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Abstract: The present study investigated the effects of total replacement of dietary fishmeal (FM)
with poultry by-product meal (PBM), supplemented with methionine on muscle fatty
acids composition, intestinal microvilli morphology, histological structure of liver,
muscle, gill and intestine, liver enzymes, immune response and stress related gene in
juvenile barramundi,  Lates calcarifer  in relation to growth and feed utilization. Juvenile
barramundi (3.58±0.01g) were randomly distributed into 300L seawater recirculatory
tank (25 fish/tank) and fed two formulated isonitrogenous and isolipidic diets for 6
weeks. The control diet had FM as sole animal protein source, whereas other test diet
had only PBM as an animal protein source. Dietary PBM affected the fish performance
and feed utilization. Liver, muscle, gill and intestinal histology showed no obvious
alteration in control fed fish, however more lipid droplet and heapatic vacuolization in
liver, necrotic myotome in muscle, hyperplasia in secondary lamellae in gill and short
and broken folds in intestine was observed in PBM fed fish. Similar to intestinal
histology, transmission electron microscopy (TEM) analysis revealed shorter and
smaller microvilli height and diameter in PBM fed fish than control fed fish. Altered
values of liver enzymes including AST and GLDH showed negative effects of PBM fed
fish, which was supported by a significant upregulation of stress related genes, HSP70
and HSP90, as well as a significant decrease in serum immune parameters including
lysozyme and bactericidal activity. In conclusion, a total substitution of FM protein by
PBM negatively influenced the growth performance, liver health, histomorphology of
different organs and immune status of juvenile barramundi.
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Abstract 

The present study investigated the effects of total replacement of dietary fishmeal (FM) with 

poultry by-product meal (PBM), supplemented with methionine on muscle fatty acids 

composition, intestinal microvilli morphology, histological structure of liver, muscle, gill and 

intestine, liver enzymes, immune response and stress related gene in juvenile barramundi, Lates 

calcarifer in relation to growth and feed utilization. Juvenile barramundi (3.58±0.01g) were 

randomly distributed into 300L seawater recirculatory tank (25 fish/tank) and fed two 

formulated isonitrogenous and isolipidic diets for 6 weeks. The control diet had FM as sole 

animal protein source, whereas other test diet had only PBM as an animal protein source. 

Dietary PBM affected the fish performance and feed utilization. Liver, muscle, gill and 

intestinal histology showed no obvious alteration in control fed fish, however more lipid 

droplet and heapatic vacuolization in liver, necrotic myotome in muscle, hyperplasia in 

secondary lamellae in gill and short and broken folds in intestine was observed in PBM fed 

fish. Similar to intestinal histology, transmission electron microscopy (TEM) analysis revealed 

shorter and smaller microvilli height and diameter in PBM fed fish than control fed fish. 

Altered values of liver enzymes including AST and GLDH showed negative effects of PBM 
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fed fish, which was supported by a significant upregulation of stress related genes, HSP70 and 

HSP90, as well as a significant decrease in serum immune parameters including lysozyme and 

bactericidal activity.  In conclusion, a total substitution of FM protein by PBM negatively 

influenced the growth performance, liver health, histomorphology of different organs and 

immune status of juvenile barramundi.   

 

Introduction 

One of the major bottlenecks for carnivorous aquafeed production is the reduced supply of 

global fishmeal (FM) and increased prices. Therefore, efforts have been dedicated over the last 

few years to investigate the use of alternative dietary protein from animal sources such as meat 

and bone meal [1], poultry by-product meal [2] and blood meal [3] to replace FM. Poultry by-

product meal (PBM), an economical and easily available ingredients compared to FM contains 

higher level of protein and most of the indispensable amino acids with the exception of lysine 

and methionine [4, 5]. For example, Zapata, Lazo [6] resulted in a highest variation in lysine 

content, which decreased from 4.2 to 3.4% with increasing levels of PBM inclusion (0 to 100%) 

in the dry diets of  juveniles Totoaba macdonaldi. Dietary inclusion of PBM into fish diets is 

also hindered by its deficiency of FA profile. Parés‐ Sierra, Durazo [7] reported a decreasing 

levels of HUFA (20:5n-3 and 22:6n-3) as well as a decreasing amounts of n-3/n-6 as PBM and 

poultry oil increased in the diet of rainbow trout, Oncorhynchus mykiss. Though a good number 

of studies have been successfully replaced FM with PBM for carnivorous fish production [8-

10], utilization of PBM in excess of 50% affect the welfare of some marine fish species [4, 11, 

12]. For example, Karapanagiotidis, Psofakis [13] reported that total replacement of FM with 

PBM significantly impacted the growth performance and feed utilization, concomitantly 

downregulating growth-regulating hormone (ghri and igfi) in the liver of  gilthead seabream, 

