
Prediction of vascular ageing based on smartphone acquired
PPG signals

Supplementary Materials

Lorenzo Dall’Olio, Nico Curti, Daniel Remondini, Yosef Safi Harb,
Folkert W. Asselbergs, Gastone Castellani, Hae-Won Uh

1 Data description
The complete dataset is crowdsourced via a campaign (Heart for Heart) and data collection is per-
formed via a dedicated application (Happitech app). The collected data consists of two parts: general
information about the user and measurement. For each one of them, we have the PPG signal for the
R, G, B channels of the camera sensor, each frame’s time-stamp and the values of the accelerometer
along three orthogonal axes X, Y, and Z. All of these values are in arbitrary units, apart from the time,
which is measured in milliseconds. Frame rate per second is 30 fps and each acquisition lasts about
90 seconds. The user was guided by the app in placing his or her fingertip upon the camera of the
smartphone. The LED flash would then illuminate the finger for the entirety of the data acquisition
process, which must be performed at rest (see Figure S1).

The general information part contains information about the user. A unique anonymous ID (not
traceable to the original user) is also associated to each subject. Each user has also voluntarily
provided additional information: age, sex, weight, height, location (city), any known heart condition,
lifestyle, and smoking. Since these are self-reported measures, many missing values were present and
the reliability of the data could not be verified (Bussola, 2019).

Therefore, for the current analysis, we selected five variables with the least missing values: age,
sex, height, weight, and smoking status.

2 PPG Preprocessing
The python code for preprocessing can be found on GitHub, https://github.com/Nico-Curti/
cardio. An accurate representation of the code for a single signal is given as follows:

• We start with a raw signal raw consisting of the acquisition times sequence rawTime (Figure
S2), and 3 time series (respectively the red rawR, green rawG and blue rawB reflected light
components), with all of the 4 sequences of equal length.

• Since the emitted light came from a white flash, all the 3 light components should carry approx-
imately the same information rescaled by light absorbance, and so with the only difference in
Signal to noise ratio, due to the fact that some wavelengths are more absorbed by the tissues.
Therefore we keep only the red component (rawR), since it is the one with higher amplitude
and better signal to noise ratio.

• We compute the average sampling frequency sf as

sf =
Nr. points in rawTime

max(rawTime)−min(rawTime)
(1)

where the usage of min(rawTime) is needed, because the acquisitions do not begin exactly at
Time = 0.

• We compute the half-width w of the window that we will further use for the central moving
average as

w = bsf
2
c (2)

1

https://github.com/Nico-Curti/cardio
https://github.com/Nico-Curti/cardio

where b·c is the floor rounding operator, and the division by 2 is in reality a multiplication
times 0.5 (because multiplications are computationally faster than divisions). Doing so, we will
approximately consider 2w + 1 points in the computation of the central moving average, and
recalling that w = bsf/2c we obtain that the number of points considered for the moving average
is ≈ sf for sf > 10. In this way we have a total time width for our moving average of ≈ 1 second,
and since for our data usually sf ≈ 30Hz the approximation can be considered as reliable.

• At this point we compute the CMA by using a “trick”, in fact we achieve such result by convolving
a box of 2w + 1 width and unitary area with the red component rawR, giving us

CMA(rawR, w) = rawR ∗

2w+1 elements︷ ︸︸ ︷
[1, 1, 1, . . . , 1, 1]

2w + 1
. (3)

Thanks to this, we achieve a faster and vectorized way to perform

CMA(rawR)i =

∑+w
i=−w rawR

2w + 1
. (4)

Please notice that the total width of the moving average is given by 2w + 1, which is always
an odd number since w is an integer. This fact allows us to always have a unique central point
for the window, which is what guarantees that we are performing a central moving average. We
want to clarify that the boundary conditions are treated in a “valid” mode, which means that
we will discard any point that will not have at least w points before and w points after it.

