Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer's disease mouse model

0.99 0.46 0.64 0.25 0.18

HEK293T

____ 0.81 0.72 0.99 0.96 0.83

6 9 12 24 hours

-Martine Second 0.68 0.72 0.37 0.52 0.26 0.26

70kDa

Calnexin

Tubulin

UMI-77

Tim23

p62

Actin

0.64

i.

Supplementary Fig. 1. UMI-77 induces mitochondrial degradation through the lysosomal pathway.

a Twenty positive compounds were re-validated in HEK293T-mt-Keima cells. Bcl-2 family protein inhibitors were indicated in red. b Pro-apoptotic compounds were re-validated in HEK293T mt-Keima cells, with three replicates per drug. The mitophagy levels were analyzed using two-tailed t-test (data represent mean ± S.E.M.; n=3. *** p<0.001, ** p<0.01, * p<0.05). PBS was used as a positive control to induce autophagy. c HEK293T cells were treated with UMI-77 and E64D, cell lysates were immunoblotted with indicated antibodies. The numbers under the blots represent the gray scale quantification (LC3II/Tubulin). d HEK293T cells were treated with 5 µM UMI-77 for the indicated times and cell lysates were immunoblotted with indicated antibodies. The numbers under the blots represent the gray scale quantification (Tim23/Tubulin). e U2OS cells were treated with 1 µM staurosporine (STS) for the indicated times, cell lysates were immunoblotted with indicated antibodies and cell viability were estimated by using LIVE/DEAD™ cell imaging kit . Data were analyzed by one-way ANOVA (data represent mean ± S.E.M.; n=4. ** p<0.01 (P=0.0062)). The numbers under the blots represent the gray scale quantification (Tom20/Tubulin, Tim23/Tubulin). f HEK293T cells were treated with UMI-77 (5 µM) for 24 h, treated with NH₄Cl (20 mM) and Leupeptin (100nM) for 12 h, and the analysis by electron microscopy was performed. Scale bars, 1 µm. q U2OS and SH-SY5Y cells were treated with 5 µM UMI-77 for the indicated times and cell lysates were immunoblotted with indicated antibodies. The numbers under the blots represent the gray scale quantification (Tom20/Tubulin, Tim23/Tubulin). h U2OS cells were treated with 5 µM UMI-77 in the presence or absence of MG-132, E64D and NH₄Cl/Leupeptin (Leup) for 12 h, and cell lysates were immunoblotted with indicated antibodies. The numbers under the blots represent the gray scale quantification (Tom20/Tubulin, Tim23/Tubulin). i HEK293T cells were treated with 5 µM UMI-77 for the indicated times, and cell lysates were immunoblotted with indicated antibodies. The numbers under the blots represent the gray scale quantification (Tim23/Tubulin, p62/Tubulin). Source data are provided as a Source Data file.

Supplementary Fig. 2. UMI-77 induces mitophagy independent of apoptosis.

a SH-SY5Y cells were transfected with pcDNA3.1-mt-Keima plasmid for 24 h and treated with UMI-77 (0 μ M, 2 μ M, 5 μ M, 10 μ M, 20 μ M) with or without Z-VAD-fmk (50 μ M) for 12 h. Cell viability was estimated by using LIVE/DEADTM cell imaging kit. One-way ANOVA (mean ± S.E.M.; n=4. **** p<0.0001, *** p<0.001. ns, not significant). **b** HEK293T cells were transfected with pcDNA3.1-mt-Keima plasmid for 24 h and treated with UMI-77 (0 μ M, 2 μ M, 5 μ M, 10 μ M, 20 μ M) with or without Z-VAD-fmk (50 μ M) for 24 h. Apoptosis levels was estimated using Caspase-Glo® 3/7 Assay. One-way ANOVA (data represent mean ± S.E.M.; n=4. *** p<0.001, * p<0.05). **c** As in (**b**), except SH-SY5Y cells were used. Apoptosis levels was estimated using Caspase-Glo® 3/7 Assay. One-way ANOVA (data represent mean ± S.E.M.; n=4. **** p<0.0001, * p<0.05). **d** Cells were treated with staurosporine (0 μ M, 5 μ M, 10 μ M) for 3 h. Apoptosis levels were estimated as in (**b**). One-way ANOVA (data represent mean ± S.E.M.; n=4. **** p<0.0001, * p<0.05). **d** Cells were treated with staurosporine (0 μ M, 5 μ M, 10 μ M) for 3 h. Apoptosis levels was estimated as a Source Data file.

