Supporting information

Intramolecular Povarov reactions for the Synthesis of Chromenopyridine fused 2-Pyridone Polyheterocycles Binding to α-Synuclein and Amyloid-β fibrils.

Dan E. Adolfsson, Mohit Tyagi, Pardeep Singh, Adrian Deuschmann, Jörgen Ådén, Anna L. Gharibyan, Sanduni Wasana Jayaweera, Anders E. G. Lindgren, Anders Olofsson and Fredrik Almqvist*

Umeå University, Department of Chemistry, 901 87 Umeå, Sweden.

*Corresponding author. E-mail: fredrik.almqvist@umu.se

INDEX

Scheme S1	S2
Scheme S2	S2
Scheme S3	S2
Scheme S4	S2
Figure S1	S3
Figure S2	S6
Figure S3	S7
Figure S4	S8
Figure S5	S8
Figure S6	S10
Figure S7	S12
Figure S8	S13
Copies of NMR-spectra	S14
HPLC data for compound 15b, 15e, 16a and 16b	S84
References	S87

Scheme S1. Synthesis of *O*-alkylated salicylaldehydes 10a–i for use in the intramolecular Povarov reaction. Tethering of the aldehyde and alkene components renders the reaction intramolecular. The substituted cinnamyl moiety was incorporated through alkylation of salicylaldehyde Ia–d with the corresponding cinnamyl bromide IIa–e, prepared in three steps from benzaldehydes IIIa–c or obtained commercially (Scheme S2). *This intermediate was obtained commercially.

Scheme S2. Synthesis of cinnamyl bromides **IIa–d** from the corresponding benzaldehydes **IIIa–c** via Horner-Wadsworth-Emmons olefination, reduction with DiBAl-H and bromination with PBr₃.¹ *This intermediate was obtained commercially.

Scheme S3. Preparation of *O*-propenyl benzoate salicylaldehydes 14a–d from salicylaldehydes Ia–d and 3-bromopropenyl benzoate.²

Scheme S4. Synthesis of **13d** from *O*-propargyl salicylaldehyde **VI** and thiazolino 2-pyridone **9a**. The low to moderate yields with *O*-propenyl benzoate salicylaldehydes **14a–d** motivated us to try Lewis acid catalyzed Povarov reaction with *O*-propargyl salicylaldehyde **VI**. Among TFA, SnCl₄, TiCl₄, FeCl₃, Y(OTf)₃, Yb(OTf)₃, La(OTf)₃, Dy(OTf)₃, CuCl₂, Cu(OAc)₂, Cu(OTf)₂, Cu(II)TMEDA, CuI and CuBr₂, the latter proved to be the best catalyst. Of, DCM, THF and MeCN, DCM was still the solvent in which the reaction provided the highest yield of **13d**. The reaction with *O*-propargyl salicylaldehyde was faster and provided **13d** directly, without the need for any auxiliary oxidant. Alas, the isolated yield was still poor and the product contained traces of impurities. Raising the temperature to 90 °C increased the amounts of by-products even further. At 50 °C, the reaction provided more by-products and lowered the isolated yield (21%) of **13d**. Decreasing catalyst loading to 0.03 equiv. slowed down the reaction, which was far from completion after two days.

Figure S1:

Evaluation of α -synuclein fibrillation modulating properties and screening for fibril binding.

Human wild-type α -synuclein was expressed and purified as described previously.³ A 96-well plate (Corning 3650, Sigma-Aldrich) was loaded with samples containing wild-type α -synuclein (70 μ M) and compound (100 μ M) solubilized in PBS (10 mM) and DMSO (100 μ M), followed by addition of ThT (20 μ M) and a 2 mm glass bead. The plate was incubated at 37 °C using orbital averaging, 500 cycles, and a cycle time of 600 seconds, during 70 hours. Each experiment was performed in triplicate. The formation of amyloid fibers was followed by ThT fluorescence ($\lambda_{ex} = 440$ nm, $\lambda_{em} = 480$ nm).⁴

Figure S2:

Preparation of samples for TEM visualization of amyloid fibrils.

