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MATERIALS AND METHODS

Datasets

We analyzed three separate datasets. Specifically, we
focused on resting-state data from both The Human Con-
nectome Project and Midnight Scan Club. These data
were processed similarly, the details of which are de-
scribed in this section. The third dataset, which has
been analyzed elsewhere [1], includes both resting-state
and movie-watching data from a cohort of 29 individuals.
This dataset was processed separately using a different
procedure and is described in its own section.

The Human Connectome Project (HCP) dataset [2]
included resting state functional data (rsfMRI) from 100
unrelated adult subjects (54% female, mean age = 29.11
± 3.67, age range = 22-36). The study was approved by
the Washington University Institutional Review Board
and informed consent was obtained from all subjects.
Subjects underwent four 15 minute rsfMRI scans over
a two day span. A full description of the imaging param-
eters and image prepocessing can be found in [3]. The
rsfMRI data was acquired with a gradient-echo EPI se-
quence (run duration = 14:33 min, TR = 720 ms, TE =
33.1 ms, flip angle = 52◦, 2 mm isotropic voxel resolution,
multiband factor = 8) with eyes open and instructions to
fixate on a cross. Images were collected on a 3T Siemens
Connectome Skyra with a 32-channel head coil.

The Midnight Scan Club (MSC) dataset [4] included
rsfMRI from 10 adults (50% female, mean age = 29.1
± 3.3, age range = 24-34). The study was approved by
the Washington University School of Medicine Human
Studies Committee and Institutional Review Board and
informed consent was obtained from all subjects. Sub-
jects underwent 12 scanning sessions on separate days,
each session beginning at midnight. 10 rsfMRI scans per
subject were collected with a gradient-echo EPI sequence
(run duration = 30 min, TR = 2200 ms, TE = 27 ms, flip
angle = 90◦, 4 mm isotropic voxel resolution) with eyes
open and with eye tracking recording to monitor for pro-
longed eye closure (to assess drowsiness). Images were
collected on a 3T Siemens Trio.
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Image Preprocessing of HCP and MSC datasets

HCP Functional Preprocessing

Functional images in the HCP dataset were minimally
preprocessed according to the description provided in
[3]. Briefly, these data were corrected for gradient dis-
tortion, susceptibility distortion, and motion, and then
aligned to a corresponding T1-weighted (T1w) image
with one spline interpolation step. This volume was
further corrected for intensity bias and normalized to
a mean of 10000. This volume was then projected to
the 32k fs LR mesh, excluding outliers, and aligned to
a common space using a multi-modal surface registra-
tion [5]. The resultant cifti file for each HCP sub-
ject used in this study followed the file naming pattern:
* REST{1,2} {L,R} Atlas MSMAll.dtseries.nii.

MSC Functional Preprocessing

Functional images in the MSC dataset were prepro-
cessed using fMRIPrep 1.3.2 [6], which is based on Nipype
1.1.9 [7]. The following description of fMRIPrep’s pre-
processing is based on boilerplate distributed with the
software covered by a “no rights reserved” (CC0) li-
cense. Internal operations of fMRIPrep use Nilearn 0.5.0
[8], ANTs 2.2.0, FreeSurfer 6.0.1, FSL 5.0.9, and AFNI
v16.2.07. For more details about the pipeline, see the
section corresponding to workflows in fMRIPrep’s docu-
mentation.

The T1-weighted (T1w) image was corrected for in-
tensity non-uniformity with N4BiasFieldCorrection [9,
10], distributed with ANTs, and used as T1w-reference
throughout the workflow. The T1w-reference was then
skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow, using NKI as the
target template. Brain surfaces were reconstructed us-
ing recon-all [11], and the brain mask estimated previ-
ously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray-matter using Mindboggle
[12]. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c [13] was performed
through nonlinear registration with antsRegistration,
using brain-extracted versions of both T1w volume and
template. Brain tissue segmentation of cerebrospinal
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fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using FSL’s
fast [14].

