Supplementary Information to Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer

Danila Amoroso,¹ Paolo Barone,¹ and Silvia Picozzi¹

 1 National Research Council CNR-SPIN, c/o Università degli Studi G. DAnnunzio, I-66100 Chieti, Italy

SI. THE MAGNETIC EXCHANGE TENSOR IN NIX_2 MONOLAYERS

The exchange-coupling tensor considered in the main text (Table I) for a Ni-Ni pair whose bonding vector is chosen parallel to the cartesian axis x (denoted as the $Ni₀-Ni₁$ magnetic pair in Fig. [S1\)](#page-0-0) is

$$
\mathbf{J}^{1\hat{R}(0^{\circ})} = \begin{pmatrix} J_{xx} & 0 & 0 \\ 0 & J_{yy} & J_{yz} \\ 0 & J_{yz} & J_{zz} \end{pmatrix} \tag{S1}
$$

The corresponding tensor for the symmetry-equivalent magnetic pairs rotated by $\pm 120^{\circ}$, *i.e.* Ni₀-Ni₃ and Ni₀-Ni₅ pairs shown in Fig. [S1,](#page-0-0) can be deduced via the three-fold rotational symmetry operation belonging to the D_{3d} point group of the considered NiX_2 monolayers, reading:

$$
\mathbf{J}^{1\hat{R}(\mp 120^{\circ})} = \begin{pmatrix} \frac{1}{4} (J_{xx} + 3J_{yy}) & \pm \frac{\sqrt{3}}{4} (J_{xx} - J_{yy}) & \pm \frac{\sqrt{3}}{2} J_{yz} \\ \pm \frac{\sqrt{3}}{4} (J_{xx} - J_{yy}) & \frac{1}{4} (3J_{xx} + J_{yy}) & -\frac{1}{2} J_{yz} \\ \pm \frac{\sqrt{3}}{2} J_{yz} & -\frac{1}{2} J_{yz} & J_{zz} \end{pmatrix}
$$
(S2)

The tensor [\(S1\)](#page-0-1) can be diagonalized analytically, with eigenvalues (λ) and eigenvectors (ν) given by

$$
\begin{cases}\n\lambda_{\alpha} = \frac{1}{2} \left(J_{yy} + J_{zz} - \sqrt{4J_{yz}^2 + (J_{yy} - J_{zz})^2} \right) \\
\lambda_{\beta} = J_{xx} \\
\lambda_{\gamma} = \frac{1}{2} \left(J_{yy} + J_{zz} + \sqrt{4J_{yz}^2 + (J_{yy} - J_{zz})^2} \right) \\
\end{cases},\n\begin{cases}\n\nu_{\alpha} = \left(0, -\text{sgn}(J_{yz}) \sqrt{\frac{1 - \cos \theta}{2}}, \sqrt{\frac{1 + \cos \theta}{2}} \right) \\
\nu_{\beta} = (1, 0, 0) \\
\nu_{\gamma} = \left(0, \sqrt{\frac{1 + \cos \theta}{2}}, \text{sgn}(J_{yz}) \sqrt{\frac{1 - \cos \theta}{2}} \right)\n\end{cases}
$$
\n(S3)

where $\cos \theta = \frac{J_{yy} - J_{zz}}{\sqrt{1 + J_{zz}^2 + J_{zz}^2}}$ $\frac{J_{yy}-J_{zz}}{4J_{yz}^2+(J_{yy}-J_{zz})^2}$.

From the analytic expression of the eigenvectors, it is clear that the off-diagonal terms of the exchange, i.e. the J_{yz} for the Ni-Ni bond parallel to the x-axis, are a direct measure of the deviation from coplanarity, inducing a

