Supplementary Material

A convolutional neural network segments yeast

microscopy images with high accuracy

Dietler et al.

Supplementary Figures

Supplementary Figure 1: Tracking errors caused by two cells floating out of the field of view. Scale bar: $1 \ \mu m$.

Dietler et al.

Supplementary Figure 2: Scoring of YeastSpotter results. Green dots: acceptable segmentation, red: bad segmentation, pink: missed cell, cyan: spurious cell. Scale bar: 5 μ m.

Dietler et al.

Supplementary Figure 3: Scoring of YeastSpotter results. Green dots: acceptable segmentation, red: bad segmentation, pink: missed cell, cyan: spurious cell. Image from ref. (1), scale bar unknown.

Dietler et al.

Supplementary Figure 4: Scoring of YeastSpotter results. Green dots: acceptable segmentation, red: bad segmentation, pink: missed cell, cyan: spurious cell. Image from ref. (1), scale bar unknown.

Dietler et al.

Supplementary Figure 5: Scoring of the results of the method by Wood et al. (2). Green dots: acceptable segmentation, red: bad segmentation, pink: missed cell, cyan: spurious cell. Scale bar: 5 μ m.

Dietler et al.

Supplementary Figure 6: Scoring of the results of the method by Wood et al. (2). Green dots: acceptable segmentation, red: bad segmentation, pink: missed cell, cyan: spurious cell. Image from ref. (1), scale bar unknown.

Dietler et al.

Supplementary Figure 7: Scoring of the results of the method by Wood et al. (2). Green dots: acceptable segmentation, red: bad segmentation, pink: missed cell, cyan: spurious cell. Image from ref. (1), scale bar unknown.

Supplementary Figure 8: Examples of tiny buds in data set 9 from ref. (1), some only a few pixels in size, that were detected by the YeaZ CNN (left and right) except for four such tiny buds (middle example). The missed bud (middle) was, however, detected at the next time point in the timelapse series (right) when it was slightly bigger. Image from ref. (1), scale bar unknown.

Supplementary Tables

File name	Number of image layers	Number of cells
a_reexport1_crop_1	75	1914
a_reexport2_crop_1	42	703
a_reexport3_crop_1	41	132
a_reexport3_crop_2	2	0
d_reexport1_crop_1	30	110
d_reexport1_crop_2	30	764
d_reexport1_crop_3	30	412
d_reexport1_crop_4	1	30
d_reexport2_crop_1	1	20
d_reexport2_crop_2	30	345
d_reexport2_crop_3	30	611
m_reexport1_crop_1	18	1637
v_cdc20null_crop_1	1	171
v_clnnull_crop_1	1	107
Ahmad_frame_16_crop_1	5	251
Ahmad_frame_16_crop_2	5	18
Ahmad_frame_16_crop_3	5	10
Ahmad_frame_16_crop_4	5	247
Ahmad_frame_19_crop_1	5	208
Ahmad_frame_19_crop_2	5	158
Ahmad_frame_19_crop_3	5	135
V11032020_p1_crop_1	1	27
V11032020_p2_crop_1	4	200
V11032020_p3_crop_1	2	105
2020_3_24_AS20_1_AS18_Pos11_crop_1	5	137
2020_3_24_AS20_1_AS18_Pos11_crop_2	5	76
Total	384	8528

Supplementary Table 1: Training set images

File name	Number of image layers	Number of cells
FOV2_1.5p_PhC_absent_crop_1	1	97
FOV3_1.5p_PhC_absent_crop_1	1	83
FOV4_1.5p_PhC_absent_crop_1	1	83
FOV5_1.5p_PhC_absent_crop_1	1	47
FOV6_1.5p_PhC_absent_crop_1	1	107
FOV7_1.5p_PhC_absent_crop_1	1	100
FOV8_1.5p_PhC_absent_crop_1	1	129
FOV9_1.5p_PhC_absent_crop_1	1	58
FOV9_1.5p_PhC_absent_crop_2	1	206
FOV10_1.5p_PhC_absent_crop_1	1	274
FOV10_1.5p_PhC_absent_crop_2	1	62
FOV11_1.5p_PhC_absent_crop_1	1	62
FOV12_1.5p_PhC_absent_crop_1	1	181
FOV13_1.5p_PhC_absent_crop_1	1	74
FOV14_1.5p_PhC_absent_crop_1	1	105
FOV15_1.5p_PhC_absent_crop_1	1	62
Total	16	1730

Supplementary Table 2: Bright-field image segmentations

Supplementary Table 3: Strains used.

Name	Mating	Genotype
	type locus	
AX42-25A	MATa	wild type W303
JB204-6B	MATa	ADE2 HTB2-mCherry::HIS5
SJR112a12d	$MAT\alpha$	$cln1\Delta0 \ cln2\Delta0::MET3pr-CLN2 \ cln3\Delta0 \ HTB2-mCherry::HIS5 \ ura3\Delta0$
SJR33h6d		$clb2\Delta::LEU2 trp1\Delta::TRP1::GAL-SIC1(1X) HTB2-mCherry:HIS5 MYO1-$
		GFP::KanMX
SJR36a11b	MATa	cln1 Δ cln2 Δ :CLN2pr-Venus:TRP1 cln3 Δ :LEU2 trp1 Δ :TRP1:MET3pr-CLN2
		clb5 Δ :HIS3 clb6 Δ :KanMX HTB2-mCherry:HIS5
CL86-1-	MATa	clb1 Δ clb2 Δ ::GALL-CLB2::URA3 clb3 Δ ::TRP1 clb4 Δ ::his3 Δ ::kanMX
11D		clb5 Δ ::kanMX clb6 Δ ::kanMX swe1 Δ ::TRP1 ADE2
2147-1C	$MAT\alpha$	$cdc20\Delta::LEU2 ADE2::GALL-CDC20$
AS18	$MAT\alpha syn$	cln1 Δ 0 cln2 Δ 0::MET3pr-CLN2 cln3 Δ 0::GAL1pr-HO HTB2-mCherry::HIS5
		ADH1pr-HOcs-YFP

D	C		
R	otoi	non	COC
LU	CICI	. СП	

 Mróz, F., Kaczmarek, A. & Stoma, S. YIT - Yeast Image Toolkit. http://yeast-imagetoolkit.biosim.eu/pmwiki.php (accessed: 15.02.2020).

(2) Wood, N. E. & Doncic, A. A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking. *PLoS One* 14, 1–28 (2019).