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Materials and Methods

Subject Cohort

A total of nine subjects with a confirmed diagnosis of CF from the Yale Adult CF Program 

provided sputum samples for this study, five during exacerbation and five during periods of 

stability. These subjects were recruited during a) Scheduled routine visits (n=5) and b) 

Unscheduled “sick” visits, in which they reported new respiratory symptoms and were diagnosed 

with a CF exacerbation (n=4). A CF exacerbation was defined by the emergence of four of 

twelve signs or respiratory symptoms, prompting a change in therapy and initiation of 

antimicrobial treatment (modified from Fuchs' criteria (E1)). These criteria included: change in 

sputum; change in hemoptysis; increased cough; increased dyspnea; malaise, fatigue or lethargy; 

fever; anorexia or weight loss; sinus congestion; change in sinus discharge; change in chest 

physical exam; or FEV1 decrease >10% from a previous value (E1). Individuals without new 

symptoms and those that did not meet AE criteria were characterized as "CF Stable". Our 

recruitment period extended through 2019. We also recruited five healthy volunteers (Healthy 

Controls, HC) to undergo sputum induction according to previous protocols (E2). Since we did 

not identify significant differences in the gene expression profiles of stable and exacerbation 

subjects, all CF subjects were grouped as "CF" as compared to healthy control samples for 

analysis as a group. The study protocol was approved by the Yale University Institutional 

Review Board and informed consent was obtained from each subject.

Sputum Collection and Processing

CF subjects expectorated sputum spontaneously for our studies. Induced sputum samples were 

obtained from HC as previously described (E2, E3).  Briefly, subjects inhaled nebulized 3% 
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hypertonic saline for five minutes on three cycles. To reduce squamous cell contamination, 

subjects were asked to rinse their mouth with water and clear their throat. Expectorated sputum 

samples were collected into specimen cups and placed on ice. Sputum plug material from HC 

and CF subjects were selected and weighed prior to washing with 9x their volume of PBS. 

Samples were incubated in Dulbecco's Phosphate-Buffered Saline (PBS) with agitation for 15 

minutes and filtered through 40-micron strainers. Samples were centrifugated at 300 g for five 

minutes and supernatants were stored at -80C. The pellets were suspended in RPMI/10%FBS 

medium with 10% DMSO. Aliquots of 1 ml were saved into cryogenic vials and placed in 

Nalgene Cryo 1 C Freezing Container (Sigma, St. Louis, MO) overnight at -80C. Samples 

were stored in liquid nitrogen the next day. Frozen samples were thawed in a water bath at 37°C, 

resuspended with 20ml DMEM + 10% heat-inactivated FBS (Life Technologies, USA), then 

centrifuged at 300g, 5min, 4°C. Supernatant was discarded, cells were resuspended in 2ml 

DMEM + 10% FCS, passed through a 70µm cell strainer (Fisher Scientific, USA). Non-viable 

cells and debris were removed from the cell suspensions using a OptiPrep (Iodixanol) density 

gradient centrifugation according to the manufacturer’s protocol (OptiPrep Application Sheet 

C13 – Strategy 2). In brief, 1.86ml of the cell suspensions were mixed with 40% OptiPrep in 

DMEM + 10% FCS by repeated gentle inversion, overlaid with a density barrier (density: 

1.09g/ml, 780µl OptiPrep in 2.22ml DMEM + 10% FCS), then overlaid with 500µl DMEM + 

10% FCS. After centrifugation at 800g, 20min, 4°C, viable cells were collected from the top 

interface and diluted with 2ml DMEM + 10% FCS, centrifuged at 400g, 5min, 4°C, then 

resuspended in 1ml PBS + 0.04% BSA (New England Biolabs, USA) and passed through a final 

40µm cell strainer (Fisher Scientific, USA). For cell concentrations, cells were stained with 

Trypan blue and counted on a Countess Automated Cell Counter (Thermo Fisher, USA). 
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Single Cell Barcoding, Library Preparation, and Sequencing 