С

а

Supplementary Fig. 3. Representative images of Figure 2b, 3g, 5a.

a Representative image of Figure 2b. 469nm shows mitochondria and 586nm shows

mitochondria in lysosome. **b** Representative image of Figure 3g. GFP shows MCL-1 knockdown cells and 586nm shows mitochondria in lysosome.

c HEK293T-MCL-1-knockdown (HEK293T-shMCL-1) and HEK293T-control-knockdown cells (HEK293T-shNC) were treated with UMI-77 as Figure 3g shown and cell lysates were immunoblotted with indicated antibodies. Source data are provided as a Source Data file. **d** Representative image of Figure 5a. Hoechst 33342 shows nucleus and 586nm shows mitochondria in lysosome. OGD: oxygen-glucose deprivation.

Supplementary Fig. 4. The LIR²⁶¹⁻²⁶⁴ **motif of MCL-1 is strongly conserved.** MCL-1 amino acid sequences were obtained from NCBI and aligned using clustalW software (http://www.genome.jp/tools-bin/clustalw). The image was generated using ESpripr 3.0 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi).

Supplementary Fig. 5. The L213A/D218A mutant of MCL-1 promotes mitophagy.

a HEK293T cells were transfected with MCL-1-WT-3xFlag or MCL-1-M-3xFlag (L213A/D218A) for 24 h, and the interaction between MCL-1 and Bax was analyzed by immunoprecipitation. **b** HEK293T cells were transfected with pcDNA3.1-MCL-1-WT (wild-type) or pcDNA3.1-MCL-1-M (L213A/D218A) plasmid for the indicated times and cell lysates were immunoblotted with indicated antibodies. The numbers under the blots represent the gray scale quantification (Tim23/Tubulin). Source data are provided as a Source Data file.

Supplementary Fig. 6. MCL-1 directly interacts with LC3A. Top two panels: Indicated purified proteins were incubated *in vitro* for two hours and GST pull-down was performed and analyzed by western blotting. Bottom panel: Coomassie staining was used to visualize GST-LC3A and GST proteins in the pull-down samples. Source data are provided as a Source Data file.

Supplementary Fig. 7. MCL-1 interacts with LC3A on mitochondria. Wild-type and quadruple KOs (NBR1, TAX1BP1, p62, and NDP52 knockout) HeLa cells were treated with UMI-77 (5 μ M) for 3h and a PLA assay for MCL-1 and LC3A was performed. Cells were counter-stained with MitoTrackerTM Deep Red FM. Scale bar, 5 μ m. Source data are provided as a Source Data file.

Supplementary Fig. 8. UMI-77 induces mitophagy independent of BNIP3, NIX, FUNDC1.

a HEK293T cells were transfected with NIX siRNA for 48 h and treated with 5 µM UMI-77 for 12 h. Cell lysates were immunoblotted for mitochondrial marker proteins (Tom20, Tim23). The numbers under the blots represent the gray scale quantification (Tom20/Tubulin, Tim23/Tubulin). siNC: scrambled siRNA.

b As in (**a**), except Bnip3 siRNA was used.

c As in (a), except FUNDC1 siRNA was used.

d Cells were treated as in (**c**) and total RNA were extracted by FastPure® Cell/Tissue Total RNA Isolation Kit for FUNDC1 qPCR. Data were analyzed using one-way ANOVA (data represent mean ± S.E.M.; n=3. **** p<0.0001). siNC: scrambled siRNA. Source data are provided as a Source Data file.