Functional data was slice time corrected using AFNI’s
3dTshift and motion corrected using FSL’s mcflirt
[15]. Fieldmap-less distortion correction was performed
by co-registering the functional image to the same-
subject T1w image with intensity inverted [16] con-
strained with an average fieldmap template [17], im-
plemented with antsRegistration. This was fol-
lowed by co-registration to the corresponding T1w us-
ing boundary-based registration [18] with 9 degrees of
freedom. Motion correcting transformations, field distor-
tion correcting warp, BOLD-to-T1w transformation and
T1w-to-template (MNI) warp were concatenated and ap-
plied in a single step using antsApplyTransforms using
Lanczos interpolation.

Several confounding time-series were calculated based
on this preprocessed BOLD: framewise displacement
(FD), DVARS and three region-wise global signals. FD
and DVARS are calculated for each functional run, both
using their implementations in Nipype [19]. The three
global signals are extracted within the CSF, the WM,
and the whole-brain masks.

The resultant nifti file for each MSC subject
used in this study followed the file naming pattern
* space-T1w desc-preproc bold.nii.gz.

Image Quality Control

All functional images in the HCP dataset were re-
tained. The quality of functional images in the MSC were
assessed using fMRIPrep’s visual reports and MRIQC
0.15.1 [20]. Data was visually inspected for whole brain
field of view coverage, signal artifacts, and proper align-
ment to the corresponding anatomical image. Informa-
tion about these image quality metrics can be found
within MRIQC ’s documentation [21].

Functional Networks Preprocessing

Parcellation Preprocessing

A functional parcellation designed to optimize both lo-
cal gradient and global similarity measures of the fMRI
signal [22] (Schaefer200 ) was used to define 200 areas
on the cerebral cortex. These nodes are also mapped
to the Yeo canonical functional networks [23]. For the
HCP dataset, the Schaefer200 is openly available in
32k fs LR space as a cifti file. For the MSC and HBM
datasets, a Schaefer200 parcellation was obtained for
each subject using a Gaussian classifier surface atlas [24]
(trained on 100 unrelated HCP subjects) and FreeSurfer’s
mris ca label function. These tools utilize the sur-
face registrations computed in the recon-all pipeline
to transfer a group average atlas to subject space based

on individual surface curvature and sulcal patterns. This
method rendered a T1w space volume for each subject.
For use with functional data, the parcellation was resam-
pled to 2mm T1w space.

Functional Network Preprocessing

The mean BOLD signal for each cortical node data
was linearly detrended, band-pass filtered (0.008-0.08 Hz)
[25], confound regressed and standardized using Nilearn’s
signal.clean, which removes confounds orthogonally to
the temporal filters [26]. The confound regression em-
ployed [27] included 6 motion estimates, time series of
the mean CSF, mean WM, and mean global signal, the
derivatives of these nine regressors, and the squares these
18 terms. Furthermore, a spike regressor was added for
each fMRI frame exceeding a motion threshold (HCP =
0.25 mm root mean squared displacement, MSC = 0.5
mm framewise displacement). This confound strategy
has been shown to be relatively effective option for re-
ducing motion-related artifacts [25]. Following this pre-
processing and nuisance regression, residual mean BOLD
time series at each node was recovered.

We also analyzed a version of these data that did not
include global signal regression as a pre-processing step.
This procedure included 6 motion parameters and their
temporal derivatives, the squares of these 12 terms, and
10 aCompCor components [25, 28].

Image Preprocessing of Indiana University Dataset

Demographics

We analyzed MRI data collected from Ns = 29 sub-
jects (5 female, 24 male; 25 were right-handed). This
cohort was male-dominant, as subjects were intended to
serve as controls for a study in autism spectrum disorder,
which is more common in men than women. At the time
of their first scan, the average subject age was 24.9± 4.7
years [29].

MRI acquisition and processing

MRI images were acquired using a 3T whole-body
MRI system (Magnetom Tim Trio, Siemens Medical So-
lutions, Natick, MA) with a 32-channel head receive ar-
ray. Both raw and prescan-normalized images were ac-
quired; raw images were used at all preprocessing stages
and in all analyses unless specifically noted. During
functional scans, T2*-weighted multiband echo planar
imaging (EPI) data were acquired using the following
parameters: TR/TE = 813/28 ms; 1200 vol; flip angle
= 60◦; 3.4 mm isotropic voxels; 42 slices acquired with
interleaved order covering the whole brain; multi-band
acceleration factor of 3. Preceding the first functional
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scan, gradient-echo EPI images were acquired in opposite
phase-encoding directions (10 images each with P-A and
A-P phase encoding) with identical geometry to the EPI
data (TR/TE = 1175/39.2 ms, flip angle = 60◦) to be
used to generate a fieldmap to correct EPI distortions,
similar to the approach used by the Human Connec-
tome Project [30]. High-resolution T1-weighted images
of the whole brain (MPRAGE, 0.7 mm isotropic voxel
size; TR/TE/TI = 2499/2.3/1000 ms) were acquired as
anatomical references.