Single cells were barcoded using the 10x Chromium Single Cell platform, and cDNA libraries 

were prepared according to the manufacturer’s protocol (Single Cell 3’ Reagent Kits v3, 10x 

Genomics, USA). In brief, cell suspensions, reverse transcription master mix and partitioning oil 

were loaded on a single cell “B” chip, then run on the Chromium Controller. mRNA was reverse 

transcribed within the droplets at 53°C for 45min. cDNA was amplified for a 12 cycles total on a 

BioRad C1000 Touch thermocycler. cDNA was size-selected using SpriSelect beads (Beckman 

Coulter, USA) with a ratio of SpriSelect reagent volume to sample volume of 0.6. For qualitative 

control purposes, cDNA was analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip. 

cDNA was fragmented using the proprietary fragmentation enzyme blend for 5min at 32°C, 

followed by end repair and A-tailing at 65°C for 30min. cDNA were double-sided size selected 

using SpriSelect beads. Sequencing adaptors were ligated to the cDNA at 20°C for 15min. 

cDNA was amplified using a sample-specific index oligo as primer, followed by another round 

of double-sided size selection using SpriSelect beads. For qualitative control purposes, final 

libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip. cDNA libraries 

were sequenced on a HiSeq 4000 Illumina platform aiming for 150 million reads per library. Full 

de-identified sequencing data for all subjects is available in the gene expression omnibus (GEO) 

under accession number GSE145360. 

Data Processing and Computational Analyses 

Basecalls were converted to reads with the implementation mkfastq in the software Cell Ranger 

(v3.0.2). Read2 files were subject to two passes of contaminant trimming with cutadapt (v2.7): 

first for the template switch oligo sequence 
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(AAGCAGTGGTATCAACGCAGAGTACATGGG) anchored on the 5' end; secondly for 

poly(A) sequences on the 3' end. Following trimming, read pairs were removed if the read 2 was 

trimmed below 20bp. Subsequent read processing was conducted with the STAR (v2.7.3a) (E4) 

and its single cell sequencing implementation STARsolo. Reads were aligned to the human 

genome reference GRCh38 release 31 (GRCh38.p12) from GENECODE (E5). Collapsed unique 

molecular identifiers (UMIs) with reads that span both exonic and intronic sequences were 

retained as both separate and combined gene expression assays. Cell barcodes representative of 

quality cells were delineated from barcodes of apoptotic cells or background RNA based on the 

following three thresholds: at least 10% of transcripts arising from intron spanning, i.e. unspliced 

reads indicative of nascent mRNA; more than 750 transcripts profiled; less than 15% of their 

transcriptome was of mitochondrial origin. Technical summaries related to sequencing and data 

processing can be found in Supplemental Data file E4. 

Data Normalization and Cell Population Identification

UMIs from each cell barcode - irrespective of intron or exon coverage - were retained for all 

downstream analysis and analyzed using the R package Seurat (version 3.1.1) (E6). Raw UMI 

counts were normalized with a scale factor of 10,000 UMIs per cell and subsequently natural log 

transformed with a pseudocount of 1. More than double the cell barcodes were detected in two 

subjects compared to all other subjects, so cells were randomly downsampled to a maximum of 

2,250 cells per subject to avoid predominance of those two subjects. 3000 highly variable genes 

were identified using the method “vst”, then data was scaled and the total number of UMI and 

the percentage of UMI arising from mitochondrial genes were regressed out. The scaled values 

were then subject to principle component analysis (PCA) for linear dimension reduction.  A 

shared nearest neighbor network was created based on Euclidean distances between cells in 
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multidimensional PC space (the first 12 PC were used) and a fixed number of neighbors per cell, 

which was used to generate a 2-dimensional Uniform Manifold Approximation and Projection 

UMAP for visualization. For cell type identification, scaled data was clustered using the Leiden 

algorithm. In addition to general filtering based on quality control variables, a curated multiplet 

removal based on prior literature knowledge was performed: Cell barcodes were identified as 

mulitplets if their expression level was higher than 1 in the following marker genes (outside the 

appropriate cluster): MS4A1 (B cells), CD2 (T cells), VCAN (monocytes), FCGR3B (neutrophil 

granulocytes), KRT19 (epithelial), and FABP4 (alveolar macrophages). Cell barcodes flagged as 

multiplets were not included in downstream analyses.