FIG. S1: Schematic representation of the six nearest neighbours surrounding a selected central magnetic site (Ni0). Ni atoms are arranged in a triangular lattice, with nearest-neighbour sites labeled counter-clockwise. Components of the J exchange tensor reported in the main text (Table I) were calculated for the Ni₀-N_{i1} pair, whose bonding vector is parallel to the cartesian axis x, as shown in the central panel; corresponding components for the other symmetry-equivalent pairs in the chosen cartesian reference system can be deduced via the three-fold rotoinversion symmetry associated to the D_{3d} point group of the analysed NiX₂ monolayers. The cartesian components of the exchange tensor for $Ni₀-Ni₃$ and $Ni₀-Ni₅$ bonds are therefore obtained via a rotation of the local cartesian reference system (with axis x parallel to the chosen bond) by $\pm 120^\circ$ around the c axis, opposite pairs being related by inversion symmetry. The same symmetry arguments also apply for the second- and third-nearest neighbour interactions [shown in Fig. [S2\(](#page-2-0)c-e)].

2

canting of the two-site anisotropy axes from the perpendicular z direction. This can be even clearer by considering two extreme cases, that is either $J_{yz} = 0$ or $(J_{yy} - J_{zz}) = 0$ - *i.e.* isotropic diagonal terms $J_{xx} = J_{yy} = J_{zz} = J$ - in the above expressions :

1)
$$
J_{yz} = 0 \rightarrow \cos \theta = 1
$$

$$
\begin{cases} \lambda_{\alpha} = J_{zz} \\ \lambda_{\beta} = J_{xx} \\ \lambda_{\gamma} = J_{yy} \end{cases} \qquad \begin{cases} \nu_{\alpha} = (0, 0, 1) \\ \nu_{\beta} = (1, 0, 0) \\ \nu_{\gamma} = (0, 1, 0) \end{cases}
$$

implying coplanar principal axes on the Ni triangular lattice and locally parallel to the x, y, z cartesian axes, i.e. spins interaction independent on the Ni-I-Ni-I plaquettes, as shown in the inset $(\nu_{\alpha}$ -red, ν_{β} -green, ν_{γ} -blue). In this case, there are no terms able to drive the formation of a non-coplanar spin-texture, which can then result into a trivial non-collinear spin-configuration, still driven by the magnetic frustration, as it results from performed MC simulations test.

2)
$$
(J_{yy} - J_{zz}) = 0 \rightarrow cos\theta = 0
$$
; $J_{xx} = J_{yy} = J_{zz} = J$

$$
\begin{cases}\n\lambda_{\alpha} = J - J_{yz} \\
\lambda_{\beta} = J \\
\lambda_{\gamma} = J + J_{yz}\n\end{cases}\n\qquad\n\begin{cases}\n\nu_{\alpha} = \left(0, -\text{sgn}(J_{yz})\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right) \\
\nu_{\beta} = (1, 0, 0) \\
\nu_{\gamma} = \left(0, \sqrt{\frac{1}{2}}, \text{sgn}(J_{yz})\sqrt{\frac{1}{2}}\right)\n\end{cases}
$$

which still introduces non-coplanarity of principal axis, as shown in the inset; nevertheless, having reduced the strenght of the global anisotropy in terms of energy, the formation of the non-coplanar spin-texture, i.e. the A2Sk, would depend on the competition between the isotropic term and the anisotropic J_{yz} . In fact, from MC simulations test (not reported here) in this extreme case an increased value of J_{yz} is required to obtain the spontaneous formation of the A2Sk-lattice.

Moreover, the sign of the off-diagonal J_{yz} component, not affecting the principal values that depend on J_{yz}^2 , determines the direction of the principal axes, being responsible for the change of sign of eigenvectors components [\(S3\)](#page-0-2) and, consequently, for the change of chirality discussed in the main text and showed in Fig. [S4.](#page-4-0)

In the basis of the principal axes, the exchange tensor for a given spin pair is diagonal:

$$
\mathbf{J}_1^{diag} = \begin{pmatrix} \lambda_{\alpha} & 0 & 0 \\ 0 & \lambda_{\beta} & 0 \\ 0 & 0 & \lambda_{\gamma} \end{pmatrix}
$$
 (S4)