Supplementary Fig. 9. UMI-77 induces mitophagy independent of Bax and Beclin1.

a Bax knockdown HEK293T-mt-Keima cells were treated with 5 μ M UMI-77 for 12 h. The mitophagy levels were analyzed using two-tailed t-test (data represent mean ± S.E.M.; The sample size was, in turn, n=10, n=6, n=12, n=12, n=10, n=11, n=9. *** p<0.001, **** p<0.0001.). The siRNA knockdown efficiency was shown using western blot. siNC: scrambled siRNA. **b** HEK293T cells were transfected with Beclin1 siRNA for 48 h and treated with 5 μ M UMI-77 for 12 h. Cell lysates were immunoblotted for mitochondrial marker proteins (Tom20). The numbers under the blots represent the gray scale quantification (Tom20/Tubulin). siNC: scrambled siRNA. **c** Beclin1 knockdown HEK293T-mt-Keima cells were treated with 5 μ M UMI-77 for 12 h. The mitophagy levels were analyzed using two-tailed t-test (data represent mean ± S.E.M.; n=11. ** p<0.01, *** p<0.001.). The siRNA knockdown efficiency was shown using western blotting. siNC: scrambled siRNA

b

b

Supplementary Fig. 10. Overexpression of MCL-1 ameliorates cognitive decline in the APP/PS1 mouse model of Alzheimer's disease.

a Six-month-old C57BL/6 and APP/PS1 mice were overexpressed MCL-1 in hippocampus for one month. Latency to escape to a hidden platform in the Morris water maze during a 4-day training period ((WT, n=6), (WT (Ctrl vector), n=5), (WT (MCL-1 overexpression), n=6), (APP/PS1, n=6), (APP/PS1 (Ctrl vector), n=6), (APP/PS1 (MCL-1 overexpression), n=5). * p<0.05, two-tailed t-test). **b** Mice were treated as in (**a**) and immunohistochemistry of hippocampus was performed to stain for amyloid plaques (6E10 antibody, green) and nuclei (DAPI, blue). Scale bar, 1000µm. **c** Mice were treated as in (**a**) and brain lysates were immunoblotted for MCL-1 and Tubulin. Source data are provided as a Source Data file.

Supplementary Table 1.

Primers used in this study.

Primers for pCDH-mt-Keima	
pCDH-mt-Keima-F	5'-CCGGAATTCGAAATGCTGAGCCTGCGCCAGAG-3'
pCDH-mt-Keima-R	5'-CGCGGATCCTCAACCGAGCAAAGAGTGGC-3'
Primers for MCL-1 mutant	
W261A-F	5'-TCAGCGACGGCGTAACAAACGCGGGCAGGATTGTGACTCTCAT-3'
W261A-R	5'-ATGAGAGTCACAATCCTGCCCGCGTTTGTTACGCCGTCGCTGA-3'
I264A-F	5'-GCGTAACAAACTGGGGCAGGGCTGTGACTCTCATTTCTTTTGG-3'
I264A-R	5'-CCAAAAGAAATGAGAGTCACAGCCCTGCCCCAGTTTGTTACGC-3'
W261A/I264A-F	5'-TCAGCGACGGCGTAACAAACGCGGGCAGGGCTGTGACTCTCATTTCTTTTGG-3'
W261A/I264A-R	5'-CCAAAAGAAATGAGAGTCACAGCCCTGCCCGCGTTTGTTACGCCGTCGCTGA-3'
ΔLIR-F	5'-TCAGCGACGGCGTAACAAACGTGACTCTCATTTCTTTTGG-3'
ΔLIR-R	5'-CCAAAAGAAATGAGAGTCACGTTTGTTACGCCGTCGCTGA-3'
F318A/V321A-F	5'-GCTGGGATGGGTTTGTGGAGGCCTTCCATGCAGAGGACCTAGAAGGTGGCAT-3'
F318A/V321A-R	5'-ATGCCACCTTCTAGGTCCTCTGCATGGAAGGCCTCCACAAACCCATCCCAGC-3'
Primers for GST pull down	
pET28a-mcl1-F	5'-TAGAAGCTTGCGGCCGCACT-3'
pET28a-mcl1-R	5'-TTCTAGGTCCTCTACATGGA-3'
GST-LC3A-F	5'-CGCGGATCCGATGCCCTCAGACCGGCCTTT-3'
GST-LC3A-R	5'-CCGCTCGAGTCAGAAGCCGAAGGTTTCCT-3'