All functional data were processed according to an
in-house pipeline using FEAT (v6.00) and MELODIC
(v3.14) within FSL (v. 5.0.9; FMRIB’s Software Li-
brary, www.fmrib.ox.ac.uk/fsl), Advanced Normaliza-
tion Tools (ANTs; v2.1.0) [31], and Matlab R2014b. This
pipeline was identical to the GLM + MGTR procedure
described in [32].

In more detail, individual anatomical images were bias-
corrected and skull-stripped using ANTs, and segmented
into gray matter, white matter, and CSF partial volume
estimates using FSL FAST. A midspace template was
constructed using ANTs’ buildtemplateparallel and sub-
sequently skull-stripped. Composite (affine and diffeo-
morphic) transforms warping each individual anatomi-
cal image to this midspace template, and warping the
midspace template to the Montreal Neurological Insti-
tute MNI152 1mm reference template, were obtained us-
ing ANTs.

For each functional run, the first five volumes (≈4
seconds) were discarded to minimize magnetization
equilibration effects. Framewise displacement traces
for this raw (trimmed) data were computed using
fsl motion outliers. Following [32, 33], we performed FIX
followed by mean cortical signal regression. This pro-
cedure included rigid-body motion correction, fieldmap-
based geometric distortion correction, and non-brain re-
moval (but not slice-timing correction due to fast TR
[30]). Preprocessing included weak highpass temporal
filtering (>2000 s FWHM) to remove slow drifts [30] and
no spatial smoothing. Off-resonance geometric distor-
tions in EPI data were corrected using a fieldmap de-
rived from two gradient-echo EPI images collected in op-
posite phase-encoding directions (posterior-anterior and
anterior-posterior) using FSL topup.

We then used FSL-FIX [34] to regress out independent
components classified as noise using a classifier trained
on independent but similar data and validated on hand-
classified functional runs. The residuals were regarded as
“cleaned” data. Finally, we regressed out the mean corti-
cal signal (mean BOLD signal across gray matter partial
volume estimate obtained from FSL FAST). All analyses
were carried out on these data, which were registered to
subjects’ skull-stripped T1-weighted anatomical imaging
using Boundary-Based Registration (BBR) with epi reg
within FSL. Subjects’ functional images were then trans-
formed to the MNI152 reference in a single step, using
ANTS to apply a concatenation of the affine transfor-
mation matrix with the composite (affine + diffeomor-

phic) transforms between a subject’s anatomical image,
the midspace template, and the MNI152 reference. Prior
to network analysis, we extracted mean regional time se-
ries from regions of interest defined as sub-divisions of
the 17-system parcellation reported in [23] and used pre-
viously [35–37]. Wakefulness during movie and rest scans
was monitored in real-time using an eye tracking camera
(Eyelink 1000).

Naturalistic stimuli

All movies were obtained from Vimeo (https://
vimeo.com). They were selected based on multiple crite-
ria. First, to ensure that movies represented novel stim-
uli, we excluded any movie that had a wide theatrical
release. Secondly, we excluded movies with potentially
objectionable content including nudity, swearing, drug
use, etc. Lastly, we excluded movies with intentionally
startling events that could lead to excessive in-scanner
movement.

Each movie lasted approximately 1 to 5 minutes. Each
movie scan comprised between four and six movies with
genres that included documentaries, dramas, comedies,
sports, mystery, and adventure. See Table. S1 for more
details.