The nearest-neighbour exchange-coupling Hamiltonian can be written in such basis as:

$$
H = \frac{1}{2} \sum_{i \neq j} \left(\lambda_{\alpha} S_i^{\alpha} S_j^{\alpha} + \lambda_{\beta} S_i^{\beta} S_j^{\beta} + \lambda_{\gamma} S_i^{\gamma} S_j^{\gamma} \right)
$$
(S5)

where the local orthogonal basis $\{\alpha\beta\gamma\}$ depends on each spin pair; being the principal axes basis orthogonal and assuming $\lambda_{\alpha} = \lambda_{\beta}$ (in agreement with the estimated values reported in Table I of the main text, and neglecting the small difference between λ_{α} and λ_{β} found for NiI₂), the Hamiltonian can be equivalently expressed as

$$
H = \frac{1}{2} \sum_{i \neq j} \left(J' \mathbf{S}_i \cdot \mathbf{S}_j + K S_i^{\gamma} S_j^{\gamma} \right) \tag{S6}
$$

where $J' = (\lambda_\alpha + \lambda_\beta)/2$ can be seen as an isotropic exchange parameter and $K = (\lambda_\gamma - J')$ parametrizes the Kitaevlike anisotropic exchange interaction coefficient, as in Refs [\[1,](#page-9-0) [2\]](#page-9-1). Using the estimated values given in Table I of the main text, numerical values are $J' = -5.10, -6.0, -8.1$ meV and $K = 0.0, 0.3, 3.3$ meV for NiCl₂, NiBr₂ and NiI₂ monolayers, respectively. Such decomposition further confirms that the anisotropic contribution is not negligible in NiBr² and NiI2, being far more pronounced in the latter system.

FIG. S2: Crystal structure of nickel dihalides (NiX₂) monolayers; halogen atom (X) is in purple color. (a) Top view showing the considered first-, second- and third-nearest neighbour magnetic interactions labeled as J_1 , J_2 and J_3 , respectively. Half-light $\{a, b\}$ -plane containing Ni atoms aims at visualizing the relative position of the X-atoms with respect to the Ni layer (below and above along the perpendicular c direction). (b) Side view highlighting Ni-X bonds and the NiX₆ edge-shared octahedra. (c, d, e) Schematic representation of the six first-, second- and third-nearest neighbour Ni atoms; all are related by three-fold rotoinversion symmetry.

FIG. S3: Spin structures and topological charge of the thermodinamically stable phases in monolayer NiI₂. (a,b), Snapshot from Monte Carlo (MC) simulations of the real space spin configurations and topological charge density map of the stable anti-biskyrmion lattice with $m = -2, \eta = \pi/2$ obtained for $B_z/J^{1iso} = 0$ on a 24 × 24 supercell with periodic boundary condition. Black arrows represent in-plane components of spins, the colormap indicates the out-of-plane spin component in (a) and the local scalar chirality in (b). (c) In-plane projection for each Ni₀-Ni_i pair of the non-coplanar ν_{α} eigenvector. The same labeling of Ni-pairs introduced in Fig. [S1](#page-0-0) is adopted. (d) Schematic representation of the spin configuration in the topological core: blue arrows represent spins on the nearest-neighbour Ni atoms which surround a central Ni₀; green arrows represent spins on the next-nearest neighbours with respect to Ni₀. Zoom on the anti-biskyrmion lattice helps visualization of the correspondence with the reconstructed spin pattern: spins on adjacent magnetic sites surrounding a central Ni₀ orient following the symmetric anisotropic interactions. (e,f) Snapshot from MC simulations of the real space spin configurations and topological charge of the skyrmion lattice with $m = 1, \eta = -\pi/2$ for $B_z/J^{1iso} \simeq 1.5$. Note: the purpose of this figure is to summarize the main findings reported in the main text, thus easing the comparison with the supporting results reported in Figs. [S4](#page-4-0) and [S5.](#page-5-0)