Sparus aurata. Similarly, a decreased growth performance, protein efficiency ratio (PER) and 

net protein utilization (NPU) was observed in fish fed 100% of PBM [14]. Incorporation of 

limiting amino acids could be a good strategy to balance alternative protein amino acid profile 

and to modulate the growth performance of fish. Methionine, a limiting essential amino acids 

in PBM play an important role for protein synthesis and also essential for cysteine and taurine 

biosynthesis [15]. In addition, it serves as DNA methylation reaction and as a precursor of 

polyamines, L-carnitine, and cysteine [16, 17]. 
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Assessing serum biochemistry, antioxidants and immune indices is important to evaluate the 

health status of farmed fish. In many species, a total replacement of FM protein with other 

ingredients in aquafeeds has negative repercussion on immune status [18], serum biochemistry 

and antioxidants of fish. Many earlier studies have reported the significant effect of dietary 

alternative protein ingredients on immune response of European seabass, Dicentrarchus labrax 

[19], turbot, Scophthalmus maximus L.[20], red sea bream, Pagrus major [21], gilthead sea 

bream, Sparus aurata L.[22], sunshine bass, Morone chrysops × M. saxatilis [23] and blood 

biochemistry of  hybrid grouper, Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂ 

[18], Nile tilapia Oreochromis niloticus [24] and Siberian sturgeon Acipenser baerii [25]. 

Hence, it is crucial to understand how total replacement of FM with PBM may induce the fish 

serum biochemistry, antioxidant and immune status. 

During dietary modification, it is important to consider that replacement of FM with potential 

ingredients do not exert adverse effects on the welfare of the tested species, as the welfare of 

fish in captive condition has been a growing concern over the decades [26-28].  Histological 

approach is one of the important frontline tools to assess the health status of fish which can be 

achieved by evaluating the morphological status of different organs. Though this tool has been 

extensively using to assess the health condition of wild fish in response to aquatic pollution 

[29-31], it has gained importance recently to evaluate the welfare of farmed animals along with 

other parameters including growth, serum biochemistry and immune response. However, 

histological evaluation of different organs in farmed to higher inclusion of PBM is still scarce.  

Barramundi or Asian sea bass (Lates calcarifer) is a commercial important fish species due to 

its good meat quality, ability to tolerate a wide range of salinity and ability to adapt in versatile 

farming environment [32]. It is popularly cultivated both in freshwater and sea water in 

Malaysia, Thailand, Taiwan, Indonesia, Saudi Arabia and Australia, contributing USD 320 

millions globally [33]. A preliminary study was conducted in our laboratory to assess growth, 

gut microvilli morphology, fatty acids and amino acids composition of juvenile barramundi 

when fed 75 and 100% PBM either bioprocessed or unprocessed [32], however, so far, a 

thorough growth study including serum biochemical parameters, immune response, stress 

related genes, antioxidant capacity, histological evaluation of different organs and intestinal 

mucosal morphology is still limited. Therefore, to evaluate the total replacement of FM with 

PBM, the present study was conducted over 42 days on juvenile barramundi  and serum 

biochemical parameters, immune response, stress related genes, antioxidant capacity, 
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histological evaluation of different organs and intestinal mucosal morphology was evaluated 

when fed PBM as a main protein source. 

 

Materials and methods 

Animal ethical statement 

The experiment were conducted at Curtin Aquatic Research Laboratory (CARL) in Curtin 

University, Australia in compliance with relevant guidelines and regulations set by Australian 

Code of Practice for the care and use of animals for scientific purposes. All methods involving 

fish were reviewed and approved by the Curtin University Animal Ethics Committee 

(ARE2018-37). Prior to handling fish, AQUI-S® was used as anaesthesia and an overdose of 

AQUI-S was used as euthanasia to minimise stress, pain and discomfort to the fish following 

the protocol of the Curtin Research Laboratories SOP of anaesthetizing and euthanizing of fish. 

Experimental diets 

All the ingredients required for formulating test diets were purchased from the Special Feeds, 

3150 Great Eastern Hwy, Glen Forrest, WA. Two isonitrogenous and isolipidic containing 

approximately 47% crude protein and 12% crude lipid were prepared to meet the nutritional 

requirement of juvenile barramundi [34]. FM and PBM were used as main protein source and 

canola oil and cod liver oil was used as lipid resource. A control diet was prepared based on 

FM and another diet was formulated by replacing 100% of FM with PBM along with the 

supplementation 0.40% methionine. The test diets were formulated in compliance with the 

standard protocol of CARL. Briefly, all the dry ingredients were mixed homogenously using a 

food mixture (Hobart Food equipment, Australia) before blending with fish oil and distil warm 

water to make a stiff dough. The dough were passed through a mincer to make 3 mm pellets, 

then spread out and dried in an oven at 60°C for 36 hours. After drying, pellets were sealed in 

plastic bags before refrigerating at 4°C until used in the feeding trial. Fatty acids and amino 

acids profile of experimental diets are shown in Table 2. 

 

 

 

 



Table 1. Formulation and proximate composition of test diets supplementing with different 

fish protein hydrolysates for juvenile barramundi over period of 8 weeks. 