Generation of Cell Type Markers and Differential Expression Between Disease Conditions

In order to evaluated cell-type markers we used Seurat’s FindAllMarkers (to calculate log fold 

changes, percentages of expression within and outside a group, and p-values of Wilcoxon-Rank 

Sum test comparing a group to all cells outside that specific group including adjustment for 

multiple testing) and additionally calculated binary classifier system based on diagnostic odd’s 

ratios as described in our earlier work (E7) (Supplemental Data file E2). For each cell type in the 

data, we identified the genes whose expression was log fold change >= 0.25 greater than the 

other cells in the data. We then calculated the diagnostics odds ratio (DOR) for each of these 

genes, where we binarize the expression values by treating any detection of a gene (normalized 

expression value > 0) as a positive value, and zero expression detection as negative. We included 

a pseudocount of 0.5 to avoid undefined values, as:

DOR = ((TruePositives + 0.5) / (FalsePositives + 0.5)) / ((FalseNegatives + 0.5) / (TrueNegatives 

+ 0.5)) 
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where True Positives represents the number of cells within the group detected expressing the 

gene (value > 0), FalsePositives represents the number of cells outside of the group detected 

expressing the gene, FalseNegatives represents the number of cells within the group with no 

detected expression, and TrueNegatives represents the number of cells outside of the group with 

no detected expression of the gene. For differential expression testing between disease 

conditions, Seurat’s implementation of a Wilcoxon-Rank Sum in FindMarkers was used, only 

testing genes whose expression was log fold change >= 0.25 greater between both disease 

conditions.

Scoring of regulon activity and pathways

A regulon is defined as a group of target genes regulated by a common transcription factor. To 

score the activity of each regulon in each cell, we utilized the package pySCENIC (E8) with 

default settings and the following database: cisTarget databases (hg38__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr.feather, hg38__refseq-

r80__10kb_up_and_down_tss.mc9nr.feather) and the transcription factor motif annotation 

database (motifs-v9-nr.hgnc-m0.001-o0.0.tbl) which were both downloaded from 

resources.aertslab.org/cistarget/, and the list of human transcription factors (hs_hgnc_tfs.txt) 

which was downloaded from github.com/aertslab/pySCENIC/tree/master/resources. 

In order to calculate pathway activity scores, Gene Ontology (GO; geneontology.org) pathways 

related to monocyte/macrophage functions were downloaded, then scored using Seurat’s 

AddModuleScore using default settings.
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Pseudotime Analysis of PMN and monocytes/macrophages

We observed already in UMAP space that many features in the data were represented by a 

continuum of increasing phenotypic deviation, e.g. increase of maturation markers in neutrophil 

granulocyte, maturation from monocytes to macrophages, and gradual increase of classical 

markers of inflammation in monocytes. Consequently, we sought to implement pseudotime 

analysis of these continua to assess features rather than relying on traditional group-wise 

comparisons. Cell barcodes were subsetted to either only neutrophil granulocytes or 

monocytes/macrophages. Due to major differences in number of cells profiled per subject, PMN 

were randomly downsampled to a maximum of 200 cell barcodes per subject, and in the Mo/MΦ 

subgroup to a maximum of 250 cell barcodes per subject. As for the full dataset, data of the 

subgroups was normalized, variable features were extracted (200 for PMN, 500 for Mo/MΦ), 

scaled, then subject to PC analysis. PHATE (Potential of Heat-diffusion for Affinity-based 

Trajectory Embedding) (E9) embedding was performed which is specifically suitable to continua 

(50 nearest neighbors, 5 PCs, t=50 in Mo/MΦ and t=100 in PMN). Cell barcodes were clustered 

using the cluster_phate function (k=8) for PMN and the Leiden clustering for Mo/MΦ. 