Co-fluctuation time series

Constructing networks from fMRI data (or any neural
time series data) requires estimating the statistical de-
pendency between every pair of time series. The magni-
tude of that dependency is usually interpreted as a mea-
sure of how strongly (or weakly) those voxels are parcels
are functionally connected to each other. By far the most
common measure of statistic dependence is the Pearson
correlation coefficient. Let xi = [xi(1), . . . , xi(T )] and
xj = [xj(1), . . . , xj(T )] be the time series recorded from
voxels or parcels i and j, respectively. We can calculate
the correlation of i and j by first z-scoring each time se-
ries, such that zi = xi−µi

σi
, where µi = 1

T

∑
t xi(t) and

σi = 1
T−1

∑
t[xi(t)−µi] are the time-averaged mean and

standard deviation. Then, the correlation of i with j can
be calculated as: rij = 1

T−1
∑
t[zi(t) · zj(t)]. Repeating

this procedure for all pairs of parcels results in a node-by-
node correlation matrix, i.e. an estimate of FC. If there
are N nodes, this matrix has dimensions [N ×N ].

To estimate edge-centric networks, we need to modify
the above approach in one small but crucial way. Sup-
pose we have two z-scored parcel time series, zi and zj .
To estimate their correlation we calculate the mean their
element-wise product (not exactly the average, because
we divide by T−1 rather than T ). Suppose, instead, that
we never calculate the mean and simply stop after calcu-
lating the element-wise product. This operation would
result in a vector of length T whose elements encode the
moment-by-moment co-fluctuations magnitude of parcels
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i and j. For instance, suppose at time t, parcels i and j
simultaneously increased their activity relative to base-
line. These increases are encoded in zi and zj as positive
entries in the tth position, so their product is also posi-
tive. The same would be true if i and j decreased their
activity simultaneously (because the product of negatives
is a positive). On the other hand, if i increased while j
decreased (or vice versa), this would manifest as a nega-
tive entry. Similarly, if either i or j increased or decreased
while the activity of the other was close to baseline, the
corresponding entry would be close to zero.

Accordingly, the vector resulting from the element-wise
product of zi and zj can be viewed as encoding the mag-
nitude of moment-to-moment co-fluctuations between i
and j. An analogous vector can easily be calculated for
every pair of parcels (network nodes), resulting in a set
of co-fluctuation (edge) time series. With N parcels, this

results in N(N−1)
2 pairs, each of length T .

Modularity maximization

Modularity maximization is a heuristic for detecting
communities in networks [38]. Intuitively, it attempts to
decompose a network into non-overlapping sub-networks
such that the observed density of connections within sub-
networks maximally exceeds what would be expected by
chance, where chance is determined by the user. The ac-
tual process of detecting communities is accomplished by
choosing community assignments that maximize a mod-
ularity quality function, Q, defined as:

Q =
∑
ij

Bijδ(gi, gj) (1)

where Bij = Aij − Pij is the {i, j} element of the mod-
ularity matrix, which represents the observed weight of
the connection between nodes i and j minus the expected
weight. The variable gi is the community assignment of
node i and δ(x, y) is the Kronecker delta function, whose
value is 1 when gi = gj and 0 otherwise. The modularity,
Q, is effectively a sum over all edges that fall within com-
munities and is optimized when the the observed weights
of connections is maximally greater than the expected. In
general, larger values of Q are thought to reflect superior
community partitions.

Signed and correlation matrices

In this manuscript, we used the following variant of
modularity, q∗, which has been shown to be especially
well-suited for use with correlation matrices [39]:

q∗ = q+ +
v−
v+v−

q− (2)

where q± = 1
v±

∑
ij(r
±
ij −

k±i k
±
j

v± )δ(gi, gj). In this ex-

pression, r±ij represents either the positive or negative

elements of the correlation matrix, k±i =
∑
j r
±
ij , and

v± =
∑
i k
±
i .

Brain-behavior analysis using co-fluctuation data

In the main text, we speculated that, because high-
amplitude co-fluctuations encode subject-specific infor-
mation (see Fig. 4 in the main text), we might refine
brain-behavior relationships by focusing on FC estimated
using those frames only. Here, we tested this hypothe-
sis directly, reconstructing FC using the top and bottom
5% frames (ordered by co-fluctuation amplitude). For
each subject, we combined reconstructed FC across all
four scan sessions (REST1 LR, REST1 RL, REST2 LR,
and REST2 RL). Then, following [40], we regressed out
of motion (average framewise displacement), number of
censored frames, subject height, subject weight, systolic
and diastolic blood pressure, total brain volume, and to-
tal intracranial volume (as well as the demeaned squares
of these measures).