At the end point of the fibrilization experiments described in Figure S1, samples $(3.5\mu L)$ were applied to glow discharged formvar and carbon coated Cu-grids. The grids were washed and then negatively stained in 1.5% uranyl acetate for 2 x 15 s. A Talos 120C microscope (FEI, Eindhoven, The Netherlands) was used for sample examination, operating at 120kV. Micrographs were acquired with a Ceta 16M CCD camera (FEI, Eindhoven, The Netherlands) using TEM Image & Analysis software ver. 4.17 (FEI, Eindhoven, The Netherlands). Pictures were taken at 12 000 X and 40 000 X magnification, and are shown below. Fibers formed in the presence of compound **16a** and in the absence of compound showed no visual differences (control).

Control (12 000X)

Control (40 000X)

Figure S3:

Addition of compounds to pre-formed α -Synuclein fibers to displace bound ThT.

 α -Synuclein fibrilization experiments were set up as described in Figure S1, but without compounds. Displacement of ThT was monitored after 70 hours, when fibers were fully formed, by adding 100 μ M of compound and incubated for 20 hours further. The loss in ThT signal was compared before (70 hours) and after addition (75 hours), when the signals had reached a steady plateau. The retained ThT signal for each tested compound is plotted in Figure 2B.

Figure S5:

Evaluation of Amyloid β 1–40 fibrilization modulating properties and screening for fibril binding. Expressed and purified A β 40 was supplied by Alexotech AB. A 96-well plate (Corning 3650, Sigma-Aldrich) was loaded with monomeric A β 40 (5 μ M) and compound (20 μ M) solubilized in PBS (pH 7.4) with EDTA (1 mM), DMSO (1%) and NaN₃ (0.02%), followed by addition of ThT (40 μ M). The plate was incubated at 37 °C during 46 h. ThT fluorescence ($\lambda_{ex} = 430$ nm, $\lambda_{em} = 485$ nm) was measured every 30 min. The plate was agitated for 3 s. before each measurement. Each experiment was performed in triplicate. Notice for compound **15a**, the different scaling of the y-axis. **15g** was excluded from this evaluation assay.

Figure S6:

Addition of compounds to pre-formed $A\beta40$ fibers to displace bound ThT.

The experiments were performed as described in Figure S4, but without compounds added. Displacement of ThT from mature A β 40 fibrils was monitored after 45 h, when the experiments had reached the plateau phase of ThT fluorescence. Compound (20 μ M) was added and ThT fluorescence was recorded for 20 h more. The level of ThT fluorescence was compared before (44.5 h) and after (65 h) addition. The normalized retained ThT signal for each compound (average of tripicates) is presented in Figure 3.

Figure S7:

Bar chart representing retained fluorescence after addition of 0, 0.5, 5, 10, 20, 30, 40 and 50 mM of selected compound.

Figure S8:

Absorbance spectra of selected compounds.

The more active fibril binding compounds **15b**, **15e**, **16a** and **16b** do have a higher absorptivity at 440 nm (the same wavelength used to excite ThT) than the inactive compound **15a** does. However, compound **VII** with even higher absorptivity at 440 nm does not lead to a reduced ThT fluorescence (see plot in Figure S1). Neither does compound **VIII**, which does not bind α -Syn fibrils, lead to a significantly reduced ThT fluorescence by absorbing the exciting light, although its absorptivity at 440 nm is similar to that of active fibril binding compounds.^{3b} Thus, any interference by compounds absorbing the light used to excite ThT is not sufficient to explain the reduced ThT fluorescence upon compound addition to mature fibrils. For comparison the absorbance spectrum of Curcumin is included.

Copies of NMR-spectra:

2-(Cinnamyloxy)benzaldehyde (Compound 10a): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz)

2-(Cinnamyloxy)-4-nitrobenzaldehyde (Compound **10b**): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) (CDCl₃).

2-(Cinnamyloxy)-5-nitrobenzaldehyde (Compound **10c**): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) (CDCl₃).

2-(Cinnamyloxy)-5-fluorobenzaldehyde (Compound 10d): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) (CDCl₃).

210 200 190 140 130 120 110 100 f1 (ppm) -10

(*E*)-4-Nitro-2-((3-(4-nitrophenyl)allyl)oxy)benzaldehyde (Compound **10e**): ¹H-NMR (400 MHz) and ${}^{13}C{}^{1}H$ -NMR (100 MHz) (CDCl₃).

(*E*)-2-((3-(4-Nitrophenyl)allyl)oxy)benzaldehyde (Compound **10f**): 1 H-NMR (400 MHz) and ${}^{13}C{}^{1}$ H}-NMR (100 MHz) (CDCl₃).

