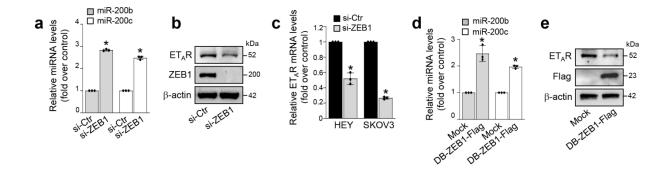
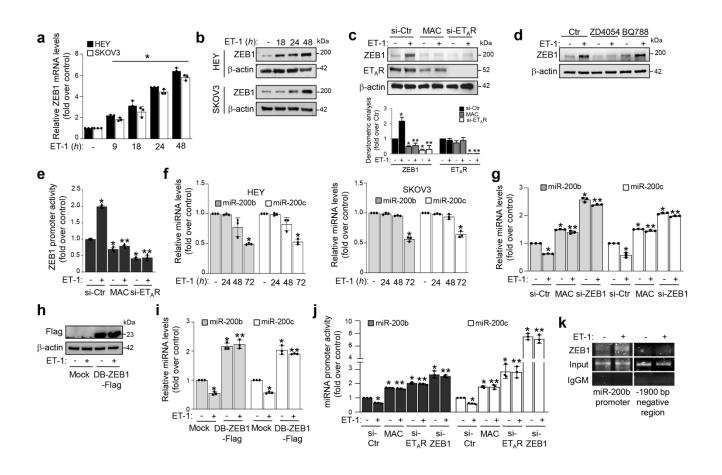

Supplementary Information

Targeting endothelin 1 receptor-miR-200b/c-ZEB1 circuitry blunts metastatic progression in ovarian cancer

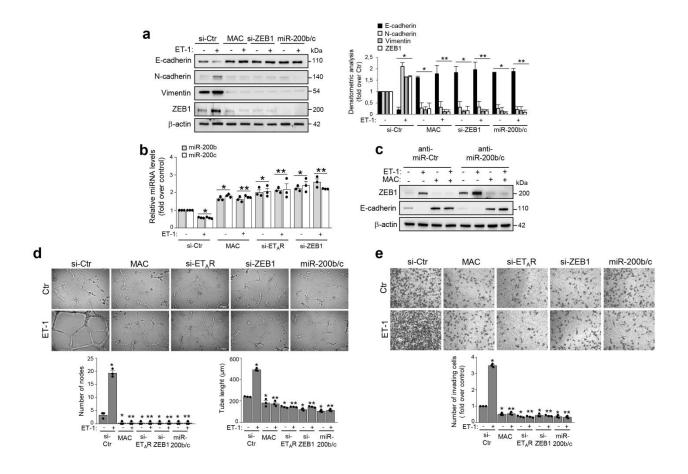
Rosanna Sestito, Roberta Cianfrocca, Piera Tocci, Laura Rosanò, Andrea Sacconi, Giovanni Blandino and Anna Bagnato



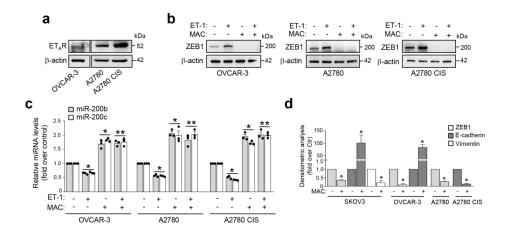
Supplementary Figure 1. High levels of ET_AR or ZEB1 correlate with a poor prognosis in ovarian cancer patients. a Kaplan-Meier curves of overall survival (OS) of 525 patients from TCGA subdivided in high (z score > 1.5, red line) and low (z score < 1.5, blue line) expression levels of *EDNRA* (ET_AR) or *ZEB1* genes. b Kaplan-Meier curves of progression free survival (PFS) of 447 patients from TCGA subdivided as in **a**.


Supplementary Figure 2. ET_A**R and ZEB1 are putative targets of miR-200b/c. a** miRNAs predicted to target the 3'UTR of ET_AR or the 3'UTR of ZEB1 by using miRanda, TargetScan and miRmap bioinformatic tools. **b** miR-141, miR-200a and miR-429 expression levels in CAOV3, OVCA 433, SKOV3 and HEY cell lines analyzed by qRT-PCR and normalized to U6. c WB analysis of ET_AR and ZEB1 protein expression in HEY cells transfected with mimic-miRNA Ctr (miR-Ctr), mimic-miR-141 (miR-141) or mimic-miR-200a (miR-200a) or mimic-miR-429 (miR-429) for 48h. β-actin is used as loading control. **d** WB analysis of ET_AR and ZEB1 protein expression in HEY and SKOV3 cells transfected with mimic-miR-200b, or -miR-200c for 48h. β-actin is used as loading control. Graph represents the densitometric analysis of ET_AR and ST_AR and