• As above explained, the CMA computation involves the removal of 2w points, the first w and
the last w, from both rawR and rawTime as this points are ignored in the computation of the
CMA

rawR,cut = rawR[w : −w] (5)
rawTime,cut = rawTime[w : −w]. (6)

• At this point, having the lower frequency components in the computed CMA, to obtain a high
pass filter we simply subtract it from the original raw component. This gives us the detrended
signal

detrendedR = rawR,cut − CMA(rawR, w) (7)
detrendedTime = rawTime,cut. (8)

• now we can compute the analytic signal from the detrended signal using

analytic = detrendedR + iH(detrendedR) (9)

where H(detrendedR) indicates the Hilbert transform. Please notice that on the used python
library (scipy) the function scipy.signal.hilbert(x) does not compute the Hilbert transform, but
directly the analytic signal.

• Now we have the analytic signal, this is a complex-valued signal, so each of its elements will
be characterized by an amplitude and a phase. Computing the absolute value of the analytical
signal we recover the instantaneous amplitude, also called envelope, of the signal

envelope = |analytic| (10)

• None of the previous operation has further shortened the arrays, therefore we compute the new
average sampling frequency as

sfcut =
Nr. points in rawTime,cut

max(rawTime,cut)−min(rawTime,cut)
(11)

.

2

• Now we will smooth the envelope in order to remove very high frequencies (denoising) by com-
puting its CMA with half-width of wenv = bsfcutc as a low pass filter, hence

CMA(envelope, wenv) = envelope ∗

2wenv+1 elements︷ ︸︸ ︷
[1, 1, 1, . . . , 1, 1]

2wenv + 1
(12)

and again this will imply a shortening in the signal of 2wenv points, half at the begin and half
at the end, for both detrendedR and rawTime,cut (we are not considering envelope because we
will no further use it, but if we needed to use it we would have to short it too)

detrendedR,second cut = detrendedR[wenv : −wenv] (13)
rawTime,second cut = rawTime,cut[wenv : −wenv]. (14)

• The last step consists in dividing the the detrended shortened signal by the smoothed envelope
to perform demodulation

demoduledR =
detrendedR,second cut

CMA(envelope, wenv)
. (15)

• The preprocessing algorithm concludes by returning two arrays: demoduledR (which has also
been detrended and denoised) and rawTime,second cut. These tow arrays are exactly 2w+2wenv+2
points shorter than the input arrays, and consist the time series which will be analyzed and which
will be used for further features extraction.

Figure S3 depicts a part of the peak detection algorithm regarding a portion of a processed signal,
resulting in Fig. 2 in the main paper: the raw (top), detrended (middle), demoduled and denoised
(bottom) signal.

3 The list of 38 features extracted from the PPG signals
• SDPPG group:

– a , b, c, d , e (see Figure S4), ab_slope (slope of the segment connecting point a and point
b in the SDPPG), ac_slope , ad_slope , ae_slope , bc_slope , bd_slope , be_slope ,
cd_slope , ce_slope , de_slope , t_ab (time interval that separates point a and point b
in the SDPPG), t_ac, t_ad , t_ae , t_bc, t_bd , t_be , t_cd , t_ce , t_de .

• PPG group:

– Extracted from RR: ibi (average inter beat interval, basically the mean of RR), medi-
anRR, entropyRR, kurtosisRR, skewnessRR, madRR (median absolute distance of
RR), tpr (turning point ratio of RR, basically it is number of local extrema in RR divided
by the number of elements in RR), sdnn (standard deviation normal to normal, basically
standard deviation of RR).

– Extracted from RRdiff : pnn20 (proportion of normal to normal 20, the percentage of
elements of RR which differ of more than 20 ms from the successive element, basically
the percentage of elements of RRdiff greater than 20 ms), pnn50 , sdsd (standard de-
viation of successive differences), rmssd (root mean square of successive differences),
tpr_RR_diff .