Trajectories were identified using Slingshot (E10) on the PHATE embeddings with default 

settings, and a central starting cluster for the Mo/MΦ. Pseudotime analysis was used to 

distinguish gene expression trajectories, and in turn, the most extreme phenotypes of these 

trajectories defined transcriptional archetypes in sputum (E11-E13). Pearson’s correlation 

coefficients and their p values, including Bonferroni adjustment for multiple testing, were 

calculated between the resulting pseudotime distances of these trajectories and gene expression 

and the regulon activity scores (Supplemental Data file E2). Gene expression and regulon 

activity scores correlating with pseudotime values were visualized by heatmaps.
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Validation of major cell types by Cytometry Time of Flight (CyTOF)

CyTOF-derived fcs files from the study by Yao et al. (E14) were processed using the bead-based 

Normalizer Release R2013a (E15). Normalized files were then processed in Cytobank 

(https://premium.cytobank.org/) using gates to select singlets, remove beads and identify live 

cells. Events identified using this workflow were exported and processed further using the R 

package cytofkit version 1.12.0 (E16). The Rphenograph function in cytofkit was implemented 

to cluster cells using cytofAsinh method, with the tsne dimensionality reduction method applied 

on 80000 events, using k=40. Files were merged using the fixed method and the HLA-DR, 

CD11b, CD8a, CD20, CD16, MIP-1β, TNF, CD45, CD4, IL-6, CD11c, CD14, Cytokeratin, 

CD80, CD15, CD163, IFNγ, EGFR, CD66b, IL-8, CD62L and CD56 markers were used in this 

model. Resulting clusters were manually curated and merged after review of surface marker 

profiles.

Correlation matrix of immune cell populations comparing sputum and lung cell populations

To identify classifier genes, differential gene expression of immune cell types of this study and 

analogue cell types from an independent scRNAseq, a dataset of 28 healthy distal lung samples 

(E7) was established using Seurat’s FindAllMarkers with an absolute log fold change threshold 

of 1 (the lung dataset was downsampled within the FindAllMarkers function using the settings: 

max.cells.per.ident=1000, seed=7). Classifier genes were filtered such that all genes had a 

Bonferroni adjusted p-value < 1E-5. For each cell type and each dataset, the top 50 marker 

genes, ordered by fold change, were selected. We took the intersection of the genes from both 

datasets as top classifiers (n=154). The average gene expression of these 154 genes were 

calculated for each cell type per dataset. Spearman correlation matrix was calculated using base 
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R’s function “cor”. The R package “corrplot” was used to visualize the Spearman correlation 

matrix. Unsupervised hierarchical complete clustering was performed to order the cell types in 

the heatmap.
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Fig. E1. 

Fig. E1. CFTR expression in CF and healthy control sputum cells. (A) UMAP colored by cells in 

which at least one CFTR mRNA molecule was profiled (red). (B) Percentages of cells in which 

at least one CFTR mRNA molecule was profiled, separated by cell type; second column (“all 

subjects”) represents the full dataset, which was divided in the third and fourth column by 

disease state.
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Fig. E2. 

Fig. E2. Validation of the shift in major immune cell types in sputum of CF compared to HC. 

(A) RPhenograph clustering of Sputum CyTOF in patients with cystic fibrosis (CF) and healthy 

controls (HC) demonstrates differences in the populations of immune cells. The sputum of 

patients with CF is characterized by high percentages of neutrophils, while sputum from HC is 
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characterized by high percentages of macrophages. (B) RPhenograph clustering of Sputum 

CyTOF according to Healthy Control (HC) and Cystic Fibrosis (CF) status. (C) Boxplots 

showing percentages of Mo/MΦ, PMN, and other to all cells profiled per subject, separated by 

disease state. Whiskers represent 1.5 x interquartile range (IQR). * p < 0.05 determined by a 

Wilcoxon rank sum test comparing cell percentages of CF patients and controls.
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Fig. E3. 