FIG. S4: Dependence of chirality on the sign of the off-diagonal component J_{yz} . (a,b) Snapshot from MC simulations of the real space spin configurations for monolayer NiI² obtained from DFT-calculated first- and third-nearest neighbours exchange interaction reported in the main text (Table I), keeping the negative sign of the J_{yz} terms in the Ni₀-Ni₁ pair (a) and changing its sign (b). Change in the rotational sense of spins, *i.e.* the chirality of the anti-biskyrmion, is observed. (c,d) In-plane projection for each Ni₀-Ni_i pair of the noncoplanar ν_{α} eigenvector from the original calculated first-neighbor exchange interaction with negative J_{yz} (c), and from the first-neighbor exchange tensor where J_{yz} is imposed artificially to be positive (d). The applied change produces inversion in the (x, y) components of the eigenvector, that corresponds to reflection with respect to the {x,y} plane of an axial vector. Spins on the nearest-neighbour Ni atoms surrounding the central magnetic site of the topological core orient following the magnetic interaction, producing then the change of spins rotational sense also for the next-nearest neighbours, as highlighted in the zoomed view of the obtained spin configuration. A change of the chirality tuned by the sign of the J_{yz} term is also observed in the skyrmion lattice spin-texture obtained under an external magnetic field $(B_z/J^{1iso} \simeq 1.3)$ (e,f): helicity changes from $\eta = -\pi/2$ (e) to $\eta = \pi/2$ (f).

FIG. S5: Dependence of vorticity on two-site anisotropy in the triangular lattice. (a,b) Snapshot from MC simulations of the real space spin configurations and topological charge for monolayer Nil_2 , as obtained from MC simulations with artificially modified nearest-neighbour anisotropic symmetric exchange: in closer detail, the two-site anisotropy terms have been swapped between $Ni_0-Ni_{2(5)}$ and $Ni_0-Ni_{3(6)}$ pairs, as shown in (c). The resulting spin-texture shown in (a) corresponds to a bi-skyrmion lattice, with vorticity $m = 2$ as opposed to the spontaneous anti-bi-skyrmion lattice with $m = -2$. Accordingly, the spin configuration of the magnetic vortices accompanying the A2Sk-topological core also changes from "half"-skyrmion-wise to "half"-antyskirmion-wise. (c) In-plane projection for each $Ni₀-Ni_i$ pair of the non-coplanar ν_{α} eigenvector related to the artificially set nearest-neighbour exchange interaction. (d) Reconstructed spin pattern from the magnetic exchange: blue (green) arrows represent spins on the nearest-neighbour (next-nearest neighbour) Ni atoms which surround a central N_{i0}, compared with a zoomed view of the bi-skyrmion lattice. Spins on adjacents magnetic sites surrounding a central Ni₀ orient following the symmetric anisotropic interactions. (e,f) Anti-skyrmion lattice spin-texture and associated topological charge as obtained from MC simulation for the modified exchange tensor under an applied external magnetic field $(B_z/J^{1iso} \approx 1.3)$. Noteworthy, the obtained spin configuration displays an opposite vorticity $m = -1$ with respect to the skyrmion lattice $(m = +1)$ found in the original, non-modified model. The results of these tests, alongside with the above examples reported in Fig. [S3](#page-3-0) and Fig. [S4,](#page-4-0) confirm that the spin configuration (in particular its topology and chirality) is largely determined by the anisotropic symmetric exchange.

FIG. S6: Skyrmionic size. As further shown in next Fig. [S7,](#page-7-0) the periodicity of the skyrmionic lattice and, then, the approximate size of the a single skyrmionic object are primarly determined by the strength of the magnetic frustration, *i.e.* the J^{3iso}/J^{1iso} ratio. From the predicted exchange interactions in monolayer NiI₂ reported in Table I of the main manuscript, we found that the minimal size L of the supercell, that is the magnetic unit cell $(m.u.c)$, needed to accomodate the A2Sk-kattice is $\simeq 8a_0$, a_0 being the lattice constant of the unit cell. This value comes from the estimate of the propagation vector-q obtained by the evaluation of the spin structure factor $S(q)$ (Eq. 2 in the main-text) and it is also in agreement with the minimization of the isotropic exchange interaction in momentum space $J(q)$, given, e.g., in Ref [\[3\]](#page-9-2). In particular, the m.u.c. of the A2Sk lattice in NiI₂ (dashed lines inside the hexagonal 24x24 cell) comprises three anti-biskyrmions, each surrounded by six vortices. The number N of topological objects scales up with the size L of the magnetic supercell: $L \times L = nL_{m.u.c} \times nL_{m.u.c} = n^2(L_{m.u.c} \times L_{m.u.c});$ e.g. $24 \times 24 = 3^2(8 \times 8) \rightarrow N_{8 \times 8} = 3 \rightarrow N_{24 \times 24} = 3^2 \cdot 3 = 27$. The radius of each anti-biskyrmion can be then estimated as $r \sim L_{m.u.c}/2\sqrt{3}$; the A2Sk-diameter counts ≃5 spins and thus it can be classified as atomic-scale skyrmionic structure [\[4,](#page-9-3) [5\]](#page-9-4).