  Control 100PBM 

Ingredientsa (g/100g DM) 
Poultry mealb  0.00 69.50 

Canola oil  1.00 3.00 

Fish mealc  72.00 0.00 

Corn/wheat starch  7.00 7.00 

Lecithin - Soy (70%)  1.00 1.00 

Vitamin C  0.05 0.05 

Dicalcium Phosphate  0.05 0.05 

wheat (10 CP)  16.90 11.50 

Methionine   0.00 0.40 

Vitamin premix  0.50 0.50 

Salt (NaCl)  1.00 1.00 

Cod liver oil  0.50 6.00 

Proximate composition (% dry weight) 

Crude Protein   47.88 47.86 

Crude Lipid   12.59 12.71 
a Specialty Feeds, Glen Forrest Stockfeeders, 3150 Great Eastern Highway, Glen Forrest, 

Western Australia 6071 
b PBM (Poultry by-product meal): 67.13% crude protein,13.52% crude lipid and 13.34% ash 
c Fishmeal: 64.0% crude protein, 10.76% crude lipid and 19.12% ash. 

 

Table 2. Fatty acids (% of total fatty acids) and amino acids (g/100g) composition of control 

and experimental diet used to feed barramundi.  

Fatty acids  Control 100PBM  Amino acids  Control 100PBM 

C8:0  1.39 3.53  Hydroxyproline  1.7 3.2 

C10:0  0.59 3.03  Histidine  2.4 1.8 

C11:0  0.00 0.00  Taurine  0.5 0.5 

C12:0  2.73 7.11  Serine  5.3 5.0 

C13:0  1.53 2.20  Arginine  4.5 4.9 

C14:0  131.63 342.45  Glycine  13.2 16.4 

C14:1n5  1.52 11.32  Aspartic acid  8.8 7.8 

C15:0  41.42 34.66  Glutamic acid  11.7 12.1 

C15:1  1.19 7.01  Threonine  4.9 4.2 

C16:0  1161.21 2090.88  Alanine  9.4 9.1 

C16:1n7  165.22 435.58  Proline  6.1 7.3 

C17:0  118.84 76.62  Lysine  6.2 5.3 

C17:1  31.53 38.14  Tyrosine  2.0 1.8 

C18:0  448.54 560.33  Methionine  2.4 1.8 

C18:1cis+trans  1158.94 3800.14  Valine  5.6 5.2 

C18:2 trans   6.95 6.71  Isoleucine  4.3 3.8 

C18:2 cis  624.01 1081.49  Leucine  7.6 6.9 
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C18:3n6  8.84 10.58  Phenylalanine  3.3 3.0 

C18:3n3  120.20 285.67      

C18:4n3#  30.30 148.70      

C20:0  22.44 32.83      

C20:1  79.86 483.71      

C20:2  14.57 17.04      

C21:0  9.09 10.50      

C20:3n6  15.50 18.76      

C20:4n6  112.83 43.18      

C20:3n3  8.29 7.75      

C22:0  14.10 17.23      

C20:5n3  178.50 278.99      

C22:1n9  9.44 44.58      

C22:2  1.05 2.38      

C23:0  27.89 34.91      

C22:4n6#  91.14 16.39      

C24:0  0.00 0.00      

C22:5n3#  63.30 64.60      

C24:1  34.51 53.10      

C22:6n3  908.53 455.23      

∑SFA  1981.40 3216.29      

∑MUFA  1480.69 4862.27      

∑PUFA  2184.01 2437.48      

∑n-3  1309.12 1240.95      

∑n-6  228.31 88.91      

∑n-3/n-6  5.73 13.96      

Eicosapentaenoic acid, EPA; DHA, docosahexaenoic acid, sum of saturated fatty acids, ∑SFA; 

sum of monounsaturated fatty acids, ∑MUFA; sum of polyunsaturated fatty acids, ∑PUFA; 

sum of omega-3 polyunsaturated fatty acids, ∑n-3 PUFA; sum of omega-6 polyunsaturated 

fatty acids, ∑n-6 PUFA. 

Fish husbandry and management  

200 juvenile barramundi were obtained from Australian Centre for Applied Aquaculture 

Research, Fremantle (ACAAR), Australia in oxygenated plastic bag. Prior to commencing trial, 

all fish were stocked into two fibreglass tanks (300 L) filled with ocean water and fed a 

commercial diet (470 g protein kg−1 diet and 20.0 MJ kg−1dietary gross energy) twice daily for 

two weeks to adapt them to CARL experimental facilities and conditions. Following 

acclimation, 180 healthy fish averaging (3.58±0.01g) were randomly distributed into six 300-

L tanks, containing 250 L water in each tank. Therefore stocking number of barramundi 

juveniles in each tank were 25. Each tank were equipped with an aerator, electric heater and 

external bio-filter (Astro® 2212, China) to maintain DO, temperature and other water quality 



parameters at optimal level as reported by Siddik, Howieson [35]. Hence, the temperature was 

maintained at 27.90–29.20 °C, dissolve oxygen (DO) at 5.92–7.42 mgL−1, salinity at 32–36 ppt 

and photoperiod as 14:10 h LD. Commercial test kits were used to test Ammonia nitrogen 

(<0.50 mgL−1) and nitrite (<0.50 mgL−1) level regularly. Each test diet had three replicates and 

fed by hand twice daily at 8.00 am and 6.00 pm to visual satiety levels for 42 days. Uneaten 

feed, if any, was collected by siphoning to calculate feed intake and number of dead fish were 

monitored daily to assess the fish survival rate. After 42 days, all fish were starved for 24 h 

prior to weighing individually to analyse the growth performance. 