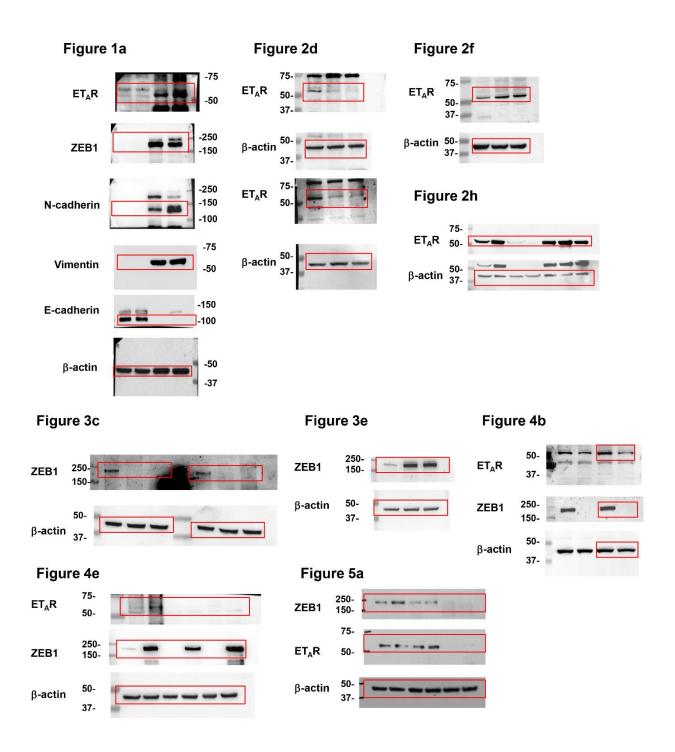
ZEB1 protein expression normalized to β -actin. Values are the mean ±SD expressed as fold induction (*, *p*<0.04 vs miR-Ctr). **e** miR-200b/c seed binding sequences on the 3'UTR of ZEB1 and ET_AR. **f** Schematic representation of the ET_AR 3'UTR reporter plasmids employed in the luciferase assays: wt ET_AR 3'UTR, mut ET_AR 3'UTR (carrying mutations in pos. 498-500 and 1726-1728), Δ ET_AR 3'UTR (carrying a deletion of the region 1781-1784) and mut/ Δ ET_AR 3'UTR (carrying the mutations in pos. 498-500 and 1726-1728 and a deletion of the region 1781-1784). **g** Luciferase activity in HEY cells co-transfected with mimic-miR-Ctr, -miR-200b or -miR-200c together with the wt ET_AR 3'UTR, mut ET_AR 3'UTR or Δ ET_AR 3'UTR reporter plasmids. Values are the mean ±SD expressed as fold induction (n=3; *, *p*<0.001 vs Ctr).

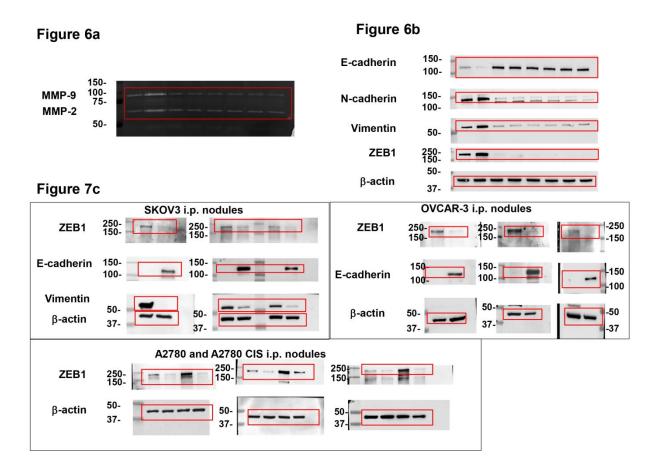

Supplementary Figure 3. ZEB1 regulates ET_AR expression through the suppression of miR-200b/c. a Expression of miR-200b/c in SKOV3 cells transfected for 72h with siRNA control (si-Ctr) or si-ZEB1 analyzed by qRT-PCR. U6 is used to normalize. Values are the mean \pm SD (n=3; *, p<0.0001 vs si-Ctr). b Expression of ET_AR and ZEB1 proteins in SKOV3 cells transfected as in **a** and analyzed by WB. β -actin is used as loading control. **c** Expression levels of ET_AR mRNA in HEY and SKOV3 cells transfected as in **a** evaluated by qRT-PCR and normalized to cyclophilin-A. Values are the mean \pm SD (n=3; *, p<0.001 vs si-Ctr). **d** qRT-PCR analyses to detect miR-200b/c expression in HEY cells transfected with a control plasmid (Mock) or with a Flag-tagged construct able to recognize and block the DNA binding domain of ZEB1 (DB-ZEB1-Flag) for 48h. U6 is used to normalize miRNA expression. Values are the mean \pm SD (n=3; *, p<0.01 vs Mock). **e**

Expression of ET_AR and Flag proteins in HEY cells transfected as in **d** and analyzed by WB. β -actin is used as loading control.



