 drug classes that posed the most disproportionate risk to that sex are visualized here. The drug classes posing greatest risk to women

(left) are separated from those posing risks tomen (right) by a dashed line. Each individual swarm plot visualizes the distribution of sex risks within the labeled ATC

4 drug class. Positive sex risks are associatedwith women and negative risks are associated withmen. Each point represents a significant sex risk from one drug-

ADR pair. Yellow dots indicate that the ADR was at the ATC 4 level. Gray dots indicate that the ADR was at the ATC 5 level.

ADR, adverse drug reaction; ATC 4, drugs grouped by mechanism; ATC 5, individual drugs; logROR, loge reporting odds ratio.
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Adverse Events List. For each combination of drugs, sex, and sex-exclusive

ADRs, we calculated a PRR. We quantified sex bias as the absolute difference

in mean PRR across sex. Although some of these PRR differences could have

been due to real differential risks between males and females, we assumed

that the disparity could be completely attributed to sex biases.

We explored whether AwareDX is effective in mitigating these biases. To do

so, we noted the PRR disparity in FAERS as the original or ‘‘before’’ sex biases

and we applied AwareDX to generate the corrected or ‘‘after’’ sex biases. As ex-

plained in the following section, AwareDX builds balanced cohorts for any given

drug-consuming subpopulation of FAERS. For each combination of drugs, sex,

and sex-exclusive ADRs, we calculated the PRR using patient counts from these
balanced cohorts. Sex biases were defined as the difference inmean PRRs. We

said that AwareDX mitigated a particular sex bias if the PRR disparity after was

reduced or removed compared with the PRR disparity before.

The AwareDX Algorithm

Our algorithm, AwareDX evaluated whether a drug-ADR pair had a significant

sex risk in three key steps. First, AwareDX generated propensity scores for

each patient. Next, these propensity scores were used to build sex-balanced

cohorts for each drug-consuming subpopulation. This process helped to

mitigate the sex biases found in FAERS. Finally, the algorithm applied

disproportionality analysis on the balanced cohorts to quantify the sex risk
Patterns 1, 100108, October 9, 2020 11



Table 5. AwareDX Performance during Literature Validation

Actual

Predicted

Female Male No risk

Female 8 0 8

Male 0 1 2

No risk 0 0 0

Precision Recall F1 Score

Female 1.00 0.50 0.67

Male 1.00 0.33 0.50

No risk – – –

Weighted average 1.00 0.47 0.64

Top, confusion matrix. Bottom, performance metrics. These results do

not include cases that AwareDX was not tested against due to insufficient

data or unavailable drugs.

Table 6. AwareDX Performance in Pharmacogenetic Validation

Actual

Predicted

Female Male No risk

Female 5 0 9

Male 0 4 6

No risk 0 0 13

Precision Recall F1 score

Female 1.00 0.36 0.53

Male 1.00 0.40 0.57

No risk 0.46 1.00 0.63

Weighted average 0.81 0.59 0.58

Top, confusion matrix. Bottom, performance metrics. These results do

not include cases that AwareDX was not tested against due to insufficient

data or unavailable drugs.
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of a given drug and adverse event. Figure 1 provides a visual overview of this

process.

Propensity Score Matching with Machine Learning

We adapted existing propensity score-matching methods to mitigate the con-

founding effects on sex. Each patient’s propensity score was defined as their

predicted likelihood of being female given information about their demo-

graphics and drug exposures. A classification model was trained to predict

propensity scores for each patient from curated features such as age, poly-

pharmacy, and one-hot-encodings of drug exposures. Because age was

missing for 38.5% of patients, the mean age (54.7) was imputed.

We considered variousmachine learningmodels for prediction of propensity

scores, including logistic regression, support vector machines, and RF. All

models were fit over 25 iterations, where each iteration used 10,000 patient re-

ports uniformly subsampled from FAERS. We expected the sampled reports

for a given iteration to closely follow the distribution of total patient reports in

FAERS. Each experiment’s performance was consolidated using mean and

95%CI over iterations. All models performed similarly during 5-fold cross-vali-

dation (see Table 2). We selected the RF model because it is an ensemble

model that allows the computation of out-of-bag scores. For any sample,

the out-of-bag score is calculated as the average prediction of all the trees

that have not seen the given sample during training. Importantly, out-of-bag

scores produce similar estimates to cross-validation and hold-out validation.36

Using out-of-bag scores allowed us to conserve 100%of our data, as opposed

to just the test subset, for downstream disproportionality analysis. This would

not be possible with other machine learningmethods and would unnecessarily

reduce the power of AwareDX for rare ADEs. To reduce dimensionality and

accelerate computation, we selected the top 10% of features using a chi-

square scoring function. Using grid search, we identified the ideal hyperpara-

meters as gini criterion, 100 trees, and a maximum depth of 9.