FIG. S7: Evolution of the topological properties as a function of the external magnetic field, the strength of the off-diagonal J_{yz} term and of the third-nearest neighbour (isotropic) interaction J^{3iso} . All parameters are expressed in units of the isotropic nearest-neighbour interaction J^{1iso} , the other interaction terms being kept fixed to the DFT-values obtained within the U=1.8 eV and J=0.8 eV approach for NiI₂ monolayer. Left panels column: absolute value of the total topological charge Q obtained from MC simulations on a 24×24 supercell. Central panel: number of topological objects (N) contained in the used supercell. Right panel: topological charge Q per magnetic topological object, obtained by normalizing the total charge with the number of topological objects $(|Q^*| = |Q|/N)$. (a,b,c) Evolution with B_z . In agreement with the results shown in Fig. 1(f) of the main text, two sharp topological phase-transitions, signalled by the abrupt change of the total topological charge (a), are induced under an applied magnetic field. Since the latter does not modify the periodicity - $L_{m.u.c.} \simeq 8$ with the given J^{3iso}/J^{1iso} - and hence the size of the magnetic unit cell, containing three magnetic cores, the number of topological objects in the ground state is always fixed to $3^2 \cdot 3 = 27$ (b), while the topological charge of each magnetic bubble changes as $|Q^*|$ 2→1→0 with increasing applied field (c). Transition temperatures are also dependent on the field strength. (d,e,f) Evolution with tuned J_{yz} . The total topological number, the number of cores - hence the size of each topological object - and the transition temperature are found to be overall robust against the strength of the off-diagonal anisotropic exchange; however, the topological A2Sk phase is not stabilized for J_{yz}/J^{1iso} < 0.15, where a topologically trivial single-q helimagnet state is stabilized, analogous to the one found in NiBr₂ (see Fig. 3 in the main text). (g,h,i) Evolution with tuned J^{3iso} . The change of total topological charge shown in (g) reflects the change of size of the topological objects, whose number is correspondingly reduced in the 24×24 supercell with decreasing J^{3iso}/J^{1iso} (e), while the topological charge of each object remains fixed (i). Indeed, the periodicity of the triple-q state is mostly determined by the ratio J^{3iso}/J^{1iso} ; a smaller value of such ratio implies a larger magnetic unit cell, still hosting three topological cores. The largest biskyrmions are found for $J^{3iso}/J^{1iso} = 0.4$, with $L_{m.u.c} = 12$ and thus $N = 2^2 \cdot 3 = 12$ in the 24×24 simulation cell. We notice that similar size of the topological magnetic lattice $(L_{m.u.c} \sim 8)$ is found in the range $0.7 \lesssim J^{3iso}/J^{1iso} \lesssim 1.0$, within which our DFT estimates for NiI² monolayer fall, consistently with the weaker dependence of the triple-q periodicity in this range.

