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Supplementary Note 1. Sensing system based on the programmable 

metasurface  

The configuration of proposed intelligent sensing system, with reference to Figure 1a 

in main text, consists of a pair of horn antennas, a vector network analyzer (VNA, Aligent 

E5071C), and a large-aperture programmable metasurface. The operational principle of the 

presented sensing system is described as following. Antenna 1, connected to port-1 of VNA, 

is used to emit periodically microwave illumination signals, which are shaped by the m-

ANN-driven programmable metasurface. After being scattered by the subject of interest, 

the wavefield shaped by the metasurface are received by Antenna-2 connected to port-2 of 

VNA. Finally, the received microwave raw data are instantly processed by the r-ANN, 

producing the desired imaging or recognition results. 

Figures S1a show the photos of the front and back views of the designed programmable 

metasurface. For the sake of fabrication limitation, the whole metasurface is designed to 

be composed of 3× 4 identical metasurface panels, and each panel has 8ⅹ8 meta-atoms. 

Each meta-atom has a size of 54×54mm2, thus the whole metasurface has a size of 

1.7×1.3m2 in total. The metasurface is electronically controlled with a FPGA-based Micro-

Control-Unit (MCU), as shown in the insert of Figure S1a. In addition, the geometrical 

parameters of the electronically-controllable digital meta-atom are detailed in Figure S1b. 

From Figure S1c, each metasurface panel is equipped with eight 8-bit shift registers 

(SN74LV595APW), and every 8 PIN diodes share a shift register. With the use of shift 

registers, 8 PIN diodes are sequentially controlled. The MCU sends the commands over 24 

independent branch channels, leading to real-time manipulations of all PIN diodes. The 

MCU works with one common clock (CLK) signal. In our work, the adopted CLK is 

50MHz, and the switching time of PIN diode is about 10us each cycle. We remark that the 

control strategy can be extended for more PIN diodes by concatenating more metasurface 



 

 

panels in a straightforward manner, allowing adjustable rearrangement of metasurface 

panels for various application needs.  

 

Figure S1. (a), the photos of front-side and back-side of the designed programmable metasurface. 
Here, the FPGA-based micro control unit (MCU) has been inserted as well in the back-side view picture. 
(b) the geometrical parameters of the designed electronically-controllable meta-atom of the metasurface. 
(c) the illustrative control strategy of the programmable metasureface.   

 



 

 

Supplementary Note 2. Discussions about the VAE objective 

function 

In this note, we would like to discuss briefly Eq. (1) outlined in main text, and elaborate 

on associated optimization algorithm. Generally speaking, the measurement procedure of 

the proposed intelligent sensing strategy can be viewed as an end-to-end process that given 

a scene 𝒙 (image or class label of probed subject) generates a set of measurements 𝒚 by 

sampling from a 𝓒 -controllable conditional distribution 𝒚~𝑞𝓒(𝒚|𝒙,𝚯) , where 𝓒 

encapsulates all trainable parameters of the hardware setting, i.e., the user-controlled 

coding pattern of metasurface in our work. This conditional distribution is known as the 

likelihood in the framework of Bayesian analysis, and can be understood as a stochastic 

measurement model. Basically, the goal of data processing pipeline is to produce an 

estimate 𝒙- of the scene 𝒙 given the measurements	𝒚. Basically, the estimator 𝒙- serves 

as an inverse action of the measurement process, and can be realized with a deep ANN 

with network weights 𝚽. Similar to the measurement process, we denote the estimator 

with a parametric conditional distribution 𝒙-~𝑝(𝒙-|𝒚,𝚽). We propose to simultaneously 

learn the learnable parameters, i.e.,	𝓒 and	𝚽, of both the measurement process and the 

reconstruction operator in context of VAE, such as to optimize the whole sensing 

performance in a specific task. In light of VAE, the optimal choices of 	𝓒 and	𝚽 can be 

achieved by minimizing the following objective function, i.e.,  

       			ℒ(𝓒,𝚽) = −𝔼5𝓒(𝒚|𝒙,𝚯)[log𝑝(𝒙|𝒚,𝚽)] + KL(𝑞𝓒(𝒚|𝒙,𝚯)||𝑝(𝒚))        (S1) 