We showed that the addition of indication features and sophisticated impu-

tation techniques does not improve model performance (see Figure S3).

Although drug indications can be important confounding factors to ADE sig-

nals, model performance remained largely unchanged on adding up to 5,000

indication features. Indication features did not add substantial new information

to the model because they were tightly tied to drug exposures and their data in

FAERS was sparse (only 29.5% of indications had more than 25 patient re-

ports). Because imputing age with the mean is a simple technique, we

explored whether using a k-nearest neighbors regressor to predict age would

boost model performance. For various values of k, we found that the RF mod-

el’s out-of-bag score was remained constant. Because neither modification

had a significant impact on model performance and since other ML methods

achieved similar performance, we concluded that the RF model developed

here was sufficiently robust.

Building Cohorts with Bootstrapping

After generating propensity scores for all patients, we evaluated sex risks for

each drug. For each drug-consuming subpopulation, we built balanced co-

horts by bootstrapping. Patients were assigned to 1 of 100 bins according

to their propensity score. From each bin, we selected all the women and
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sampled an equal number of men for comparison. When a bin contained

only male/female patients, no patients were selected from that bin. The result-

ing cohorts were sex balanced and had uniform contributions from the

covariates.

For drugs with extremely limited data for either sex, bootstrapping led to

over-representation and oversampling of the limited reports. To prevent

such imbalanced prescription from leading to synthetic associations, drugs

with fewer than 250 patients for each sex were excluded from analysis. To

identify ADRs that exclusively occur in either sex, we usedMedDRA’s ‘‘Gender

Specific Adverse Events List.’’ All reports associated with these ADRs were

excluded to correct for biases in underlying diseases.

Evaluating Sex Risks with Disproportionality Analysis

To evaluate sex-specific risks of drug-event pairs, we conducted dispropor-

tionality analysis on the balanced cohorts. From the cohorts of drug-exposed

patients, we constructed a contingencymatrix as shown in Figure 1.We used a

chi-square test to identify whether a significant sex risk was present, and

calculated the logarithm of the logROR to quantify that sex risk.

Because the bootstrapping process was stochastic, the entire process from

building cohorts to calculating the logROR was repeated 25 times. After

applying Bonferroni correction to the P values, significant results ðP < 0:05Þ
were retained. For each drug-event pair, if all 25 association tests were signif-

icant, the sex risk of the pair was deemed to have a significant sex-specific

risk. This risk was quantified as the mean logROR with 95% CI, where a pos-

itive value indicated female risk and negative value indicated male risk. For

ease of interpretation, risks are reported with sex and absolute log odds

throughout.

Validation

We used ADEs known to have sex differences to validate our algorithm. We

explored clinical literature, drug product labels, and pharmacogenetic mech-

anisms to identify drug-ADR pairs with established sex-specific risks. To vali-

date, we used our algorithm to predict each of the expected sex risks given the

drug-ADR pair and tested whether the generated sex risks matched the ex-

pected sex risks. All expected sex risks were reported at theMedDRAPT level.

We did notmap these PTs to SOC/HLGT because sex risks expected at the PT

level need not exist at higher levels. Because ADRswere specified asMedDRA

PTs, the expected sex risks were not part of the tests initially run on FAERS.

Thus, each expected sex risk was run ad-hoc and AwareDX was indepen-

dently validated on an unseen set of expected ADEs.

Clinical Literature

We validated our algorithm by showing that it can recover sex risks from clin-

ical literature. To identify studies that explored sex-specific ADEs, we

searched PubMed and Google Scholar for the following terms: sex, gender,

men, man, women, woman, males, male, females, female, adverse event,

adverse drug reaction, drug, drug response, pharmacodynamics, and phar-

macokinetics. From the search results, we curated a selection of 23 relevant

articles and reviews. We excluded studies that only discussed the genetic

basis for sex risks if they did not mention a sex-specific ADE. From the



Figure 7. ‘1AwareDX Recovers Known Pleiotropic Effects of Gene ABCB1 for Adverse Events across Sexes

Top: gene ABCB1codes for a hepatic drug efflux pump that removes active drugs from circulation. The capillary delivers some drug (yellow dots) to a hepatic cell. In

the liver, gene ABCB1 is expressed and mobilizes a drug efflux pump (pink) on the apical membrane. This ABCB1 pump excretes the drug into bile ducts (green).

