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Supplementary Note 1 
Studied devices. We studied six different superlattice devices as summarized in Supplementary Table 
1. Here W refers to the device width, Cg is its gate capacitance and θ is the angle between the 
crystallographic axes of hBN and graphene. The latter was calculated from the measured period of BZ 
oscillations1. 

Supplementary Table 1 
 

Device W (µm) q (°) Cg (µF/m2) 

D1 17  0.4 101 
D2 4 0 98 
D3 3 0.2 104 
D4 3.2 0.5 96 
D5 2 0.2 106 
D6 2 0.3 98 

 
 
Supplementary Note 2  
Magnetic focusing in graphene superlattices. As a further confirmation of the devices’ high quality, 
we report transverse magnetic focusing (TMF) experiments at low B (Supplementary Fig. 1). The 
observation of resistance oscillations due to TMF confirms that Dirac fermions travel ballistically 
across the device2,3, forming skipping orbits extending over hundreds of superlattice unit cells. TMF 
measurements are also known to provide information about the Fermi surface topography in clean 
metals, including graphene superlattices2,3. Our TMF results are in agreement with those reported 
previously2,4. 

 
Supplementary Figure 1 | Transverse magnetic focusing. Measurements using contacts separated 
by 1.5 µm (closest contacts for device D1 pictured in Fig. 1a of the main text); T = 10 mK. 
 
Supplementary Note 3 
Determining mobility and mean free path of BZ fermions. To evaluate the mobility of Brown-Zak 
fermions, we use the standard formula µ = 𝜎## 𝑛%&'𝑒⁄  where 𝑛%&'  is the carrier density of BZ 
fermions and 𝜎## = 1 𝜌##⁄ . Note that the latter expression is exact at 𝜙 = 𝜙-p/q (that is, it does not 
contain 𝜌#. because the effective magnetic field Beff acting on BZ fermions is zero). To determine 
𝑛%&'  for a given Vg, we first used Hall measurements at small fields B £ 0.1 T to determine the 
geometrical capacitance. Then, using longitudinal conductivity maps around the p/q fractions, we 
identified positions of the neutrality points (NPs) as Vg into which Landau mini-fans converged (see 
Fig. 1c and Fig. 3a of the main text). Finally, vHS were identified from Hall effect measurements as 



 
S3 

 

Vg where 𝜌#. changed its sign without exhibiting mini-fans (Supplementary Fig. 2b). As 𝑛%&'  varies 
linearly across NPs and exhibits jumps at vHS, the known geometrical capacitance allowed us to 
reconstruct 𝑛%&'(Vg) as shown in Supplementary Fig. 2a. 
The mean free path 𝑙 was calculated using the standard formula 𝜎## = 𝑔 12

3
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wave vector 𝑘' = (4𝜋𝑛%&'/𝑔)>/8 also depends on the BZ-fermion degeneracy 𝑔. The final 
expression reads  
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Supplementary Figure 2 | Evaluating density of BZ fermions. a, Dependence of 𝑛%&' on gate 
voltage at 𝜙 𝜙- = 1/2⁄  for device D1. b, Measured maps for the Hall resistivity around 𝜙 𝜙- = 1/2⁄ . 
Colour scheme: blue and red represent negative and positive 𝜌#., respectively. Regions around NPs 
are indicated by the grey semi-transparent strips. The yellow strips mark vHS. The central green area 
covers the region dominated by the quantum Hall effect of Dirac fermions from the main graphene 
spectrum (see Fig. 1c of the main text).  
 
   

 
Supplementary Figure 3 | Longitudinal resistivity ρxx for device D1. a, Measurements in zero field 
and b, for 𝜙 𝜙-⁄ = 1/2. These data were used to calculate the mobilities and mean free paths in Fig. 1 
of the main text. 
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Supplementary Note 4  
BZ fermions at higher order fractions. In Fig. 1 of the main text, we presented µ and 𝑙 for Dirac 
fermions and for BZ fermions at 𝜙 𝜙-⁄ = 1/2. For completeness, Supplementary Fig. 4 shows the 
same analysis for the case of 𝜙 𝜙-⁄  = 1/3 and 1/4. One can see that mobilities of BZ fermions with the 
larger q still remain of the order of 106 cm2/Vs and their mean free path approaches values 
comparable to the device width W, which suggests a notable contribution from edge scattering.  
  

 
Supplementary Figure 4 | Ballistic transport of BZ fermions at unit fractions of the flux 
quantum. The data are for device D1 at 10 mK for 𝜙 𝜙-⁄ = 1/3 (a) and 1/4 (b). The same 
presentation as in Figs. 1b,d of the main text. We show the data for positive voltages because for 
mini-fans and vHS could accurately be identified only for electron doping. 
 
