SUPPLEMENTARY TABLES

Supplemental Table 1. Yeast genotypes used in this study.

<u>Strain Number</u>	Genotype
MBY623-638 and 662-669	$MAT\alpha \ can1\Delta$::STE2pr-Sp_his5 lyp1 Δ his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0
MBY703-706, 713-714, and 799	$MAT\alpha \ can1\Delta$::STE2pr-Sp_his5 lyp1 Δ his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0
MBY710, 711, and 715	MATaa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15

Supplemental Table 2. List of yeast strains used in this study.

<u>Number</u>	Name	Description
MBY623	ura3::NatMX pESC-URA	Empty vector control in a wild-type background
MBY624	rpd3::NatMX pESC-URA	Empty vector control in an <i>rpd3</i> ^{<i>Δ</i>} background
MBY625	hda1::NatMX pESC-URA	Empty vector control in an hda1/ background
MBY626	hda2::NatMX pESC-URA	Empty vector control in an $hda2\Delta$ background
MBY627	hda3::NatMX pESC-URA	Empty vector control in an hda31 background
MBY628	hos1::NatMX pESC-URA	Empty vector control in a hos11 background
MBY629	hos2::NatMX pESC-URA	Empty vector control in a hos21 background
MBY630	hos3::NatMX pESC-URA	Empty vector control in a hos31 background
MBY631	ura3::NatMX pESC-URA-PIF1	Pif1 overexpression in a wild-type background
MBY632	rpd3::NatMX pESC-URA-PIF1	Pif1 overexpression in an $rpd3\Delta$ background
MBY633	hda1::NatMX pESC-URA-PIF1	Pif1 overexpression in an <i>hda1</i> ∆ background
MBY634	hda2::NatMX pESC-URA-PIF1	Pif1 overexpression in an hda21 background
MBY635	hda3::NatMX pESC-URA-PIF1	Pif1 overexpression in an hda31 background
MBY636	hos1::NatMX pESC-URA-PIF1	Pif1 overexpression in a $hos1\Delta$ background
MBY637	hos2::NatMX pESC-URA-PIF1	Pif1 overexpression in a hos2 <i>A</i> background

MBY638	hos3::NatMX pESC-URA-PIF1	Pif1 overexpression in a $hos3\Delta$ background
MBY662	ura3::NatMX pESC-URA-PIF1AN	Pif1 Δ N overexpression in a <i>rpd3Δ</i> background
MBY663	rpd3::NatMX pESC-URA-PIF1∆N	Pif1 Δ N overexpression in an <i>hda1Δ</i> background
MBY664	hda1::NatMX pESC-URA-PIF1△N	Pif1 Δ N overexpression in an <i>hda2</i> Δ background
MBY665	hda2::NatMX pESC-URA-PIF1△N	Pif1 Δ N overexpression in an <i>hda3</i> Δ background
MBY666	hda3::NatMX pESC-URA-PIF1△N	Pif1 Δ N overexpression in a <i>hos1Δ</i> background
MBY667	hos1::NatMX pESC-URA-PIF1 ΔN	Pif1 Δ N overexpression in a <i>hos2Δ</i> background
MBY668	hos2::NatMX pESC-URA-PIF1 ΔN	Pif1 Δ N overexpression in a <i>hos3</i> Δ background
MBY669	hos3::NatMX pESC-URA-PIF1 ΔN	Pif1 Δ N overexpression in a <i>rpd3</i> Δ background
MBY693	esa1-414 pESC-URA	Empty vector control in an esal-414 background
MBY694	esa1-414 pESC-URA-PIF1	Pifl overexpression in an esal-414 background
MBY703	gcn5∆::KanMX pESC-URA empty vector	Empty vector control in a $gcn5\Delta$ background
MBY704	gcn5∆::KanMX pESC-URA-PIF1	Pif1 overexpression in a $gcn5\Delta$ background
MBY705	rtt109∆::KanMX pESC-URA empty vector	Empty vector control in an $rtt109\Delta$ background
MBY706	rtt109∆::KanMX pESC-URA-PIF1	Pifl overexpression in an $rtt109\Delta$ background
MBY710	WT MBY580 pESC-URA empty vector	Empty vector control in a wild-type background
MBY711	WT MBY580 pESC-URA-PIF1	Pif1 overexpression in a wild-type background