(legend continued on next page)
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Table 7. Genes that Could Potentially Be Very Important

Pharmacogenes, with Associated Drugs and Number of Adverse

Drug Events Predicted to Have Sex Risks

Gene Drug ADEs

ALDH5A1 sodium oxybate 7

CYP27A1 colecalciferol 29

CYP27A1 ergocalciferol 6

FMO3 clozapine 1

FMO3 olanzapine 1

FMO3 dasatinib 1

FMO1 lorcaserin 1

ll
OPEN ACCESS Article
selected studies, we identified drug-ADR pairs that had been clinically

shown to pose sex risks. We excluded agents that could not be mapped

to ATC 4 or 5. For validation, we tested AwareDX against these drug-ADR

pairs with clinically established sex risks.

We attempted to mine drug label annotations for sex risks. To search for

relevant annotations, we used DailyMed, which is the National Library of

Medicine’s official provider of FDA’s Structured Product Labels. When we

did a string matching search for any of the following terms in the Adverse

Reactions Section and the Contraindications Section, no results were

returned. The terms included: males, male, females, female, men, man,

women, woman, sex, and gender. Hence, we concluded that sex-specific

ADEs are not found frequently enough on drug labels to support a validation

analysis.

Pharmacogenetic Mechanisms

Pharmacogenetics has the potential to explain sex risks by identifying the ge-

netic variants responsible for differences in drug metabolism between males

and females. We validated AwareDX by recovering sex risks that were ex-

pected according to pharmacogenetic mechanisms. To identify expected

sex risks, we explored 77 hepatic drug-metabolizing and transporter genes

that have sex differences in expression.18 We assumed that increased expres-

sion of a gene leads to increased production of its corresponding protein.

Based on this assumption, geneswith sex-differential expression should affect

the bioavailability of drugs and pose risks for ADRs similarly to their pharma-

cogenetic variants. We used PharmGKB19 to identify variants and their asso-

ciated drug-event risks. Information about the expected sex differences, along

with relevant supporting knowledge from Yang and Li18 and PharmGKB to

explain the hypotheses, can be found in the Supplemental Information. These

expected sex risks provided a set of pharmacogenetically grounded positive

examples to test AwareDX against.

It was important to test AwareDX against negative examples (i.e., drugs

known not to have sex differences) to ensure that the true positives did not

drown in an overwhelming majority of false positives. Unfortunately, to the

best of our knowledge, no resource exists for such negative examples. None-

theless, to address the limitation faced without a proper negative control set,

we generated a set of pseudo-negative examples. For genes with known sex

differences in expression from Yang and Li,18 we used PharmGKB’s variant

annotations to identify variants without statistically significant associations

with adverse drug outcomes as pseudo-negative examples. If a sex-varying

gene’s variant had no ADEs then we expected that AwareDX should be less
Middle: ABCB1has anSNP rs1045642 (A>G). Allele A of this variant poses two vary

BothalleleAandwomen18areassociatedwith lowerexpressionofABCB1.Using th

rs1045642 allele A is linked to increased risk of prolonged QTc from risperidone. B

increased bioavailability of risperidone (blue dots) in women. This putswomen at ris

decreased risk of myalgia from simvastatin. Because allele A andwomen have simi

dots) in women. Women are at decreased risk, or, men are at increased risk of m

while the other is expected to be male due to known effects of ABCB1. In the cen

these risks correctly. ABCB1, ATP binding cassette subfamily B member 1; S

interval; SMT, simvastatin. (1) https://www.pharmgkb.org/vip/PA166170352; (2

pharmgkb.org/variantAnnotation/1296599320; (4) https://www.pharmgkb.org
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likely to produce sex risks for that drug-ADR pair. We used statistical insigni-

ficance (PR0:1) as a substitute for the lack of a variant’s ADEs. These ex-

pected sex risks provided a set of pseudo-negative examples to test AwareDX

against.