(*E*)-2-((3-(3-(Trifluoromethyl)phenyl)allyl)oxy)benzaldehyde (Compound **10g**): ¹H-NMR (400 MHz), ¹³C{¹H}-NMR (100 MHz) and ¹⁹F-NMR (376 MHz) (CDCl₃).

(*E*)-2-((3-(3-Methoxyphenyl)allyl)oxy)benzaldehyde (Compound **10h**): ¹H-NMR (400 MHz) and ${}^{13}C{}^{1}H$ -NMR (100 MHz) (CDCl₃).

(*E*)-2-((3-(4-Ethoxyphenyl)allyl)oxy)benzaldehyde (Compound **10i**): ¹H-NMR (400 MHz) and ${}^{13}C{}^{1}H$ -NMR (100 MHz) (CDCl₃).

Methyl 8-cyclopropyl-3-nitro-13-oxo-7-phenyl-6,10,11,13- tetrahydrochromeno[4,3-b]thiazolo[2,3-

Methyl (*R*)-3-nitro-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylate (Compound **11c**): ¹H-NMR [400 MHz, (CD₃)₂SO] and ¹³C{¹H}-NMR (100 MHz, CDCl₂)

Methyl (*R*)-8-cyclopropyl-2-nitro-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3g][1,7]naphthyridine-11-carboxylate (Compound **11d**): ¹H-NMR [400 MHz. (CD₃)₂SO] and ¹³C{¹H}-NMR (100 MHz, CDCl₃).

 $\label{eq:methydef} \begin{array}{l} \mbox{Methyl (R)-8-cyclopropyl-7-(4-nitrophenyl)$-13-oxo-6,10,11,13-tetrahydrochromeno[4,3-$b]thiazolo[2,3-$g][1,7]naphthyridine$-11-carboxylate (Compound 11e): 1H-NMR [400 MHz, (CD_3)_2SO] and $^{13}C\{^{1}$H}-NMR (100 MHz, CDCl_3). \end{array}$

Methyl (*R*)-3-nitro-7-(4-nitrophenyl)-13-oxo-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3g][1,7]naphthyridine-11-carboxylate (Compound **11f**): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₂)₂SO]

S32

Methyl (*R*)-8-cyclopropyl-7-(3-methoxyphenyl)-13-oxo-6,10,11,13-tetrahydrochromeno[4,3*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylate (Compound **11**): ¹H-NMR (400 MHz) and ${}^{13}C(^{1}H)$ NMR (100 MHz) [(CD))-SO 343 K]

Methyl (*R*)-8-cyclopropyl-7-(4-ethoxyphenyl)-13-oxo-6,10,11,13-tetrahydrochromeno[4,3*b*]thiazolo[2,3-*g*][1,7]naphthyridine-11-carboxylate (Compound **11***j*): ¹H-NMR (400 MHz) and ${}^{13}C{}^{1}H$ -NMR (100 MHz) [(CD₃)₂SO].
(*R*)-Methyl 8-methoxy-3-nitro-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylate (Compound **11k**): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) (CDCl₃).

S40

		1			
na na antara any amin'ny fanana dina dia mandritra yanya ana ana ana ana ana ana ana ana	aggene ng papaten ng tang tang pang pang pang pang pang pang pang p	ġţĊſĸIJŇĬŦĦĨĹŢĦŖŖŢĸIJŦĊĬŢŎĬŦĦĸĸġŊġĿĬŎĸĬĸŔĸŔĬŎĬĬŢĸŢŎ	u da na	ng hi na fallana ng mga ng	ſĸĸĊĸĸŢĸŢĸĊŎĸĊŢŎĸŢŎĸŢŎĊĬŎŎĬŎĊĬŎŎĬŎŎ
		· · · · · · · · · ·			

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

2-(Allyloxy)-4-nitrobenzaldehyde (Compound 12): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) (CDCl₃).

(E)-3-(2-Formyl-4-nitrophenoxy) prop-1-en-1-yl benzoate: (Compound 14a) $^1\text{H-NMR}$ (600 MHz) and $^{13}\text{C}\{^1\text{H}\}\text{-NMR}$ (151 MHz) (CDCl₃).