Fatty acids profile 

Fish muscle (one fish/tank, three fish/dietary treatment) were used for fatty acids analysis. Fish 

muscle were filleted, wrapped with aluminium foil and freeze dried. The fatty acids profile of 

experimental diets and fish flesh was carried out following the protocol of  O'Fallon, Busboom 

[36] and Siddik, Chungu [32]. 

Histological and transmission electron micrograph (TEM) analysis 

After 42 days of feeding, one fish from each tank was randomly euthanized with AQUI-S at 

175 mg/L and sacrificed to excise liver, muscle, gill and intestine for histological and TEM 

evaluation in response to test diets. For histological analysis, sample of all organs were fixed 

immediately in 10% buffered formalin, subsequently dehydrated with series of ethanol, 

infiltrated in xylene and embedded in paraffin wax, as per standard histological protocols. 

Section of approximately 5 µm thickness were stained with Periodic Acid-Schiff (PAS) and 

digitally photographed under a light microscope (BX40F4, Olympus, Tokyo, Japan). 

For TEM analysis, freshly collected intestinal samples washed in 2.5% glutaraldehyde buffered 

in 1x PBS at pH 7.4 before performing secondary fixation in 1% OsO4 (80 W 2 min on, 2 min 

off, 2 min on), dehydrating in ethanol (50, 70, 95 and 100% at 250 W, 40 seach) and infiltrating 

finally with epoxy resin in acetone (Procure 812, Proscitech) (1:3, 1:1, 3:1ratios at 250 W, 3 

min each). Samples were processed as described in the earlier study in our lab [2] and screened 

a LaB6 TEM (JEOL2100, Japan) at 120 kV. The electron micrographs obtained from TEM 

analysis at 30,000 magnification were analysed using ImageJ (National Institute of Health, 

USA) to determine microvilli length and diameter. 
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Antioxidant status assessment 

The enzyme activities of serum malondialdehyde (MDA), catalase (CAT) and glutathione 

peroxidase (GPx) were measured with commercial assay kits following the manufacturer's 

instructions. 

 

Serum biochemistry and immunity 

Fish were captured gently at 42 days post-feeding, immediately dipped in a bucket containing 

8 mg l−1 of AQUI-S® and blood were taken by puncturing caudal vessel using 1 mL non-

heparinized syringes (22G). Blood were allowed to clot for 24h at room temperature, 

centrifuged for 15 min at 3000 rpm and 4 °C, the serum collected and stored immediately at - 

80°C for the analysis of serum biochemical parameters and immune parameters. Serum clinical 

chemistry and immune related parameters were analysed according to the protocol of our 

earlier study [37]. 

 

RNA extraction and qRT-PCR analysis 

Liver from control and PBM fed fish were aseptically collected after euthanizing (AQUI-S, 

175 mg l−1) the fish and preserved in RNA Later (Sigma-Aldrich, Germany) at - 80°C until 

RNA extraction. Five milligram of liver tissue stored in RNA Later was used for RNA 

extraction using RNeasy Mini Kit (Qiagen, Hilden, Germany) according to manufacturer 

protocol. The quality of RNA was checked by gel electrophoresis and, the purity and quantity 

was determined gel electrophoresis before synthesizing complementary DNA (cDNA) from 1 

µg of total RNA using Omnicript RT kit (Qiagen, Hilden, Germany) following the instruction 

of manufacturer’s company. qRT-PCR on stress related genes were performed by PowerUpTM 

Cyber Green Master Mix (Thermo Scientific, USA) with 7500 Real-Time PCR System 

(Applied Biosystems, USA) and data were normalised against housekeeping genes, 18S rRNA  

and Ef1-a, (Table 3) and calculated using 2-ΔΔct method. 

 

 

 

 



Table 3. Primers of qPCR used in the experiment 

Genes Sequences (5ʹ - 3ʹ) Product size Tm (◦C)  

Heat shock 

protein kDa70, 

HSP70 

F: AAGGCAGAGGATGATGTC  

R: TGCAGTCTGGTTCTTGTC 

186 59 Mohd-

Shaharuddin, 

Mohd-Adnan [38] 

Heat shock 

protein kDa90, 

HSP90 

F: ACCTCCCTCACAGAATACC  

R: CTCTTGCCATCAAACTCC 

197 59 Mohd-

Shaharuddin, 

Mohd-Adnan [38] 

18S rRNA, 18S F:TGGTTAATTCCGATAACGAACGA 

R: CGCCACTTGTCCCTCTAAGAA 

94 59/60 Mohd-

Shaharuddin, 

Mohd-Adnan [38] 