Note that the mathematic expectation in the first term of the right hand of Eq. (S1) is taken 

over the distribution 𝑞𝓒(𝒚|𝒙,𝚯), which embodies the 𝓒-controllable measurements and 

the reconstruction network as a whole. In a nutshell, this term serves as a likelihood, which 

is used to measure the reconstruction error over 𝑞𝓒(𝒚|𝒙,𝚯). In contrast, the second term 

is characterized by KL-divergence, which, as a regu larizer, encourages the measurement 

distribution 𝑞𝓒(𝒚|𝒙,𝚯) to be close to a chosen prior 𝑝(𝒚). Here, 𝑝(𝒚) is chosen to be 



 

 

zero-mean Gaussian distribution with maximum Shannon information entropy. As such, 

each measurement is optimized to capture as much information of the probed scene as 

possible.  

 



 

 

 
Figure S2. (a) the flow chart of learning the network weights of the m-ANN. (b) the flow chart of 
determining the optimal settings of the coding pattern of the metasurface and the network weights of 
the r-ANN.  

 

In numerical implementation, the expectation term −𝔼5𝓒(𝒚|𝒙,𝚯)[log𝑝(𝒙|𝒚,𝚽)]  is 



 

 

replaced by finite-sample statistical mean approximation over the training dataset. As for 

KL(𝑞𝓒(𝒚|𝒙,𝚯)||𝑝(𝒚)), it can be analytically treated under the Gaussian assumption, as 

detailed in ref. 1 in main text. In addition, in our implementation, Eq. (S1) is slightly 

modified as following, i.e., 

       ℒ(𝓒,𝚽) = −𝔼5𝓒(𝒚|𝒙,𝚯)[log𝑝(𝒙|𝒚,𝚽)] + γKL(𝑞𝓒(𝒚|𝒙,𝚯)||𝑝(𝒚))         (S2) 

Here, γ is introduced to tradeoff the contributions from the data misfit and the prior-based 

regularization.  

It is noted that in minimizing Eq. (S1), it involves two sets of different optimization 

variables, i.e., the continuously adjustable weights 𝚽 in the r-ANN and 𝚯 in the m-ANN, 

and the binary controllable variables 𝚯 in the m-ANN. Apparently, the optimization with 

respect to 𝚽 and 𝚯 can be efficiently realized with the well-known back-propagation 

(BP) algorithm, which can be accomplished with well-developed optimizers in TensorFlow. 

However, it is really challenging to minimize Eq.(S1) with respect to the binary control 

coding sequences 𝓒 since it involves a NP-hard combinatorial optimization problem. To 

surpass this difficulty, the randomized simultaneous perturbation stochastic approximation 

(r-SPSA), originally developed for the problem of optimal well place and control in area 

of petroleum engineering, is slightly modified for our problem. This heuristic optimization 

approach relies on two randomized descent strategies. First, as done by stochastic gradient 

descent approach, at each iteration, a fraction of training samples is randomly selected to 

determine a descent direction. Consequently, the concept of batch size is also applicable. 

Second, at each iteration, as done by so-called randomized coordinate descent method, only 

a fraction of optimization components chosen to be updated. Here, partial coding meta-

atoms of metasurface are randomly selected, and their binary status are changed to their 

opposites correspondingly. If the change leads to the improvement on the objective 

function defined over randomly selected training samples, we save such change and go into 

next iteration. Otherwise, we need to randomly re-select some of coding meta-atoms of 

metasurface and perform above operations. Repeat such procedure until some stop criterion 



 

 

is arrived. More details about the implementation of the proposed r-SPSA optimization 

algorithm can be seen in Figure S2.  

Supplementary Note 3. Experimental settings 

In order to evaluate the contribution of the joint training of the measurement setup and 

data processing pipeline, we have designed a two-stage experiment. First, we train the 

reconstruction network alone while fix the measurement setting (i.e., the programmable 

metasurface with pre-specified control coding patterns). Second, we use a pre-convergence 

checkpoint of the reconstruction network as a starting point for the joint training. At this 

stage, both the reconstruction network and the measurement setting are jointly trained. In 

order to factor out the undesired influence of the optimization algorithm on the sensing 

results, we train the reconstruction network in both stages with the same optimizer (ADAM, 

batch-size=10, initial learning rate=0.005), and train the measurement setting (i.e., the 

control coding pattern of metasurface) using the r-SPSA algorithm (batch-size =200, and 

the number of elements each iteration=20).  