(E)-3-(2-Formyl-5-nitrophenoxy) prop-1-en-1-yl benzoate: Compound 14b) $^1\mbox{H-NMR}$ (600 MHz) and $^{13}\mbox{C}{^1\mbox{H}}$ -NMR (151 MHz) (CDCl₃).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm) 3-(2-Formylphenoxy)prop-1-en-1-yl benzoate: (Compound 14d) $^1\text{H-NMR}$ (400 MHz) and $^{13}\text{C}\{^1\text{H}\}-$ NMR (100 MHz) (CDCl₃).

10.55 10.55 10.55 10.25 10

S49

(*R*)-8-Cyclopropyl-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylic acid (Compound **15a**): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₃)₂SO].

8-Cyclopropyl-3-nitro-13-oxo-7-phenyl-6,10,11,13- tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylic acid (Compound **15b**): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₃)₂SO].

(*R*)-3-Nitro-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-*g*][1,7]naphthyridine-11-carboxylic acid (Compound **15c**): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) [(CD₃)₂SO, 343

(*R*)-8-Cyclopropyl-2-nitro-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylic acid (Compound **15d**): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₃)₂SO].

(*R*)-8-Cyclopropyl-7-(4-nitrophenyl)-13-oxo-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylic acid (Compound **15e**): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₃)₂SO].

(*R*)-3-Nitro-7-(4-nitrophenyl)-13-oxo-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylic acid (Compound **15f**): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz)

(*R*)-8-Cyclopropyl-2-fluoro-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3g][1,7]naphthyridine-11-carboxylic acid (Compound **15g**): ¹H-NMR (600 MHz), ¹³C{¹H}-NMR (151 MHz) and ¹⁹F{¹H}-NMR (564 MHz) [(CD₃)₂SO].

7,7,8 7,7,7 7,

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

(*R*)-8-Cyclopropyl-7-(3-methoxyphenyl)-13-oxo-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3g][1,7]naphthyridine-11-carboxylic acid (Compound **15i**): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₃)₂SO, 343 K].

(*R*)-8-Methoxy-3-nitro-13-oxo-7-phenyl-6,10,11,13-tetrahydrochromeno[4,3-*b*]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylic acid: (Compound **15k**): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₃)₂SO]

8-Cyclopropyl-3-nitro-13-oxo-6,10,11,13-tetrahydrochromeno[4,3- b]thiazolo[2,3-g][1,7]naphthyridine-11-carboxylic acid (Compound **16a**) ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₂)₂SO]

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fi (ppm)

(R)-8-Cyclopropyl-2-nitro-13-oxo-6,10,11,13-tetrahydrochromeno[4,3-b]thiazolo[2,3-

Ethyl (*E*)-3-(3-methoxyphenyl)acrylate (Compound IVa): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz)

Ethyl (*E*)-3-(3-(trifluoromethyl)phenyl)acrylate (Compound **IVb**): ¹H-NMR (400 MHz), ¹³C{¹H}-NMR (100 MHz) and ¹⁹F-NMR (376 MHz) (CDCl₃)

Ethyl (*E*)-3-(4-ethoxyphenyl)acrylate (Compound IVc) ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) (CDCl₃)

(*E*)-3-(3-Methoxyphenyl)prop-2-en-1-ol (Compound Va): 1 H-NMR (400 MHz) and 13 C{ 1 H}-NMR (100 MHz) (CDCl₃).

(*E*)-3-(3-(Trifluoromethyl)phenyl)prop-2-en-1-ol (Compound Vb): ¹H-NMR (400 MHz), ¹³C{¹H}-NMR (100 MHz) and ¹⁹F-NMR (376 MHz) (CDCl₃).

(*E*)-3-(4-Ethoxyphenyl)prop-2-en-1-ol (Compound Vc): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) (CDCl₃).

(*E*)-3-(4-Nitrophenyl)prop-2-en-1-ol (Compound Vd): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) (CDCl₃).

(*E*)-1-(3-Bromoprop-1-en-1-yl)-3-(trifluoromethyl)benzene (Compound **IIb**): ¹H-NMR (600 MHz) (CDCl₃).

(*E*)-1-(3-Bromoprop-1-en-1-yl)-4-nitrobenzene (Compound **IId**): ¹H-NMR (400 MHz) and ¹³C{¹H}-NMR (100 MHz) (CDCl₃).

(*R*)-8-Cyclopropyl-6-nitro-5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxylic acid (Compound VII): ¹H-NMR (600 MHz) and ¹³C{¹H}-NMR (151 MHz) [(CD₃)₂SO].