Fig. E3. Concordance of cell type annotations. Correlation matrix of immune cell populations of 

this study and analogous cell types from an independent scRNA sequencing dataset of distal lung 

samples, subsetting to the 28 healthy controls. Matrix fields are colored by Spearman’s rho, cell 

types are ordered by unsupervised hierarchical clustering. Annotation bars are highlighting the 

two different datasets (dark grey: this dataset, light grey: lung samples from healthy controls 

only from Adams, et al. (7)). 
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Fig. E4. 

Fig. E4. Expression of selected marker genes of Mo/MoMΦ trajectories on UMAPs. (A) UMAP, 

zoomed in on Mo and MoMΦ, colored by expression of inflammatory genes IL1B, NLRP3, 

PTGS2. (B) UMAP, zoomed in on Mo and MoMΦ, colored by expression of mature macrophage 

genes MSR1, APOC1, CD9. (C) UMAP, zoomed in on Mo and MoMΦ, colored by expression 

of heat shock genes HSPA1A, HSPH1, DNAJB1. (D) UMAP, zoomed in on Mo and MoMΦ, 
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colored by (i) cell type, (ii) disease state, (iii) subjects. CF: Cystic Fibrosis, HC: Healthy Control, 

Mo: Monocyte; MoMΦ: monocyte-derived macrophage.
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Fig. E5. 

Fig. E5. Additional annotations of Mo/MoMΦ on PHATE embedding. (A) UMAP of Mo and 

MoMΦ colored by (i) Cell type, (ii) Disease state, (iii) Subjects. 

CF: Cystic Fibrosis, HC: Healthy Control, Mo: Monocyte; MoMΦ: monocyte-derived 

macrophage
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Fig. E6. 

Fig. E6. Additional annotations of PMN on PHATE embedding. (A) PHATE of PMN colored by 

expression of heat shock genes HSPA1A, HSPH1 and DNAJB1. (B) PHATE of PMN colored by 

disease state (HC: Healthy Control, CF: Cystic Fibrosis) and subjects.
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Fig. E7. 

Fig. E7. Violin plots of (A) MARCO and (B) MRC1, grouped by cell type.
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Fig. E8. 

Fig. E8. Violin plots of major histocompatibility complex class 2 genes in B cells, grouped by 

disease state. For all: p>0.05, i.e. not significantly different.
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Fig. E9. 

Fig. E9. Viable cell yield using our sputum processing protocol is comparable to previously 

established approaches for sputum processing (proof-of-principle). Aliquots from the same 

sample were processed using (A) our PBS-only protocol or (B) treated sequentially with DNAse 

(0.56kU/ml, D4527-500KU, Sigma) with gentle agitation for 10 min at room temperature 

followed by DTT (final concentration 1.5-2uM) with gentle agitation for 10 min at room 

temperature. Airway cells were incubated with iridium intercalator (125 nM, Fluidigm) to label 

DNA and analyzed by mass cytometry as previously reported (E14). Representative gating 

strategy for live cells determined following exclusion of DNAlo cellular debris reflecting 

enrichment for CD45+ (Fluidigm, clone # HI30) CD15+ (Fluidigm, clone # W6D3) PMN 

lineages (CD11b, Clone# M1/7, Longwood and CD66b, self-labeled, Clone# 913542, R&D).
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Supplemental Data file E1. Results of Wilcoxon rank-sum test and log transformed diagnostics 

odds ratio of genes for cell types, subsetting to genes with log transformed fold change > 0.25 for 

each cell population compared to all other cell populations. 

Supplemental Data file E2. Results of Pearson correlation between gene expression and 

pseudotime distance values within each trajectory.

Supplemental Data file E3. Results of Wilcoxon rank-sum test on gene expression within each 

cell type comparing CF to HC. 

Supplemental Data file E4. Technical summary of all sequenced and processed libraries of this 

dataset. TSO: template switch oligo.
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