For all the experiments throughout the paper, the learned measurement refers to the 

setting where the control coding pattern of programmable metasurface is trained alone and 

the reconstruction network is fixed; the learned reconstruction refers to the setting where 

the reconstruction network is trained alone, and the control coding pattern of programmable 

metasurface is fixed; the learned measurement-reconstruction refers to the setting where 

the control coding pattern of metasurface is jointly trained with the reconstruction network.  

Supplementary Note 4. Discussions about the m-ANN 

Here, we would like to provide physical insights into the m-ANN by investigating its 

connection with the classical EM scattering mechanism. To that end, the investigation 

domain including the subject is uniformly divided into M subgrids, and each subgrid is 



 

 

occupied by an ideal dipole. In light of coupled dipole method (CDM), when the probed 

subject is illuminated by an EM wavefield, the resultant scattering electrical wavefield at 

𝒓 outside the investigation domain is governed by the following equations: 

															𝐸(ABC)(𝒓) = ∑ G(𝒓, 𝒓F)α(𝒓F)𝐸(𝒓F)H
FIJ                      (S4) 

and    𝐸(𝒓K) = 𝐸(LKB)(𝒓K) + ∑ G(𝒓K, 𝒓F)α(𝒓F)𝐸(𝒓F)H
FIJ,FMK         (S5)	

                                       𝑛 = 1,2,… ,𝑀 

Herein, α(𝒓F) represents the polarizability of the equivalent dipole at the location of 𝒓F,  

𝐸(𝒓F) means the internal electrical field induced at 𝒓F, and G is the Green’s function 

for surrounding background environment. 𝐸(LKB)(𝒓K) denotes the illumination radiated 

from the metasurface controlled with a control coding pattern. Note that we have explicitly 

made the scalar simplification in Eqs. (S4) and (S5) for the sake of simplicity, however, 

the methodology presented here can be extended to full-vectorial cases in a straightforward 

manner.  

Now, our primary goal is to calculate 𝐸(ABC)(𝒓) given {𝐸(LKB)(𝒓K)} and {α(𝒓F)}, 

where a critical issue is to estimate the intermediate variables {𝐸(𝒓K)} by solving Eq.(S5). 

Once {𝐸(𝒓K)} are known, the scattering wavefield 𝐸(ABC)(𝒓) can be obtained by using 

Eq. (S4). However, it is an open challenging issue to efficiently solve Eq. (S5) when the 

Green’s function G cannot be treated in a tractable way. As a matter of fact, even if the G 

can be efficiently treated, it remains not an easy task to solve the large-scale problem of 

Eq. (S5) from the computational viewpoint, for instance, this inverse problem usually 

suffers from the notorious ill-posedness in the large-scale case. In the era of AI (Artificial 

Intelligence), ML techniques, especially deep learning, can be explored to address above 

difficulties. Particularly, with a standard supervised training procedure, a well-defined end-

to-end mapping from {𝐸(LKB)(𝒓K)} or {α(𝒓F)} to 𝐸(ABC)(𝒓)  can be learned from a 

number of labeled training data. In this section, we would like to investigate a connection 

between the solution to Eqs. (S4)-(S5) and the deep ANN, as outlined in Figure S3.  



 

 

 
Figure S3. The connection between the proposed measurement procedure and the three-port m-ANN. 
(a), the acquired signal can be modelled with three cascaded networks. The first one is characterized by 
𝑬(LKB) = 𝓘(𝓒), which relates nonlinearly the illumination wavefield 𝑬(LKB)to the coding pattern 𝓒 of 
the metasurface. Other two are α -dependent fully-connected networks which are mathematically 
characterized by 𝑬 = (𝑰 − 𝑮Y)ZJ𝑬(LKB) = 𝒜Y𝑬(LKB)  and 𝒚 = 𝑮\]^𝑑𝑖𝑎𝑔(α)𝑬 = ℬY𝑬 , respectively. 
Here, 𝑬 = 𝑮\]^𝑑𝑖𝑎𝑔(𝛂)𝑬 is a compact representation of Eq.(S4). The dependence on α from these 
two fully-connected networks are further established with deep ANNs, as demonstrated in Figure S3b. 
(b) the deep ANN representation of (a). The polarizability distribution 𝛂 could be a linear or nonlinear 
function of the input scene x. For instance, when 𝒙 indicates the class label of the scene, 𝛂 will be 
nonlinearly related to 𝒙 via a deep generative network. Such nonlinear mappings are modelled with 
deep CNNs in our work. Additionally, the nonlinear operator 𝓘 is also approximated by a deep CNN 
in our implementation.  