 
Supplementary Note 5 
Additional examples of ballistic transfer of BZ fermions. In the main text, we have emphasized 
that, at fields B = Bp/q, BZ fermions move through the superlattice as if the applied field were zero. 
The effective mass of BZ fermions depends on p/q because electronic spectra differ in different 
magnetic minibands. Away from the exact Bp/q values, BZ fermions are expected1 to experience an 
effective magnetic field Beff = B – Bp/q and, therefore, replicate magneto-transport effects known for 
charge carriers in conventional 2D electronic systems. This includes the negative bend resistance that 
is one of the most distinct, qualitative signatures of ballistic transport of charge carriers5–7. The effect 
can be understood as follows. With reference to Fig. 2a of the main text, let us for simplicity consider 
positive charge carriers (hole-doping regime). If holes injected from contact 3 can travel ballistically 
over a distance exceeding W (that is, can reach contact 1 without scattering), an extra positive charge 
would be accumulated near contact 1. As a result, the voltage difference 𝑉8> = 𝑉8 − 𝑉> should be 
negative (see Fig. 2a of the main text). In contrast, if the transport is conventional (diffusive), holes 
from contact 3 travel along lines of the electric field and accumulate at contact 4. Accordingly, the 
sign of 𝑉8> should be conventional (that is, positive). The same consideration for 𝑉8> is valid for 
electrons. Therefore, the negative sign of Rb signifies ballistic transport over distances larger than W.  
Negative Rb was reported in Fig. 2 of the main text for one of our devices (D2). Supplementary Fig. 5 
provides further examples of ballistic transport of BZ fermions using two other superlattices (devices 
D3 and D4). Pronounced pockets of negative Rb are seen in Supplementary Fig. 5 at unit fractions of 
𝜙- with q from 2 to 5. Despite relatively small W » 3 µm, no evidence for ballistic transfer was 
observed for high-order BZ states (p > 1), in agreement with the results reported in the main text. 
Note that occasionally we observed negative bend resistance away from 𝜙 𝜙-⁄ 	= 	1/𝑞 (see, e.g., the 
vertical magenta stripe close to zero Vg in Supplementary Fig. 5a). Unlike the ballistic transfer 
resistance at unit flux fractions, negative signals away from the unit fractions were not reproducible in 
different contact configurations. Such ‘extra’ negative signals are not surprising in our experimental 
geometry and well known to appear in the quantum Hall effect regime using narrow (mesoscopic) 
devices8. 
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Supplementary Figure 5 | Ballistic transport of BZ fermions over micrometer distances. Fan 
diagrams obtained in the bend resistance geometry for devices D3 (a) and D4 (b) with W = 3 and 3.2 
µm, respectively. T = 2 K. Pockets of negative Rb are highlighted in magenta. Indigo-to-yellow: Log 
scale truncated between 10 and 2,000 Ω to optimize the contrast.  
 
Ballistic transport of BZ fermions was found to be rather sensitive to T, and the pockets of negative Rb 
universally disappeared above 30-50 K as shown in Supplementary Fig. 6. This is generally expected 
because the mean free path of BZ fermions should become shorter at higher T. However, the exact 
scattering mechanism could be nontrivial (see, e.g. Umklapp electron-electron scattering9) and 
requires further investigation.  
  

 
Supplementary Figure 6| Temperature dependence of BZ fermions’ ballistic transport. An 
example of the bend resistance measured at ϕ ϕ- = 1/2⁄  using device D5 with W = 2 µm.  
 
 
 
Supplementary Note 6 
Supporting measurements in the longitudinal geometry. To crosscheck our conclusions about 
ballistic transport of BZ fermions, we compare the negative bend resistance measurements shown in 
Figs. 2c,d of the main text with those made in the conventional longitudinal geometry for the same 
device D2 (Supplementary Fig. 7a). The longitudinal resistance Rxx for BZ fermions was found 
positive in all the regions of the map where the negative bend resistance was reported, which 
corroborates the conclusion in the main text about ballistic transfer of BZ fermions across the device.  
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Supplementary Figure 7 | Longitudinal resistance for ballistic BZ fermions. a, Rxx as a function 
of gate voltage and magnetic field measured at 2 K for device D2. Color scale is the same as in Fig. 
2c of the main text. b, Minima found in the longitudinal conductivity are shown schematically. The 
color-coding is the same as for device D1 in Fig. 3b of the main text. The thin black lines mark LLs 
with the lifted spin and valley degeneracy for Dirac fermions of the main spectrum.  
 