Ret.	Area	Area %
Time(min)		
2.479	17734.17	0.17395
2.772	41760	0.409613
3.591	1185	0.011623
4.303	411.667	0.004038
5.809	630	0.00618
7.403	9000	0.088279
8.355	2015	0.019765
9.049	2810.417	0.027567
11.844	2088.333	0.020484
12.387	10086278	98.93365
15.382	9070.833	0.088973
16.603	22009.17	0.215882

HPLC data for compound 15e

Time		
2.289	9693.75	0.065393
2.523	6031.667	0.040689
2.918	36418.333	0.245673
3.913	6071.667	0.040959
5.839	2346.667	0.01583
6.194	3534.167	0.023841
6.534	34844.167	0.235054
7.256	25950	0.175055
8.151	4461.667	0.030098
8.793	6309.167	0.042561
9.613	14382513.75	97.02232
10.896	793.75	0.005355

151 Channel 1

Ret.	Area	Area %
Time(min)		
2.366	2704.167	0.026024
2.499	4878.333	0.046947
2.788	38218.33	0.367795
4.871	1071.667	0.010313
7.154	2206.667	0.021236
7.403	2003.333	0.019279
8.017	10092832	97.12848
10.476	2097.917	0.020189
11.206	1867.083	0.017968
12.901	161919.6	1.558235
13.627	31625	0.304344
14.32	691.667	0.006656
15.947	2652.5	0.025526
13.363	46449.58	0.447008

HPLC data for compound 16b

Ret.	Area	Area %
Time		
0.588	2163.333	0.037186
2.798	28230.42	0.485255
5.802	5762691	99.05545
7.138	2863.333	0.049218
7.971	21207.92	0.364545
13.909	485.417	0.008344

References:

1. a) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Horner-Wadsworth-Emmons reaction: use of lithium chloride and an amine for base sensitive compounds. *Tetrahedron Lett.* **1984**, *25*, 2183–2186. b) Li, J.-Q.; Peters, B.; Anderson, P. G. Highly enantioselective asymetric isomerization of primary allylic alcohol with an iridium-N, P complex. *Chem. Eur. J.* **2011**, *17*, 11143–11145. c) Chan, Y.-C.; Yeung, Y.-Y. Halogen bond catalyzed bromocarbocyclization. *Angew. Chem. Int. Ed.* **2018**, 57, 3483–3487.

2. a) Lombardo, M.; Morganti, S.; Trombini, C. 3-Bromopropenyl Esters in Organic Synthesis: Indium- and Zinc-Mediated Entries to Alk-1-ene-3,4-diols. *J. Org. Chem.* **2003**, *68*, 997–1006. b) Ulich, L. H.; Adams, R. *J. Am. Chem. Soc.* **1921**, *43*, 3, 660–667. c) Neuenschwander, M.; Bigler, P.; Christen, K.; Iseli, R.; Kyburz, R.; Mühle, H., Chloracylierung und Bromacylierung von Carbonylverbindungen: Eine in Vergessenheit geratene Carbonylreaktion. I. Präparative Anwendungsbreite. *Helv. Chim. Acta* **1978**, *61*, 2047–2058.

3. a) Chorell, E.; Andersson, E.; Evans, M. L.; Jain, N.; Götheson, A.; Åden, J.; Chapman, M. R.; Almqvist, F.; Wittung-Stafshede, P. Bacterial chaperones CsgE and CsgC differentially modulate human a-synuclein amyloid formation *via* transient contacts. *PLoS ONE.*, **2015**, 10(10). b) Singh, P.; Adolfsson, D. E.; Ådén, J.; Cairns, A. G.; Bartens, C.; Brännström, K.; Olofsson, A.; Almqvist, F. Pyridine-Fused 2-Pyridones via Povarov and A³ reactions: Rapid Generation of Highly Functionalized Tricyclic Heterocycles Capable of Amyloid Fibril Binding. *J. Org. Chem.* **2019** *84*, 7, 3887–3903.

4. Evans, M. L.; Chorell, E.; Taylor, J. D.; Åden, J.; Götheson, A.; Li, F.; Koch, M.; Sefer, L.; Matthews, S. J.; Wittung-Stafshede, P.; Almqvist F. and Chapman, M. R. The bacterial Curli system possesses a potent and selective inhibitor of amyloid formation. *Mol. Cell*, **2015**, 57 (3), 445.