Supplementary Figure 1

Supplementary Figure 1. UV-Visible absorption spectrum of the *E. coli* Fur mutant C138S. Wild-type *E. coli* Fur and the Fur mutant C138S were purified from the *E. coli* iscA/sufA mutant cells grown in LB medium. The protein concentration was about 100 μ M. The spectrum of the Fur mutant C138S was offset by O.D. of 0.2.

Supplementary Figure 2

Supplementary Figure 2. In vitro reconstitution of the [2Fe-2S] cluster in the E. coli Fur and the H. influenzae Fur. A), recombinant E. coli Fur proteins were prepared from the E. coli iscA/sufA mutant cells grown in LB medium containing 0 (spectrum 1) or 200 μ M (spectrum 2) of 2,2'-dipyridyl. Apo-form E. coli Fur protein (50 μ M) was then incubated with 200 μ M Fe(NH₄)₂(SO₄)₂, 1 mM L-cysteine, 1 μ M E. coli cysteine desulfurase (IscS), and 4 mM dithiothreitol for 30 minutes, followed by passing through a High-Trap Desalting column to re-purify the protein. Re-purified Fur protein was subjected to the UV-Visible absorption measurement (Spectrum 3). The protein concentrations were about 20 μ M. Spectra of the Fur proteins were offset for clarity. B), as in A), except recombinant H. influenzae Fur proteins were prepared from the E. coli iscA/sufA mutant cells grown in LB medium containing 0 (spectrum 1) or 200 μ M (spectrum 2) of 2,2'-dipyridyl. Spectrum 3, apo-form H. influenzae Fur protein after reconstitution as described in A).

			Experimental MB parameters at 4.2 K		
Cluster Type	Protein	Cluster spin	δ (mm/s)	$\Delta E_Q (mm/s)$	Ref.
[Fe]-4Cys	Rubredoxin (C. pasteurianum)	5/2	0.24	0.5	(1)
[Fe]-4Cys	Desulforedoxin (D. gigas)	5/2	0.25	0.75	(2)
[Fe]-3Cys1Ser	C42S Rubredoxin (C. pasteurianum)	5/2	0.26	0.7	(1)
[Fe]-3Cys1Ser	C9S Rubredoxin (C. pasteurianum)	5/2	0.26	0.7	(1)
[2Fe-2S]-4Cys	<i>Ferredoxin</i> (<i>P. aeruginosa</i>)	0	0.27	0.60	(3)
[2Fe-2S]-3Cys1His	(T. derugniosa) Rieske protein (T. thermophilus)	0	0.32; 0.24	0.91; 0.52	(4)
[2Fe-2S]-3Cys ^(a)	<i>Glutaredoxin (human)</i>	0	0.27	0.61	(5)
[2Fe-2S]-3Cys ^(a)	Rubredoxin C42A (C. pasteurianum)	0	0.30; 0.29	0.71; 0.58	(6)
[2Fe-2S]-3Cys1His	mitoNEET (human)	0	0.26; 0.30	0.47; 0.96	(7)
[2Fe-2S]-3Cys1His	IscU (A. vinelandii)	0	0.27; 0.32	0.66; 0.94	(8)
[3Fe-4S]-3Cys	Ferredoxin (A. vinelandii)	1/2	0.27	0.63	(9)
[4Fe-4S]-4Cys	Ferredoxin (B.stearothermophilus)	0	0.43; 0.42	1.50; 1.20; 1.10; 0.66	(10)
[4Fe-4S]-4Cys	FNR anaerobic (E. coli)	0	0.45	1.22	(11)
[2Fe-2S]-4Cys	FNR exposed to O ₂ (E. coli)	0	0.28	0.58	(11)
[2Fe-28]-3Cys	Fur (E. coli)	0	0.29	0.53	This work

Supplementary Table 1. Mössbauer Parameters for Selected Protein-Bound Fe-S clusters

Notes: (a) in these proteins only three ligands were identified as Cysteine. The respective studies indicated that the fourth ligand is unknown, but it is unlikely to be His.

References

- 1. Yoo, S. J., Meyer, J., Achim, C., Peterson, J., Hendrich, M. P., and Münck, E. (2000) Mossbauer, EPR, and MCD studies of the C9S and C24S variants of C. pasteurianum rubredoxin and MCD studies of the wild-type protein. *J. Biol. Inorg. Chem* **5**, 475-487
- Moura, I., Huynh, B. H., Hausinger, R. P., LeGall, J., Xavier, A. V., and Munck, E. (1980) Mössbauer and EPR studies of desulforedoxin from Desulfovibrio gigas, . J. Biol. Chem. 255, 2493– 2498
- 3. E., M., Debrunner, P. G., Tsibris, J. C. M., and Gunsalus, I. G. (1972) Mossbauer Parameters of Putidaredoxin and its Selenium Analog. *Biochemistry* **11**, 855-863
- Fee, J. A., Findling, K. L., Yoshida, T., Hille, R., Tarr, G. E., Hearshen, D. O., Dunham, W. R., Day, E. P., Kent, T. A., and Münck, E. (1984) Purification and characterization of the Rieske iron-sulfur protein from Thermus thermophilus. Evidence for a [2Fe-2S] cluster having non-cysteine ligands. *J. Biol. Chem.* 259, 124-133
- Lillig, C. H., Berndt, C., Vergnolle, O., Lonn, M. E., Hudemann, C., Bill, E., and Holmgren, A. (2005) Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. *Proc. Natl. Acad. Sci. U. S. A.* 102, 8168-8173
- Meyer, J., Gagnon, J., Gaillard, J., Lutz, M., Achim, C., Munck, E., Petillot, Y., Colangelo, C. M., and Scott, R. A. (1997) Assembly of a [2Fe-2S]2+ cluster in a molecular variant of Clostridium pasteurianum rubredoxin. *Biochemistry* 36, 13374-13380.
- Ferecatu, I., Goncalves, S., Golinelli-Cohen, M. P., Clemancey, M., Martelli, A., Riquier, S., Guittet, E., Latour, J. M., Puccio, H., Drapier, J. C., Lescop, E., and Bouton, C. (2014) The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1. J. Biol. Chem. 289, 28070-28086
- Chandramouli, K., Unciuleac, M. C., Naik, S., Dean, D. R., Huynh, B. H., and Johnson, M. K. (2007) Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. *Biochemistry* 46, 6804-6811
- 9. Kent, T. A., Huynh, B. H., and Munck, E. (1980) Iron-sulfur proteins: spin-coupling model for threeiron clusters. *Proc. Natl. Acad. Sci. U. S. A.* **77**, 6574-6576.
- Middleton, P., Dickson, D. P. E., Johnson, C. E., and Rush, J. D. (1978) Interpretation of the Mössbauer Spectra of the Four-Iron Ferredoxin from Bacillus stearothermophilus. *European Journal* of Biochemistry 88, 135-141
- Khoroshilova, N., Popescu, C. V., Münck, E., Beinert, H., and Kiley, P. J. (1997) Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. *Proc. Natl. Acad. Sci. USA* 94, 6087