Elongation factor-

1α, ef1α 

F: AAATTGGCGGTATTGGAAC 

R:GGGAGCAAAGGTGACGAC 

83 59/60 Mohd-

Shaharuddin, 

Mohd-Adnan [38] 

 

Calculation and statistics 

Specific growth rate (SGR), feed conversion ratio (FCR) and total feed intake (TFI) was 

calculated using the following equations- 

Specific growth rate (SGR, % ⁄ d)

=  [(ln ( final body weight) − ln (pooled initial weight))/Days]   × 100 

Total feed intake (TFI, g/fish ) =  [(dry diet consumd)/(number of fish)]  

Feed conversion ratio (FCR) =  [(dry feed fed)/(wet weigth gain)] 

AI =  (aC12: 0 + bC14: 0 + C16: 0)/(dp + eM + FM´) 

TI =  (C14: 0 + C16: 0 + C18: 0)/[(nM + nM´ + p(n6) + q (n3) + (n3/6)] 

All data were represented as mean±SE. The differences between control and PBM fed fish in 

all data were determined by unpaired student t-test at the significance level of 0.05 < P < 

0.001. Percent survival at the termination of feeding trial was plotted using Kaplan-Meier 

survival method with Log-rank (Mantel-Cox) test. 
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Results  

Growth performance, feed utilization and survival 

Fish growth, feed intake and survival rate in response to 42 days feeding trial are presented in 

Figure 1. In contrast to control, PBM diet negatively influenced the FBG (Figure 1A) (t = 16.11, 

df = 127, P < 0.0001) and SGR (Figure 1B) (t = 16.14, df = 127, P < 0.0001) which was 

supported by increased FCR (Figure 1C) (t = 2.841, df = 4, P = 0.047) and lower feed intake 

(Figure 1D) (t = 2.981, df = 4, P = 0.041). Survival plot with 95% confidence (Figure 1E), as 

drawn by Kaplan-Meier survival analysis at the end of the 42 days trial decreased significantly 

in PBM fed fish than the control (χ2
100PBM = 4.514, df = 1, P = 0.034).  
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Fig 1. Fish performance including (A) final body weight (FBW) and (B) specific growth rate 

(SGR), (C) feed conversion ratio (FCR), (D) total feed intake (TFI), and (E) survival rate based 

on Kaplan-Meier survival analysis with Log-rank (Mantel-Cox) test of juvenile barramundi 

after 42 days feeding with either basal diet or total replacement of PBM. Dotted line in survival 

plot indicates 95% confidence interval.  P values indicate significant at 0.05, 0.01 and 0.001, 

followed by an unpaired student t-test. 

Muscle fatty acids composition  

The FAs profile of barramundi muscle at the termination of 42 days trial were clearly 

influenced by 100PBM (Table 3). Dietary inclusion of 100PBM significantly augmented total 

SFA and ∑n-6, but worsened total MUFA, DHA and ∑n-3/∑n-6 ratio. Considering lipid 

indexes, PBM diet significantly increased AI with no significant effect on TI. 

Table 3 Fatty acids of barramundi muscle when fed control and test diet over a period of 42 days. 

  Control 100PBM  P-value 

C10:0  0.78±0.03 4.31±0.06***  0.00 

C12:0  1.02±0.09 291.96±1.27***  0.00 

C13:0  0.60±0.00 0.75±0.09***  0.00 

C14:0  67.46±0.77 213.36±0.48***  0.00 

C14:1n5  0.97±0.03 6.30±0.06  0.21 

C15:0  17.76±0.63 17.81±0.21  0.27 

C15:1  0.00±0.00 0.18±0.20***  0.00 

C16:0  713.65±10.19 1253.24±68.93***  0.00 

C16:1n7  130.78±1.90 286.88±2.21***  0.00 

C17:0  44.02±0.52 40.29±0.31***  0.00 

C17:1  22.70±0.31 22.98±1.46  0.96 

C18:0  278.21±4.07 442.18±5.83  0.96 

C18:1cis+trans  859.76±5.73 2961.30±69.99  0.37 

C18:2 trans   17.50±15.25 6.72±.38  0.42 

C18:2 cis  320.82±3.44 1229.36±17.46**  0.00 

C18:3n6  17.51±1.42 51.44±6.52*  0.01 

C18:3n3  55.12±0.38 213.57±3.10***  0.00 

C18:4n3  17.01±1.06 38.00±7.77***  0.00 

C20:0  8.95±0.22 16.93±1.82**  0.00 

C20:1  36.62±0.38 111.68±2.97*  0.01 

C20:2  8.84±0.03 15.35±1.41  0.85 

C21:0  4.05±0.18 6.12±0.56   0.86 

C20:3n6  25.68±0.57 49.16±2.84  0.00 

C20:4n6  92.29±1.90 114.06±3.54***  0.00 

C20:3n3  4.61±0.09 6.10±0.81***  0.00 
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C22:0  3.58±0.03 7.33±0.49**  0.00 