	A_{Ni} (meV)
NiCl2	0.0(0)
NiBr2	0.0(1)
NiI_2	0.5(8)

TABLE SI: Single-ion anisotropy (SIA) calculated with U=1.8 eV, J=0.8 eV. We report here the coefficient A_i for a given nickel ion i of the SIA contribution to the magnetic interaction, which can be here simplified as $H_{SIA} = A_i S_{iz}^2$. Digits in brackets are below the accuracy of our DFT calculations (estimated to be within $\sim 10^{-4} eV$). In fact, for NiI₂, we also verified that no further terms appear in the expansion of the single-ion anisotropy Hamiltonian [\[6\]](#page-9-5): coefficients A_{xy}, A_{xz}, A_{yz} , and $(A_{yy} - A_{xx})$ are in fact equal to zero; only the $(A_{zz} - A_{xx})$ is $\simeq +0.6$ meV, resulting thus into an easy-plane anisotropy. Moreover, we found that the SIA does not affect the spontaneous stabilization of the anti-biskyrmions lattice, being its contribution negligible with respect to the dominant J^{1iso} and J^{3iso} interactions and also with respect to the J_{yz} anisotropic term $(|A/J^{1iso}| \simeq$ 0.08; $|A/J^{3iso}| \simeq 0.10$; $|A/J_{yz}| \simeq 0.4$). In fact, we performed MC calculations both without SIA and changing its sign, finding that the topology of the A2Sk and Sk lattices was unaffected.

							U=1 eV U=2 eV U=3 eV U=1.8 J=0.8 eV	
							$\begin{array}{cc cc}J_{yz} & J^{3iso} & J_{yz} & J^{3iso} \\ \hline J^{1iso} & J^{1iso} & J^{1iso} & J^{1iso} & J^{1iso} \\ \end{array} \begin{array}{c cc}J_{yz} & J^{3iso} & J_{yz} & J^{3iso} \\ \hline J^{1iso} & J^{1iso} & J^{1iso} & J^{1iso} \\ \end{array}$	$\frac{J^{3iso}}{J^{1iso}}$
NiCl_2 0.00 -0.31 0.00 -0.31 0.00 -0.30 0.00								-0.33
NiBr ₂ 0.02 -0.47 0.02 -0.46 0.02 -0.50 0.02								-0.49
		Nil_2 0.22 -0.84 0.20 -0.80 0.19 -0.79 0.20						-0.83

TABLE SII: J_{yz}/J^{1iso} and J^{3iso}/J^{1iso} estimated from $U = 1, 2, 3 \text{ eV}$ within the Dudarev approach and $U = 1.8 \text{ eV}, J = 0.8 \text{ eV}$ within the Liechtenstein approach (reported in the main text). No substantial variation is observed in the ratio, thereby guaranteeing the realization of the anti-biskyrmion lattice in NiI_2 monolayer.

I^{1iso}				I^{2iso}	J^{3iso}			
NiI_2	-6.7		$-(0.4)$		$+7.1$			
$\mathbf{T}^{two-site\ aniso}$								
				J_{xx} J_{yy} J_{zz} J_{yz} J_{xz} J_{xy}				
				Nil_2 -1.0 1.3 -0.3 -1.5 0.0 0.0				

TABLE SIII: J^{1iso} , J^{2iso} and J^{3iso} , and two-site anisotropy ($J^{two-site\ aniso}$) components (in meV) estimated for monolayer NiI₂ with lattice parameter fixed to the experimental one known for the bulk phase, *i.e.* $a = 3.89 \text{ Å}$, within the the Liechtenstein approach $(U = 1.8 \text{ eV}, J = 0.8 \text{ eV}).$

- [1] Xu, C., Feng, J., Xiang, H., and Bellaiche, L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI³ and CrGeTe³ monolayers. npj Comput. Mater. 4, 57 (2018).
- [2] Xu, C., et al. Topological spin texture in Janus monolayers of the chromium trihalides $Cr(I,X)_3$. Phys. Rev. B 101, 060404(R) (2020).
- [3] Batista, C. D., Lin, S.-Z., Hayami, S.and Kamiya, Y. Frustration and chiral orderings in correlated electron systems. Rep. Prog. Phys. **79**, 084504 (2016).
- [4] Nagaosa, N. and Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnology 8, 899 (2013).
- [5] Heinze, S., et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011).
- [6] Xiang, H., Lee, C., Koo H.-J., Gong, X. and Whangbo M.-H. Magnetic properties and energy-mapping analysis. Dalton Trans. 42, 823 (2013).