4 Regression analysis using the continuous outcome, age.
In our work, we considered the classification task of healthy or unhealthy vascular aging, which can
be smoothly transferred to any disease outcome. If one’s choice is to accurately predict continuous
outcome, such as age or blood pressure, we can perform a regression analysis. For non-parametric
DL, CNN was modified as follows:

• Consider the best performing CNN from previous analysis

3

• Change the output layer to 1 single neuron (which will be used for regression against the chrono-
logical age)

• Modify the loss function from categorical cross-entropy to Mean Absolute Error (MAE), which
was the best performing among all other regression loss functions.

• Train until no further improvement in the loss function was observed for more than 10 epochs.

This procedure resulted in a training of around 100 epochs and a performance on the test set through
a linear regression reported in Figure S6. Further we performed a linear regression and a ridge
regression with inner cross validation for the penalization parameter, both trained on the training set
and evaluated on the test (see Figures S8 and S7).

We compared ML and DL results using R2 and Mean Squared Error (MSE) as metrics. Note that,
since the DL CNN was working on slices of 15 consecutive PPG peaks, the number of points in the
DL plot is higher, but the portion of dataset used for comparison is exactly the same (the test set).

References
Bussola, F. Quantitative analysis of smartphone PPG data for heart monitoring. https://amslaurea.

unibo.it/id/eprint/18150 (2019)

Uh, H.W. Prediction of vascular aging based on smartphone acquired PPG signals. IBC 2020 confer-
ence recording. https://www.dropbox.com/s/4a09zvrd8dsi57o/Hae-Won%20Uh_Session8.mp4?
dl=0 (2020)

Tables and Figures

4

https://amslaurea.unibo.it/id/eprint/18150
https://amslaurea.unibo.it/id/eprint/18150
https://www.dropbox.com/s/4a09zvrd8dsi57o/Hae-Won%20Uh_Session8.mp4?dl=0
https://www.dropbox.com/s/4a09zvrd8dsi57o/Hae-Won%20Uh_Session8.mp4?dl=0

Model Sensitivity (%) Specificity (%) AUC (%)
38 features + covariates 87.76 85.42 95.43
CNN: 12-layers-ResNet 90.72 85.83 95.34
a + tpr + covariate 87.34 86.25 94.73

ac_slope + tpr + covariates 87.76 88.33 94.60
a + tpr 83.97 82.50 87.43
ac_slope 78.06 78.75 81.68

a 77.64 78.33 80.79
tpr 73.00 76.25 80.50

covariates 69.62 72.50 74.21
pnn20 66.67 61.67 66.29
ibi 40.93 72.50 55.21

Table S 1: Sensitivity, Specificity and AUC scores for some of the compared models.

Figure S 1: Data capture (Source: Hae-Won Uh, 2020).

5

Figure S 2: Raw signal (90 seconds, 30 frame rate per second).

Figure S 3: Peak detection snapshot, using a CMA’s window width of 1 period. note that every
detected peak displays a reasonably correct detection.

6

Figure S 4: Comparison of PPG (top) and SDPPG (bottom) shapes. Red points represent the peaks
and changing points, a , b, c, d and e , identified by SDPPG.

Figure S 5: Boxplots of age quintiles stratified by sex. Please note that tpr (right) increases with
age, while a (left) decreases and is appreciably lower for females.

7

Figure S 6: Results of DL on continuous age: True age (x-axis) vs. Predicted age (y-axis)

Figure S 7: Results of ridge penalized regression on continuous age: True age (x-axis) vs. Predicted
age (y-axis). Here, the predictors were 38 extracted features and four additional covariates. The
optimal penalization parameter was 0.5623.

8

Figure S 8: Linear regression outcomes using a , tpr and four covariates as predictors.

9

	Data description
	PPG Preprocessing
	The list of 38 features extracted from the PPG signals
	Regression analysis using the continuous outcome, age.