C20:5n3 (EPA)  109.31±1.78 113.69±1.31  0.52 

C22:1n9  4.03±0.03 9.18±2.58  0.55 

C22:2  0.00±0.00 1.00±0.00***  0.00 

C23:0  13.39±0.68 25.84±1.87***  0.00 

C22:4n6  62.67±1.07 23.06±0.26*  0.01 

C22:5n3  71.50±0.95 78.82±0.44*  0.03 

C24:1  11.81±0.12 14.05±0.69  0.00 

C22:6n3 (DHA)  683.13±12.43 370.84±1.99***  0.00 

∑SFA  1153.45±15.14 2409.95±21.74*  0.04 

∑MUFA  1065.69±8.25 3427.59±67.50  0.11 

∑PUFA  1142.86±19.58 1067.93±17.29*  0.01 

∑n-3  940.67±15.92 839.03±11.05  0.05 

∑n-6  198.15±3.87 254.72±4.82***  0.00 

∑n-3/∑n-6  4.75±3.87 3.29±0.02**  0.00 

AI  0.32±0.00 0.32±0.01*  0.01 

TI  0.27±0.00 0.33±0.01  0.05 

Poultry by-product meal, PBM; saturated fatty acids, SFA; monounsaturated fatty acids, MUFA; 

polyunsaturated fatty acids, PUFA; atherogenicity, AI and thrombogenicity, TI. 

P values indicate significant at P < 0.05, 0.01 and 0.001, followed by an unpaired student t-

test. 

Histomorphology  

Total replacement of FM with PBM dysregulated the histological structure of liver, muscle, 

gills and intestine (Fig 2A-H). The liver of control (Fig 1A) fed fish showed higher 

pigmentation of hepatocyte cytoplasm, indicating higher amount of glycogen, while the liver 

of PBM fed fish (Fig 1B) fed fish showed less hepatocyte cytoplasm pigmentation, indicating 

less amount of glycogen with more lipid vacuolization. Healthy and normal myotome were 

observed in the muscle of fish fed control diet (Fig 1C) but necrotic myotome was found in 

fish fed PBM diet (Fig 1D).   
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Fig 2. Liver, muscle, gill (PAS stain; 40 × magnification; scale bar = 50 µm) and distal intestine 

(PAS stain; 4 × magnification; scale bar = 500 µm) sections of juvenile barramundi fed control 

and 100PBM at the end of 42 days of feeding trial.  
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Intestinal morphology 

The distal intestine of barramundi fed control (Fig 3A) and PBM (Fig 3B) was examined by 

transmission electron microscope. Microvilli height (Fig 3D) (t = 6.727, df = 28, P < 0.0001) 

and diameter (Fig 3E) (t = 3.494, df = 28, P = 0.0016) of barramundi fed PBM was significantly 

lower than barramundi fed control diet. 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

Figure 3 observation of TEM in the intestine of juvenile barramundi fed Control (A) and PBM 

(B) at the end of 42 days of feeding trial. (C) microvilli height and diameter measurement and 

comparison of microvilli height and diameter (panel D & E ), performed by an unpaired student 

t-test at P <0.05 and 0.01. 
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Liver enzymes, immunity and stress related genes 

Liver enzymes (AST and GLDH), immune response including serum lysozyme and 

bactericidal activity and stress related genes were significantly induced by experimental diets 

(Fig 4). AST and GLDH in 100PBM was significantly higher that control (t = 2.268, df = 10, 

P = 0.047 and t = 3.199, df = 10, P = 0.010) (Fig 1A and 1B), while serum lysozyme decreased 

significantly in 100PBM compared to control (t = 2.842, df = 10, P = 0.018) (Fig 1C). 

Meanwhile, none of the diets had significant effects on bactericidal activity (t = 1.572, df = 10, 

P = 0.147) (Fig 1D). In line with liver enzymes, similar results were observed in HSP70 and 

HSP90 when compared with control (t = 2.905, df = 10, P = 0.016 and t = 5.102, df = 10, P = 

0.001) (Fig 1E and 1F). 
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Fig 4. AST, Serum aspartate aminotransferase (A) and GLDH, glutamate dehydrogenase (B), 

lysozyme (C), bactericidal activity (D) and heat shock related gene including HSP70 (E) and 

HSP90 (F) in the liver of juvenile barramundi after 42 days feeding with either basal diet or 

total replacement of PBM. P values indicate significant at P < 0.05, 0.01 and 0.001, followed 

by an unpaired student t-test. 

Antioxidant activity 

Antioxidant activities of blood serum were significantly affected by total inclusion of PBM. 

Serum GPx activity declined significantly in 100PBM (t = 2.833, df = 10, P = 0.017) (Fig 5A), 

while MDA increased significant in 100PBM (t = 2.251, df = 10, P = 0.048) (Fig 5B) with 

respect to control. 
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Fig 5. (A) MDA (nmol/mg protein) (B) GPx (U/mg protein) and (C) CAT (U/mg protein) in the 

serum of juvenile barramundi after 42 days feeding with either basal diet or total replacement 

of PBM. P values indicate significant at P < 0.05, 0.01 and 0.001, followed by an unpaired 

student t-test. 

