Supplementary figures

Figure S1. The ectodomain of SCARA5 forms homotrimers.

(A) The SEC profiles of the ectodomains (ECTO) of SCARA5 and SCARA1 had similar elution volumes.

(B) The cross-linked intact ectodomain (ECTO) as well as the ectodomain without the

SRCR domain (ECTOASRCR) of SCARA5 run as trimers on SDS-PAGE.

Figure S2. Interactions of the SR-A members with ferritin.

(A) FACS data showed that L-ferritin could bind to the cells transfected with mSCARA5, mSCARA1 or mMARCO, but the binding with mMARCO is much weaker than that of mSCARA5 or mSCARA1.

(B) FACS data showed that H-ferritin could bind to the cells transfected with hSCARA5, hSCARA1 or hMARCO with different affinities, but no binding for the hSCARA3 or hSCARA4 transfected cells.

(C) FACS data showed that when the loop region (S471-Y473) of mMARCO was replaced by the loop (R444-F448) of hSCARA5, it had enhanced interaction with L-ferritin.

(D) FACS data showed that when the N-terminal SRCR domain (SRCR1) of human CD163 was replaced by the SRCR domain of hSCARA5, the chimeric molecule did not show any detectable binding with L-ferritin.

Figure S3. Expression of the ferritin mutants and their binding with SCARA5.

(A) The SDS-PAGE of the L-ferritin mutants after purification.

(B) Binding of the ferritin mutants with SCARA5.

Figure S4. Structural comparison of the SRCR domains of SCARA5, SCARA1 and MARCO.

(A) Superposition of the crystal structures of the SRCR domain of hSCARA5 (orange) and mSCARA1 (green; PDB entry 6J02).

(B) Superposition of the crystal structures of the SRCR domain of hSCARA5 (orange)
and mMARCO (cyan; PDB entry 2OY3). The loop regions of SCARA5 (R444-F448, red)
and mMARCO (S471-Y473, yellow) are indicated by the dashed black rectangles.
Divalent cations (Ca²⁺ or Mg²⁺) are shown as spheres.