Let us note here that, according to the group theory of irreducible representations for the group of 
translations in a magnetic field, an electronic spectrum for each realization of BZ fermions should 
have an additional q-fold degeneracy. This is prescribed by the fact that a group corresponding to any 
p/q fraction is non-Abelian (due to Aharonov-Bohm phases acquired upon translations in non-colinear 
directions) but contains an Abelian subgroup of translations corresponding to a magnetic superlattice 
with a q times larger supercell. The additional q-fold degeneracy takes the form of q mini-valleys in 
the magnetic mini Brillouin zone with an area q times smaller than the moiré superlattice Brillouin 
zone at B = 0. This degeneracy is additional to the 4-fold spin and valley degeneracy of graphene’s 
original spectrum.  
With this consideration in mind, the measurements in Supplementary Fig. 7 also support our other 
conclusion that the full degeneracy of BZ fermions is 4q. Indeed, the q-fold degeneracy reported in 
Fig. 3 of the main text corresponds to the case where both spin and valley degeneracies of both Dirac 
and BZ fermions were lifted. Supplementary Fig. 7 shows LL fans at 2 K, the temperature much 
higher than 10 mK for the measurements in Fig. 3. Dirac fermions of the main spectrum exhibit the 
lifted spin and valley degeneracies by the relatively strong B (thin black lines in Supplementary Fig. 
7b). At lower fields B < 3T, these interaction-induced gaps become progressively smeared. As for BZ 
fermions, their mini-fans visible in Supplementary Fig. 7b reach only the effective field |Beff| < 2T, 
which does not allow the lifting of spin and valley degeneracies at this temperature. Accordingly, only 
the main sequence of LLs for BZ fermions could be observed at 2 K, and it corresponds to the 4q-fold 
degeneracy, as expected and explained in the previous paragraph. 
  
 
Supplementary Note 7  
Lifting mini-valley degeneracy. In the main text we reported additional quantum Hall effect minima 
that cannot be explained within the single-particle Hofstadter-Wannier (dashed lines in Fig 3b of the 
main text). Those minima in 𝜎## were attributed to BZ states with lifted mini-valley degeneracy. As 
an additional proof for the observed degeneracy lifting, Supplementary Fig. 8 shows measurements of 
Hall conductivity 𝜎#. for the relevant range of B and Vg where the dashed lines occur in Fig. 3b. One 
can see well developed plateaus with the quantized values that are fully consistent with the filling 
factors reported in the main text and marked in Fig. 3b. This observation strongly supports our 
conclusions about lifting of all the degeneracies of BZ fermions at low T. 
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Supplementary Figure 8 | Quantized Hall conductance for BZ fermions. a, 𝜎#. around 𝜙 𝜙-⁄ = 
1/3. b, Hall conductivity as a function of gate voltage at a number of constant B within the field 
interval around 11 T (color-coded). The interval is marked by the horizontal lines in (a).  
  
The described lifting of mini-valley degeneracy involves very small energy gaps as witnessed by 
rapid disappearance of the corresponding features with increasing T. Indeed, the quantized Hall 
plateaus seen in the above figure and the conductance minima marked by the dashed lines in Fig. 3b 
of the main text could not be resolved at 2 K. The features also disappeared rapidly with increasing 
the excitation current. For example, Supplementary Fig. 9 shows a Landau mini-fan around 𝜙 𝜙-⁄ = 
1/3 for currents of 10 and 100 nA. In the former case (Supplementary Fig. 9a), there are clear minima 
associated with to the lifted mini-valley degeneracy. The higher current (100 nA) resulted in complete 
smearing of these mini-gaps (Supplementary Fig. 9b), presumably because of an increase in the 
electronic temperature.  
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Supplementary Figure 9 | Landau mini-fans for different excitation currents. a and b, 𝜎##(B,Vg) 
at 10 mK for 10 and 100 nA, respectively. Indigo-to-yellow log scale: 310 nS to 780 µS. c and d, 
Minima found in (a) and (b) are shown schematically. The color-coded numbers are the filling factors 
for the nearby LLs. Thick black lines: Main sequence of LLs for graphene’s Dirac spectrum. 
 
Finally, let us draw attention to the rather unusual re-entrant behavior seen for the mini-fan around Vg 
= 28 V in Fig. 3 and Supplementary Fig. 9. The BZ-fermion gaps for ν = 18 and 21 seem to close 
within a certain interval B and Vg. We attribute this closure to competition between these BZ states 
and the ν = 7 state from the main Dirac sequence. The likely mechanism of the suppression of 
exchange gaps is discussed in ref. 10.  
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