 

 

 

 

 

Discussion 

A few studies have been devoted to increase the inclusion level of PBM, at the expense of FM 

in carnivorous fish. Though, the results are mixed as in some species, a total replacement of 

PBM is possible without imposing deleterious effects on the welfare of the host fish [8, 10, 39], 

while inclusion of PBM exceeding 50% have impacted welfare of many fish [4, 11, 13]. To 

understand the underlying reasons for these mixed results, the present study was carried out 

over 42 days to investigate why 100FM cannot be replaced with PBM in the diet of juvenile 

barramundi using different approaches including biometrics, light microscopy, transmission 

electron microscopy and qPCR. Similar to the previous study in our lab [32], growth, feed 

utilization, FCR and survival of juvenile barramundi was reduced when fed PBM, 
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supplemented with methionine. Profound deterioration in the growth performance of gibel 

carp, Carassius auratus gibelio  was observed when fed 100% animal protein containing PBM 

and meat and bone meal (MBM), supplemented with methionine and lysine [40]. The same 

authors also reported that some nutritional superiority or enhanced palatability in FM that could 

not be met up by PBM and MBM regardless of methionine and lysine supplementation 

provided a biological benefit for gibel carp. Similarly, due to deficiency of AAs (methionine 

and lysine) and EFA (EPA and DHA), the depressed growth performance was observed in 

totoaba juveniles, Totoaba macdonaldi [6] and gilthead seabream, Sparus aurata [13] when 

fed with 100PBM. Higher inclusion of PBM protein reduce most of the essential amino acids 

especially lysine and methionine [4, 11] and also essential fatty acids (EFA) including  n-3 LC-

PUFA, EPA and DHA [41, 42] in the diet of fish, which reflected in the FAs and AAs profile 

of 100PBM diet. These deficiency could depress the growth performance and survival in 

100PBM juvenile barramundi. However, these findings contradict with the results of Panicz, 

Żochowska‐ Kujawska [39] who reported no adverse effects of 100PBM on the growth and 

biometry indices of female tenches, Tinca tinca. This discrepancies might be due to use 

different fish species and culture system or nutritional composition of PBM as it varies from 

batch to batch or suppler companies [37].  

FAs composition of diet affected the FAs composition of fish muscle or meat which have been 

reported in many fish species [43-45]. In addition, FA profile of fish is a crucial attribute in 

nutritional study as some FAs, in particular, MUFA and PUFA promote the consumer health 

[46]. In the present study, PBM increased the total SFAs content than the control. Higher level 

of SFAs are considered to be unhealthy for the cardiovascular system and, have been associated 

with coronary heart disease by imposing effects on cholesterol metabolism and higher LDL 

cholesterol levels [47]. MUFAs and PUFAs content are important for human health and its 

deficiency have been correlated with higher risk of cardiovascular disease by increasing 

inflammation, triglycerides and total cholesterol levels [47, 48] as well as   neurological disease 

particularly myocardial infarction and stroke [49]. PUFAs particularly omega-3 and omega-6 

were negatively induced by 100PBM, indicating that 100PBM fed fish may have less beneficial 

effect on consumer. In line with our present findings, 100PBM was lacking in essential fatty 

acids (EFAs) and also worsened the EFAs in the muscle of totoaba juveniles, Totoaba 

macdonaldi [6]. Similar results were also observed in the muscle of juvenile barramundi, L. 

calcarifer when fed 100PBM [32]. Lipid indexes including AI and TI estimated based on SFA, 

MUFA and PUFA indicate the suitability for human consumption and it value greater than 1 
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associated with cardiovascular disorders. 100PBM had negative effects on AI while TI showed 

no significant variation with values less than 1.0,  still being considered healthy for human 

consumption [50].  

AST and GLDH is an important enzymes to evaluate the liver health status of fish, leaking in 

blood serum significantly from the damaged cell membrane of liver when fish expose to 

stressful condition. In the present study, PBM diet significantly increased the levels of AST 

and GLDH in the serum of barramundi than the control, which are concomitant with the 

histopathological damage of liver tissue, thus indicated that liver health of fish was affected by 

total replacement of FM with PBM. Likewise, plasma ALT was negatively impacted by the 

inclusion of animal protein blend (APB) (20% to 80%) in diet of hybrid grouper, Epinephelus 

fuscoguttatus♀× Epinephelus lanceolatus♂ while AST augmented significantly in 80% APB 

fed fish [18]. However, Panicz, Żochowska‐ Kujawska [39]  reported insignificant effects on 

blood biochemical parameters of juvenile tenches, Tinca tinca 86 days post-feeding with 

graded levels of PBM (25.7 to 100%). 

To further clarify the effects of PBM on the liver function of juvenile barramundi, heat shock 

related genes including HSP70 and HSP90 were examined. HSP70 and HSP90 are two 

important stress related protein and their expression level elevate significantly when fish 

expose to different stress, including pathogenic infection, crowding, poor water quality and 

nutritional deficient diet [51-53]. In the present study, both HSP70 and HSP90 upregulated 

significantly in the liver of barramundi that received 100PBM compared to control, which 

indicate that 100% inclusion of PBM could exert stress to fish. 