Supplementary Figure 4. ET-1 downregulates miR-200b/c via ZEB1. a, b ZEB1 mRNA (**a**) and protein (**b**) levels evaluated by qRT-PCR and WB and normalized to cyclophilin-A and β-actin in ET-1-stimulated HEY and SKOV3 cells for different times. Values are the mean ±SD (n=3; *, p<0.01 vs unstimulated cells). **c** Expression of ZEB1 and ET_AR in HEY cells transfected with si-Ctr, or si-ET_AR or treated with MAC and stimulated or not with ET-1 for 48h. β-actin is used as loading control. Graph represents the quantification of ZEB1 and ET_AR expression normalized to β-actin. Value are the mean ±SD (*, p<0.05 vs si-Ctr; **, p<0.05 vs ET-1 stimulated si-Ctr). **d** Expression of ZEB1 in HEY cells treated with the selective ET_AR antagonist ZD4054 (1µM) and the selective ET_BR antagonist BQ788 (1µM) and stimulated or not with ET-1. β-actin is used as


loading control. e Luciferase activity in SKOV3 cells co-transfected for 48h with ZEB1 promoter reporter plasmid and treated as in c. Values are the mean \pm SD (n=3; *, p<0.002 vs si-Ctr; **, p<0.001 vs ET-1 stimulated si-Ctr). f qRT-PCR for miR-200b/c expression in HEY and SKOV3 cells stimulated or not with ET-1 for different times. U6 is used to normalize. Values are the mean \pm SD (n=3; *, p<0.001 vs unstimulated cells). g qRT-PCR for miR-200b/c expression in SKOV3 cells transfected with si-Ctr or si-ZEB1 or treated with MAC and stimulated with ET-1 for 72h. U6 is used to normalize. Values are the mean \pm SD (n=3; *, p<0.0001 vs si-Ctr; **, p<0.0001 vs ET-1stimulated si-Ctr). h, i WB analysis (h) and qRT-PCR for miR-200b/c expression (i) in HEY cells transfected with a control plasmid (Mock) or with the DB-ZEB1-Flag plasmid for 48h and stimulated or not with ET-1 for 72h. β-actin and U6 are used to normalize. Values are the mean ±SD (n=3; *, p<0.001 vs Mock **, p<0.0001 vs ET-1-stimulated Mock). j Luciferase activity in SKOV3 cells co-transfected for 48h with the reporter plasmids for miR-200b/c promoters and si-Ctr, si-ET_AR or si-ZEB1 or treated with MAC and stimulated or not with ET-1 for 24h. Values are the mean ±SD (n=3; *, p<0.003 vs si-Ctr; **, p<0.001 vs ET-1-stimulated si-Ctr). k The binding of ZEB1 on miR-200b promoter region and on a region -1900 bp upstream the miR-200b TSS is analyzed in SKOV3 cells treated or not with ET-1 for 24h by ChIP assays followed by PCR. Anti-IgG mouse (IgGM) Ab is used as control for all ChIP reactions.



Supplementary Figure 5. The integrated ET_AR-miR-200b/c-ZEB1 circuit is involved in ET-1dependent cell plasticity and invasion. a Expression of E-cadherin, N-cadherin, Vimentin and ZEB1 proteins is analyzed by WB in SKOV3 cells transfected with si-Ctr, si-ZEB1, or mimic-miR-200b/c or treated with MAC and stimulated or not with ET-1. β -actin is used as loading control. Graph represents the densitometric analysis of E-cadherin, N-cadherin, Vimentin and ZEB1 expression normalized to β -actin. Values are the mean ±SD expressed as fold induction (*, *p*<0.05 vs si-Ctr; **, *p*<0.05 vs ET-1 stimulated si-Ctr). **b** miR-200b/c expression in SKOV3 cells transfected with si-Ctr, si-ET_AR, si-ZEB1, or mimic-miR-200b/c and treated as in **a** is analyzed by qRT-PCR and normalized to U6. Values are the mean ±SD (n=3; *, *p*<0.004 vs si-Ctr; **, *p*<0.002 vs ET-1 stimulated si-Ctr). **c** Expression of ZEB1 and E-cadherin in SKOV3 cells transfected with anti-miR-Ctr or anti-miR-200b/c and treated or not with MAC and/or stimulated with ET-1. β -actin is used as loading control. **d** Assay of tubule-like structure formation in HEY cells transfected for 48h with siRNA control (si-Ctr), si-ET_AR, si-ZEB1, or mimic-miR-200b/c (miR-200b/c) or treated with MAC and overnight stimulated or not with ET-1. Original magnification 20×. (Scale bar: 100µm). Graphs represent the number of nodes and the tube length in HEY cells. Columns show the mean \pm SD (n=3; *, *p*<0.05 vs si-Ctr; **, *p*<0.0001 vs ET-1-stimulated si-Ctr). **e** Chemoinvasion assay in HEY cells transfected and stimulated as in **d**. Images represent the crystal violet-stained invasive cells. Magnification x10. Graph represents the number of invading HEY cells. Columns show the mean \pm SD (n=3; *, *p*<0.001 vs si-Ctr; **, *p*<0.0001 vs ET-1-stimulated si-Ctr).