	419	420	423 426		444	448	458	459	481	486
	`	11	11		1	1	1	1	\	/
human SCARA5	IRLVNGSGPHEGRVEVYHDRRWGTV	CDDGWD	KKDGDVVC	RMLGFRGVA	EVYRTAR	FGQGTO	RIWMD	DVACKGT	EETIFRCSFSKWGVTN	GHAEDASVTCN
mouse SCARA5	IRLVNGSGPHQGRVEVFHDRRWGTV	CDDGWD	KKDGDVVC	RMLGFHGVE	EVYRTAR	REGQGTO	GRIWM	DVNCKGI	ESSIFHCQFSKWGVTN	CGHAEDAGVTCT
human MARCO	VRIVGSSNRGRAEVYYSGTWGT1	CDDEWQ	NSDAIVFO	CRMLGY-SKG	RALYKV-	GAGTO	GQIWLL	NVQCRGI	ESTLWSCTKNSWGHHD	CSHEEDAGVECS
mouse MARCO	VRIMGGTNRGRAEVYYNNEWGTI	CDDDWD	NNDATVFO	CRMLGY-SRG	RALSS	-YGGGS0	GNIWLD	NVNCRGI	ENSLWDCSKNSWGNHN	CVHNEDAGVECS
human SCARA1	VRLVGGSGPHEGRVEILHSGQWGTI	CDDRWE	VRVGQVVC	CRSLGYPGVQ	AVHKAAH	IFGQGT	PIWLN	EVFCFGF	ESSIEECKIRQWGTRA	CSHSEDAGVTCT
mouse SCARA1	VRLVGGSGAHEGRVEIFHQGQWGTI	CDDRWD	IRAGQVVC	CRSLGYQEVL	AVHKRAH	IFGQGTO	SPIWLN	AVMCFGF	ESSIENCKINQWGVLS	CSHSEDAGVTCT
Bovine SCARA5	VRLVNGSGLHQGRVEVYHERRWGTV	CDDGWD	KKDGDVVC	RMLGFPGAE	DVHRTAG	FGQGT	RIWMD	DVACKGT	EESIFRCSFSKWGVTN	GHAEDAGVTCK
Rat SCARA5	IRLVNGSGPHQGRVEVFHDRRWGTV	CDDGWD	KKDGDVVC	RMLGFHSVE	EVHRTAN	REGOGTO	GRIWM	DVNCKGI	ESSIFHCOFSKWGVTN	CGHAEDAGVTCT
Bonobo SCARA5	IRLVNGSGPHEGRVEVYHDRRWGTV	CDDGWD	KKDGDVVC	RMLGFRGVE	EVYRTAR	REGOGTO	RIWMD	DVACKGT	EETIFRCSFSKWGVTN	GHAEDASVTCN
Sheep SCARA5	VRLVNGSGPHOGRVEVYHERRWGTV	CDDGWD	KKDGDVVC	RMLGFPGAE	DVHRTAC	FGOGTO	RIWMD	DVACKGT	EESIFRCSFSKWGVTN	GHAEDAGVTCK
Cat SCARA5	IRLVNGSGPHEGRVEVYHERRWGTV	CDDGWD	KKDGDVVC	RMLGFRGVE	EVYRTAR	REGOGTO	RIWMD	DVACKGT	EDTIFRCSFSKWGVTN	GHAEDAGVTCN
goat SCARA5	VRLVNGSGPHOGRVEVYHERRWGTV	CDDGWD	KKDGDVVC	RMLGFPGAE	DVHRTAC	FGOGTO	RIWMD	DVACKGT	EESIFRCSFSKWGVTN	GHAEDAGVTCK
Horse SCARA5	TRUVNGSGPHEGRVEVYHDRRWGTV	CDDGWD	KKDGDVVC	RMLGFRGAE	EVSRTAR	FGOGTO	RTWMD	DVACKGT	EDTIFECSESKWGVTN	GHAEDAGVTCN
elephant_SCARA5	TRUVNCSCRHECRVEVYHDRRWCTU	CDDCWD	KKDCDVVC	PMLCEPSVE	EUVETAL	FCOCTO	DTWM	DVACKGT	EDTTERCSESKWOVTN	CHAEDACVTC
human CD162 CDCB2	MDI TOCCOMOCODIE TY FOCDWCT	CODNEN	TDUACUTO	POTECCENU	OPOCOON	IPOPODO	DTWED	DITCNCN	E CAL WNCKHOCHCKHN	DUAEDACUTCS
human_CD163_SRCR2	MRLTRGGNMCSGRIEIRFQGRWGTV	CUDNEN	IDHASVIC	RQLECGSAV	SESGSSE	FGEGS	PIWEL	DLICNGN	ESALWNCKHQGWGKHN	DHAEDAGVICS
human_CD163 SRCR3	TELADGALECZERTEAKEŐGEMGLI	CDDGWD	SYDAAVAC	KQLGCPTAV	TAIGRVN	ASKGFG	HIWLD	SVSCQGH	IEPAIWQCKHHEWGKHY0	CNHNEDAGVTCS
human_CD163 SRCR/	LRLVNGGGRCAGRVEIYHEGSWGTI	CDDSWD	LSDAHVVC	RQLGCGEAL	NATGSAL	IFGEGTO	PIWLD	EMKCNGK	ESRIWQCHSHGWGQQN	RHKEDAGVICS
human_CD163 SRCR9	IRLQEGPTSCSGRVEIWHGGSWGTV	CDDSWD	LDDAQVVC	QQLGCGPAL	KAFKEAR	FGQGTO	PIWLN	EVECKGN	ESSLWDCPARRWGHSE	GHKEDAAVNCT
human_gp340 SRCR2	LRLVNGGDRCRGRVEVLYRGSWGTV	CDDYWD	TNDANVVC	RQLGCGWAM	SAPGNAG	PEQGS	PIVLD	DVRCSGH	ESYLWSCPHNGWLTHN	CGHSEDAGVICS

Figure S5. Sequence alignments of the SRCR domains within the SR-A family among mammalians and human CD163. The residues at the Ca^{2+} binding sites and a loop region (444-448 for hSCARA5) are colored in red.