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Biophysical model parameterization. We processed raw O2 measurement readings (%O2 

saturation) from individual respirometry chambers to estimate the metabolic rates of eggs within 

each chamber (μgO2 h-1). To do this, we first fit cubic splines to individual O2 traces from each 

replicate chamber in the dataset. We then took the derivative of each spline to estimate O2 

depletion in chambers in terms of %O2 saturation h-1. We used replicate chambers with no eggs 

(blanks) to correct for changes in O2 due to small fluctuations in temperature in the respirometry 

chambers during the beginning of the trials. To do this, we calculated the mean rate of % O2 

change for all blank chambers within a replicate used this mean blank rate (∆𝑂#!"#$%) to correct 

for O2 changes in the chambers with eggs not due to metabolism: 

	∆𝑂&''()*++&),&-) = ∆𝑂&''(+#/) − ∆𝑂#!"#$%
0!""
01#$%&'

  

Rates of O2 loss in wells was then converted to units of μgO2 h-1 (𝑑𝐶* 𝑑𝑡⁄ ) by accounting for the 

O2 concentration of water at saturation, 𝑂2#,(𝑇), and the volume of water in the egg chamber,	𝑉*:   
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We then extracted estimates of 𝑑𝐶* 𝑑𝑡⁄  for each egg in the dataset at O2 concentrations ranging 

from 10% to 100% O2 saturation at intervals of 10%. We used these data to fit our biophysical 

model. 

We fit our four-parameter biophysical model to the dataset described above though non-

linear optimization. We did this by integrating Eq. 3. and 6 (main text) using the Euler method 

with a step size of 12 s. The initial 𝐶* was set to a concentration above O2 saturation at all 

temperature (15 μg ml-1), and 𝐶:(𝑡 = 0) was set at its equilibrium value, 𝐶:∗, at 𝐶*(𝑡 = 0), which 

is given by: 

𝐶:∗ =
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We integrated Eq. 3 and 6 (main text) for each combination of development day and 

experimental temperature (n=15). We did not measure live-tissue mass in this study, however we 

estimated mass from development day using the relationship from [11]: 

Log(M) = -12.66 + 2.70 ln(d) + 2.838 ln(T),   (R2=0.987, n=67) 

where d is days post fertilization, and T is developmental temperature, which was 12 °C for all 

eggs. 

To link model predictions and data, we extracted predicted 𝑑𝐶* 𝑑𝑡⁄ 	values for each 

treatment at O2 concentrations ranging from 10% to 100% O2 saturation at intervals of 10%. 

Goodness-of-Fit was calculated as the sum-of-squared error between predicted and observed 

𝑑𝐶* 𝑑𝑡⁄ . We used a Nelder-Mead simplex to search for the parameters that best fit the data. To 

quantify parameter uncertainty, we used non-parametric bootstrapping. We generated 1000 

resampled datasets by sampling with replacement from the 15 treatments. We fit the model to 

each of the 1000 resampled datasets to generate a probability distribution for each model 

parameter. Overall the parameters were well constrained by the data (Fig. S2). 

We used the biophysical model to predict O2 limitation in the survival experiments by 

calculating the expected equilibrium internal O2 concentration of eggs (Eq. A1) as a function of 

the exposure period, experimental temperature, and O2 concentration. 𝐶:∗ was then used to 

calculate O2 limitation by substituting it into Eq. 2 and 5 (main text). We used the development 

day on the first day of exposure to quantify metabolic demand, D. 
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Quantifying supply and demand dependence of metabolism. We quantified the relative 

dependence of embryo metabolism to both supply and demand as the derivative of the realized 

metabolic rate, B (Fig. 2D), with respect to ambient O2, Co (supply sensitivity), and metabolic 

demand, D (demand sensitivity), at equilibrium in normoxia (Co = Csaturation, dCo/dt = 0, dCs/dt = 

0): 
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Eq. A3 is dimensionless, where 0 and 1 denote complete independence and proportional 

dependence respectively. To give Eq. A2 the same interpretation we rescaled it by the O2 

conductance of the egg, G. 
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Computational Fluid Dynamics Model. We simulated random packing of 0.75 cm diameter 

spheres in Blender [1] using the Bullet physics engine [2]. Spheres which settled in a 7.0 x 3.5 x 

3.5 cm egg pocket volume were eggs, spheres outside were stones. This procedure produced 126 

eggs. We constructed a rectangular fluid domain around the eggs and stones. We left 0.5 cm of 

distance between the inlet and first stones to allow the flow to condition. The side boundaries 

intersected the centers of the outside stones to prevent flow from passing around the stones and 

eggs.  We used the OpenFOAM [3] utilities blockMesh and snappyHexMesh (SHM) to mesh the 

fluid domain. Our meshing procedures produced a total of 30,892,495 cells. We solved for the 

steady state velocity field using the simpleFoam solver and then used the velocity field solution 

for a steady state scalar transport simulation using scalarTransportFoam.  The fluid domain had a 

packing fraction of 0.608, thus to get our desired mean velocity (14 values ranging from 0.0025 

to 0.1 cm/s), we set the inlet velocity to 0.392 times the desired mean velocity. We conducted 

each simulation at five different temperatures (7, 11, and 15 °C).  

The boundary condition for the flux of O2 across each egg’s surface depends on its Ci. At 

equilibrium the influx of oxygen to the egg must balance metabolic losses. To ensure this we 

iteratively solved for the Ci for each egg that balances Eq. 3 (main text) using Newton’s method 

(tolerance = 0.1%). The boundary condition, 𝛽, related the internal O2 concentration to the 

concentrations on the cell faces at the surface of the egg by:  

𝐶2 = 𝛽𝐶: + (1 − 𝛽)𝐶) 

𝛽 ≡ ?50
∆%

+ 1, 

where k is the mass transfer coefficient of O2 across the egg membrane (G [egg surface area]-1); 

DO2 is diffusivity of O2 in water; Δ is the distance to the center of the cell next to the egg surface; 
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and Cs, and Cc are the concentrations of O2 at the surface of the egg, and at the center of the first 

cell next to the face.  Water entering the fluid domain inlet was assumed to be saturated with O2. 
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