Supplementary Figure 6. Macitentan hampers ET-1/ZEB1-dependent miR-200b/c transcriptional regulation in high-grade serous and in chemoresistant ovarian cancer cell lines. a Expression of ET_AR in OVCAR-3, A2780 and A2780 CIS cells. β -actin is used as loading control. b Expression of ZEB1 in OVCAR-3, A2780 and A2780 CIS cell treated or not with MAC and/or stimulated with ET-1. β -actin is used as loading control. c qRT-PCR for miR-200b/c expression in OVCAR-3, A2780 and A2780 CIS cells treated or not with MAC and/or stimulated with ET-1. U6 is used to normalize. Values are the mean ±SD (n=3; *, *p*<0.02 vs unstimulated cells). d Densitometric analysis of ZEB1, E-cadherin, and Vimentin expression in SKOV3, OVCAR-3, A2780 and A2780 CIS xenografts normalized to β -actin. Values are the mean ±SD (*, *p*<0.04 vs Ctr).

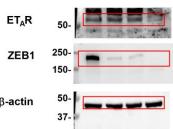


Figure 7f

	SKOV3 xenograft: miR 200b promo bp Input ZEB1 IgGM	oter SKOV 500 bp Input 25 <u>0 b</u> p	3 xenograft: -1900 bp negative region ZEB1 IgGM	ET _A R ZEB1	50- 250- 150-
Suppl	ementary Fig. 2d			β-actin	50- 37-
ZEB1	250-	ZEB1 250- 150-	-	Supple	menta
ET₄R	100- 75- 50-	ET _A R 50- 37-		ET _A R	50- 37-
β-actin	50- 37-	β-actin 50- 37-		ZEB1	250- 150-
	100	0		β-actin	50- 37-
Suppi	ementary Fig. 3e	Sup	plementary	Fig. 4b	
ET _A R	75- 50-	ZEB1	250- 150-	ZEB1	250- 150-
FLAG	25- 20-	β-actin	50- 37-	β-actin	50- 37-
β-actin	50- 37-				

Supplementary Fig. 2c

ary Fig. 3b

ET _A R	50-
ZEB1	37- 2 250- 150-
actin	50- 37-
ZEB1	250-

-00	1	-	-	-	-	-	ł
50-							1
50-	-						
		-		-	-	-	
37-			3	19	4	1	-

Supplementary Fig. 4c		Supplementary Fig. 4d		Supplementary Fig. 4h	
	250- 50- ZEB	150- C		Flag 25- 20-	
ET _A R β-actin	50- 37- 50-	n 30-		β-actin 50- 37-	
p-actin	37-		Supplementary	Fig. 5a	
Supp	plementary Fig. 4k		-		
	SKOV3: miR 200b promoter		E-cadherin 150-		
Inp			N-cadherin 150- 100-		
500 bp			Vimentin ⁵⁰⁻		
500 Бр 2 <u>50 Б</u> р	SKOV3: -1900 bp negative region Input ZEB1 Ig(GM	ZEB1 250- 150-	And some some sould be	
Supp	blementary Fig. 5c	and and	p-actin 37-		
ZEB1	250- 150-	Su	pplementary Fig.	6b	
E-cadherir	150- 100-	ZEB1	250- 150-	ZEB1 250- 150-	
β-actin	50- 37-	β-actin	50- 37-	β-actin 50- 37-	
Supplementary Fig. 6a			51-		
	,	ZEB1	250		
ETAF	R 50- 50- 50-	β-actin	150- 50-		
β-actir	50-		37-		

Supplementary Figure 7. Uncropped blots of figures 1-7 and supplementary figures 2-6.