MBY713	$gcn5\Delta$::KanMX pESC-URA-PIF1 Δ N	Pif1 Δ N overexpression in a <i>gcn5</i> Δ background
MBY714	$rtt109\Delta$::KanMX pESC-URA-PIF1 Δ N	Pif1 Δ N overexpression in an <i>rtt109</i> Δ background
MBY715	$WT MBY580 pESC-URA-PIF1\Delta N$	Pif1∆N overexpression in a wild-type background
MBY799	esa1-414 pESC-URA-PIF1∆N	Pif1 Δ N overexpression in an <i>esa1-414</i> background

Supplemental Table 3. Plasmids used in this study.

Number	Name	Description
pMB524	pESC-URA	Multi-copy vector enabling epitope tagging of genes cloned under the control of the bidirectional <i>GAL1,10</i> promoter
pMB526	pESC-URA-Pif1	Pif1 cloned into pESC-URA, enabling galactose induction and C-terminal FLAG tagging
pMB540	pESC-URA-Pif1∆N	Pif1 ^Δ N cloned into pESC-URA, enabling galactose induction and C-terminal FLAG tagging
pMB472	pSUMO-Pif1	Nuclear isoform of Pif1 cloned into the pSUMO vector for over-expression in Escherichia coli
pMB562	pSUMO-Pif1∆N	Pif1 Δ N cloned into the pSUMO vector for over-expression in <i>E. coli</i>
pST44	P6XHis-Epl1/Yng2/Esa1	Wild-type Esa1, Yng2 (2-18), and 6X His-Epl1 (51-380) cloned into the pST44 vector for over- expression in <i>E. coli</i>

Oligo name	Sequence
and length (nt)	(5' – 3')
T1 (45)	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
D1 (45)	GAACGCTATGTGAGTGACACTTTTTTTTTTTTTTTTTTT
D2 (45)	gaacgcuaugugagugacacuuuuuuuuuuuuuuuuuuu
D3 (20)	GAACGCTATGTGAGTGACAC
D4 (20)	GAACGCTATGugagugaca(O-methyl)c
D5 (65)	ACGTCATTGGTCTGGGGAGGGTGGGGAGGGTGGGGAAGGTTTTTCACTAATAAGTTCCGCGGCGG-Bio
T2 (21)	CCGCCGCGGAACTTATTAGTG
T50 (50)	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Supplemental Table 4: **Oligonucleotides used in this study.** Capital letters = dNTP, small letters = NTP, and Bio - biotinylated.

SUPPLEMENTARY FIGURES

Supplementary Figure 1:

Piccolo NuA4 (Esa1) *in vitro*-acetylates Pif1: Recombinant NuA4 and full-length Pif1 were incubated along with ¹⁴C labelled-acetyl CoA as described in the Materials and Methods. The reaction products were separated on a 4-15% SDS-PAGE gel and subsequently subjected to autoradiography. Piccolo NuA4 (Esa1) was capable of robustly acetylating Pif1 *in vitro* (lane 2). The Esa1 subunit also underwent autoacetylation and acetylated the other subunits (Epl1 and Yng2) of the NuA4 complex (lanes 1 and 2).

Supplementary Figure 2:

Spectra for Acetylated Pif1 Lysine 725: Representative spectra for lysine acetylation sites on Pif1 annotated on Scaffold (Proteome Software, Portland OR). The b-ions are labeled in red, and y-ions are labeled in blue. Neutral loss and other parent ion fragments are shown in green. The sequence of the acetylated peptide is denoted above the spectra with the acetylated lysine (K) highlighted in bold red font.

Supplementary Figure 3:

Stimulation of helicase activity is dependent on Pif1 acetylation alone. Helicase assays was performed using an IR labeled DNA fork in the presence of one nanomolar of either UM-Pif1 (lane 2), Pif1 + Piccolo NuA4 (Esa1) (lane 3), AC-Pif1 (lane 4) or Pif1 + Acetyl CoA lithium salt as described in Materials and Methods.