Prediction of Pharmacogenes from Sex Risks

We leveraged the sex risks identified by AwareDX to flag genes that could have

variants with important, and possibly undiscovered, pharmacokinetic and

pharmacodynamic effects. For each gene, we compared the counts of drugs

associated in DrugBank to the count of significant drug-event pairs identified

by AwareDX. We expect that the number of adverse drug events associated

with the gene may be proportional to the number of drugs for which that

gene is a metabolizer. We confirmed this in a scatterplot shown on linear

and log-log scales (Figure S4). The choice of log-log was motivated by the

typical scale-free nature of biological networks,37 which this gene-drug

network appeared to follow. We then applied linear regression to the logarithm

of both counts and used the residuals as a ranking mechanism to identify top

sex-varying pharmcogene candidates.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100108.
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Study Drug ADR Expected Sex Predicted Sex logROR 95% CI

Tamargo et al. 2017 Paracetamol Acute hepatic failure F No risk - -

Yu et al. 2016 Ibuprofen Cholecystitis chronic F F 3.64 (3.54, 3.75)

Ofotokun et al. 2003 Ritonavir Diarrhoea M M 0.27 (0.29, 0.25)

Makkar et al. 1993,
Drici et al. 2001

Amiodarone Electrocardiogram QT
prolonged

F F 0.68 (0.60, 0.75)

Makkar et al. 1993,
Drici et al. 2001

Disopyramide Electrocardiogram QT
prolonged

F Insufficient
data

- -

Seeman et al. 2020 Thioridazine Electrocardiogram QT
prolonged

F Insufficient
data

- -

Makkar et al. 1993,
Drici et al. 2001

Sotalol Electrocardiogram QT
prolonged

F No risk - -

Parekh et al. 2011 Rosiglitazone Fractures F F 0.80 (0.76, 0.83)

Tamargo et al. 2017 Heparin Haemorrhage F No risk - -

Tharpe et al. 2011 Citalopram Hyponatraemia F F 0.21 (0.19, 0.23)

Seeman et al. 2020 Clozapine Metabolic syndrome F No risk - -

Ofotokun et al. 2003 Ritonavir Nausea F F 0.29 (0.28, 0.31)

Schmetzer et al. 2012 Ifosfamide Neurotoxicity F No risk - -

Schmetzer et al. 2012 Fluorouracil Neutropenia F F 0.17 (0.16, 0.19)

Whitley et al. 2009,
Tharpe et al. 2011

Aspirin Platelet aggregation
inhibition

M No risk - -

Tamargo et al. 2017 Diazepam Psychomotor skills
impaired

F No risk - -

Tharpe et al. 2011 Fentanyl Respiratory
depression

F No risk - -

Tharpe et al. 2011 Oxycodone Respiratory
depression

F No risk - -

Tamargo et al. 2017 Procainamide Systemic lupus
erythematosus

F Insufficient
data

- -

Tamargo et al. 2017 Aspirin Ulcers M No risk - -

Franconi et al. 2007,
Whitley et al. 2009

Metoprolol Vascular hypertensive
disorders

F F 0.33 (0.32, 0.34)

Franconi et al. 2007 Amlodipine Vascular hypertensive
disorders

F F 0.17 (0.17, 0.18)

Table S4: Hypotheses and results for clinical validation.

Abbreviations: M - Male; F - Female; ADR - Adverse drug reaction; logROR - log e Reporting Odds Ratio;
CI - Confidence Interval



Figure S1: Distribution of sex risks. Both histograms visualize the magnitude of sex risks (log e ROR; x-axis) against
normalized counts (density; y-axis). Panel A shows that the distribution of all sex risks follows a normal distribution.
Panel B depicts the distribution of significant sex risks (adjusted P  0.05) grouped by sex. Pink indicates female risk
and blue indicates male risk. Both distributions follow a lognormal distribution.



Figure S2: Characterizing the random forest model. Panel A shows features that had the highest importances.
Panel B shows a receiver operating characteristic curve, where classification thresholds reflect different cut-offs in the
estimated propensity score.

Figure S3: Random forest model is sufficiently robust. Making the random forest model more complex does not
change performance. In both panels, each point indicates performance for the given experiment. Performance is
represented as mean out of bag score ± 95% confidence intervals. Panel A shows the effect of adding upto 5000
indication features on performance. In each consecutive experiement, we add 100 indication features with the highest
report counts. In Panel B, we test the outcome of using k-Nearest Neighbors to impute age for missing reports. Each
successive experiment increases the number of neighbors. As shown by the flat lines in both panels, the model’s
performance remains largely unchanged by these modifications.



Figure S4: Prediction of pharmacogenes from sex risks. We leveraged sex risks identified by AwareDX to flag
genes that could have variants with important, and possibly undiscovered, pharmacokinetic and pharmacodynamic
effects. Both scatter plots visualize the count of drugs (y-axis) against the count of significant drug-event pairs identified
by AwareDX (x-axis). Panel A shows a linear scale and Panel B shows a logarithmic scale. In B, we applied linear
regression and used the residuals as a ranking mechanism to identify top sex-varying pharmcogene candidates (marked
in red).
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