 First, we consider to solve Eq. (S5) by using the direct matrix inversion technique. 

To this end, we rewrite Eq.(S5) in a compact form as following, i.e., 

                    𝑬 = 𝑬(LKB) + 𝑮Y𝑬                             (S6) 

Herein,	𝑬 and 𝑬(LKB)are M-length column vectors, in which the nth elements are 𝐸(𝒓K) 

and 𝐸(LKB)(𝒓K), respectively. 𝑮Y denotes a α-dependent matrix with a size of 𝑀 ×𝑀, 



 

 

whose diagonal entries are zero, and the (n, m)-entry is G(𝒓K, 𝒓F)α(𝒓F). Apparently, Eq. 

(S6) can be solved with a matrix inversion, i.e., 

                        𝑬 = (𝑰 − 𝑮Y)ZJ𝑬(LKB)                          (S7) 

Note that the wavefield 𝑬 is linearly related to illumination 𝑬(LKB) through (𝑰 − 𝑮Y)ZJ. 

As argued above, it is more feasible to learn an agent for (𝑰 − 𝑮Y)ZJ	with ML techniques 

than calculate it directly. Furthermore, the matrix (𝑰 − 𝑮Y)ZJ	varies with α	in a nonlinear 

way. Here, we would like to emphasize that the illumination wavefield 𝑬(LKB)	depends on 

the control coding pattern of metasurface 𝓒, and that the polarizability α characterizes 

the subject. In order to establish the nonlinear relation mapping from α to (𝑰 − 𝑮Y)ZJ, a 

standard ANN can be used as well. In addition, the illumination wavefield 𝑬(LKB)depends 

nonlinearly on the control coding pattern of metasurface 𝓒, and such nonlinear operator 

can be modeled with a standard end-to-end ANN as well. Inspired by these observations, 

we introduce a three-port ANN for charactering the whole measurement procedure of the 

proposed sensing system, as outlined in Figure S3. The resultant ANN has three ports: one 

is used to receive the scene properties, i.e., α(𝒓F)}, one is for the control coding pattern 

of metasurface 𝓒, and the other is for outputting the microwave raw data	𝒚. Such three-

port measurement ANN can be learned with a standard supervised training procedure.  

Supplementary Note 5. Comparing with PCA-based measurements 

The proposed full-ANN-driven intelligent sensing strategy works in a nonlinear ML 

way, as opposed to PCA (linear) technique. Here, we would like to highlight two major 

benefits of our sensing technique over PCA method. First, since the PCA approach requires 

an analytical measurement model, one may obtain the superior performance of our sensing 

strategy in any scenario where the PCA approach could be applicable, from the viewpoint 

of computational efforts. Second, the ability to synthesize the PCA measurement modes is 

highly dependent on the number of metasurface meta-atoms, implying that the PCA 

approach is suitable only for scenarios where the number of metasurface meta-atoms is 



 

 

really large.  

In our experiments, the coding patterns of the metasurface are initialized using the PCA 

method, and then jointly optimized along with the r-ANN. The significant improvement on 

the objective function can be clearly observed, especially when the number of control 

coding patterns M is very limited. Correspondingly, the imaging results can be clearly 

improved with our method, highlighting our method’s unique ability to perform sensing 

tasks with respect to the PCA method. This does make sense since the presented intelligent 

sensing approach has more controllable degrees of freedom, and accounts for more prior 

knowledge about the scene, the data measurement and processing into the entire sensing 

chain, as opposed to the PCA approach which only considers the prior information on the 

scene.  

 



 

 

 
Figure S4. Selected optimized coding patterns of the metasurface, corresponding to that 
involved in Figure 2 in main text. From these figures, it can be observed that the coding 
patterns of the metasurface are remarkably changed when the measurements are highly 
limited.  
 



 

 

 
Figure S5. The dependences of the SSIMs of the images obtained by different sensing 
methods on the number of coding patterns M of the programmable metasurface. These 
results correspond to Figures 2 and 3 in main text.   
 
 