In fish, immune functions of immune organs are strongly associated with the presence and 

activity of a unique array of molecules including lysozyme, complement proteins, 

immunoglobulins [54-56] and bactericidal activity which are influenced by dietary 

modifications. Serum lysozyme and bactericidal activity were negatively triggered by 100PBM 

which supported the findings of Subhadra, Lochmann [57], [58] who reported aggravated 

levels of complement and lysozyme activity in PBM treated  largemouth bass, Micropterus 

salmoides.  

Substitution of 100% FM with PBM resulted in lipidosis with clearly visible inflammation in 

liver of juvenile tenches, Tinca tinca [39] which supported our present findings as hepatocyte 

lipid vacuolization with less amount of glycogen was observed in the liver tissue of barramundi 

fed PBM. The excessive amount of fat deposition in liver negatively impacted the growth and 
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immune response of fish [59] that are synchronous with immunological results in the present 

study. Similarly,  Siddik, Chungu [32] fed juvenile barramundi with different levels of PBM 

over a period of 42 days and reported irregular liver arrangement with lipid deposition in the 

100% PBM and bioprocessed PBM groups. Furthermore, higher administration of APB 

affected the morphology of liver of hybrid grouper, Epinephelus fuscoguttatus♀× Epinephelus 

lanceolatus♂, characterized by hepatic vacuoles and a high amounts of lipid droplets which is 

a sign of hepatic steatosis [18]. The lipid accumulation in liver may occur when dietary lipid 

exceeds the capacity of the hepatic cells to oxidize which lead to synthesize and deposit a larger 

amounts of triglyceride in vacuoles [18, 59, 60].  

Muscle growth is the determinant of fish growth which can be affected by diet [61]. Nutritional 

deficiency could alter the muscle structure of Atlantic salmon, Salmo salar including 

myodigeneration [62]. Likewise, fish fed 100PBM showed necrosis and fibre degeneration in 

muscle which might be attributed by deficiency of essential PUFA. Gill is one of the important 

immune organs in fish and its structure can be affected by stress and diet [63]. In the present 

study, hyperplasia in secondary gill lamellae was in 100PBM fed fish but the possible reasons 

are not well understood which deserve further study. 

Evaluating intestinal morphology in response to dietary changes is important to reflect the 

health status and welfare of fish. Intestinal morphology, in particular, villous structure, and 

microvillus height and diameter is related with absorption and assimilation of nutrient and 

immunological function [2, 64, 65]. In comparison with control, histological analysis showed 

that broken and short fold was found in the present study in 100PBM fed groups. In line with 

histological results, significantly smaller with shorter diameter of microvillus were observed, 

which might be responsible for lower efficiency of nutrient uptake and thus suppressing the 

growth and finally survival. Similar results were reported by Siddik, Howieson [2] who found 

significantly lower microvillus height in the distal intestine of barramundi after 56 days post-

feeding with 10% supplemented 90PBM. Hence total replacement of FM with PBM impacted 

the welfare of juvenile barramundi, as reflected by the histology and TEM analysis. 

Antioxidant status in fish, as determined by a number of antioxidants including CAT, SOD, 

GPx, and MDA have been considered as the first line of defensive biomarkers against oxidative 

damage. MDA is a natural biomarker and main ending product of lipid peroxidation [66, 67] 

and it elevation indicates oxidative injury [68] and associates with pathological state of animals 

including cell structure damage and function [66, 67]. Glutathione peroxidase, GPx, also an 
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important antioxidant enzymes play an important in preventing or repairing oxidative damage 

[69]. However, the concentration of MDA is well correlated with GPx activity [70], which are 

in agreement with the present findings. A lower concentration of MDA was found with a 

significant decrease in the serum of fish fed 100PBM, indicating that administration 100PBM 

had noticeable effect on the enzymatic antioxidant activity of fish. The mechanisms behind 

negative effects is not well understood which deserve further study. However, inclusion of 60% 

cottonseed meal depressed the antioxidant activity (SOD, CAT, GSH-Px, TAC and MDA) in 

in liver of Ussuri catfish, Pseudobagrus ussuriensis at the end of 56 days feeding trial [71]. 

In summary, regardless of methionine supplementation, the total replacement of FM with PBM 

is not nutritionally adequate for juvenile barramundi, as indicated by depressed growth 

performance and immune response, as well as elevated level of MDA activity. Also, adding 

PBM induced the lipid droplet in liver for juvenile barramundi via modulating the expression 

levels of heat shock related genes and liver enzymes. Feeding PBM not only triggered the fibre 

degeneration and necrosis in muscle and hyperplasia in gills, but also induced the intestinal 

villus morphology by decreasing intestinal microvilli morphology, which may suggest that 

high levels of PBM could impair the welfare of juvenile barramundi. Further long term study 

need to be conducted along with supplementation of other EAA and/or EFA with PBM to 

investigate the welfare of farmed juvenile barramundi. 
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