Again, following [40], we extracted 158 behavioral, de-
mographic, and trait variables. The total number of vari-
ables was reduced to 131 after removing variables with
missing entries for any subject. We then standardized
(z-scored) each variable across subjects and performed
a principal component analysis (PCA). The result was a
series of latent variables that explained “modes” or “pat-
terns” of behavioral and demographic variation.

Here, we focus on PC1 (it explains 20.3% of behavioral
variance). The items with the strongest positive and neg-
ative loadings suggest that this component indexes gen-
eral psychiatric and life function. The largest positive
loadings are composite scales from the Achenbach Adult
Self-Report (ASR; [41]) and sum problem counts over
different clinical syndrome scales. The largest negative
loadings, on the other hand, index positive affect, social,
and emotional support. Accordingly, we refer to PC1 as
a “life and psychiatric well-being” index (Fig. S15a).

For PC1 (and the next nine components) we computed
its correlation with connection weights. We performed
this analysis separately for FC reconstructed from high-
and low-amplitude frames, resulting in different correla-
tion patterns across all edges (Fig. S15b,c). We evalu-
ated correlation maps statistically at the level of brain
systems Fig. S15d) – computing the average within- and
between-system correlation and comparing the average
values against a null distribution generated by randomly
permuting nodes’ system labels.

In the case of FC reconstructed from high-amplitude
frames, we found significant system-level correlations in-
volving many brain systems (Fig. S15e; multiple compar-
isons corrected for by fixing the false discovery rate 5%;
padjusted = 2.01 × 10−4). To visualize these differences
in anatomical space, we masked the full correlation map
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to retain only those connections whose endpoints that
were significant at a system level and were significant at
a connection-level (p < 0.05; uncorrected). We note that
this analysis is for the sake of visualization, only. For
PC1, we found a constellation of strong, positive correla-
tions of PC1 with edges linking striate cortex (visual sys-
tem) to regions within somatomotor cortex (Fig. S15f).
Similarly, we found strong negative correlations of PC1
with edges linking parahippocampal cortex (DMN) with
somatomotor cortex (Fig. S15f).

More generally, we found that correlation maps esti-
mated from the high-amplitude frames resulted system-
level correlations of greater magnitude compared to low-
amplitude frames (Fig. S15g). Notably, this effect was
consistent across and statistically significant the first ten
PCs (paired-sample t-tests; p < 0.05).

These observations suggest that FC computed using
high-amplitude frames leads to stronger brain-behavior
correlations at the system level, broadly supporting our
hypothesis. If nothing else, our observations suggest that
FC computed from high- and low-amplitude frames can
yield dissimilar and distinct patterns of brain-behavior
correlations, motivating further exploration.
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FIG. S1. Comparison of co-fluctuation amplitude with confounding variables. (a) In the main text we calculated the
magnitude of co-fluctuation at every frame. A concern is that variation in this measure could be attributed to physiological
and motion-related variables of non-neural origins. To address this concern, we calculated the correlation of co-fluctuation
amplitude with three variables: respiratory and heart rate data, as well as in-scanner head motion (relative root mean square
error framewise displacement). In-scanner motion is already sampled at the same frequency as the BOLD acquisition; for the
two physiological variables, we estimated their instantaneous rates by smoothing (low-pass filter), and computing the time
between successive peaks of the periodic signal. Using linear interpolation, we then resampled these values to be at each TR.
We performed this procedure for every subject and scan session in the HCP dataset and computed their correlation with the
co-fluctuation amplitude. The distributions of correlation coefficients tended to be weak and close to zero (mean values shown in
red text), suggesting that co-fluctuation amplitude is not obviously related to physiological or motion-related variables. (b) We
also explored the relationship of motion and RSS (co-fluctuation amplitude) across individuals. We defined two thresholds: a
motion threshold for classifying frames as “high motion” or not, and an RSS threshold for classifying frames as “high-amplitude”
or not. We systematically varied these thresholds (motion from 0 - 0.2 mm; RSS from the 75th to the 100th percentile, defined
using RSS data pooled from all subjects’ scans). For a given motion and co-fluctuation threshold, we calculated the number of
high-motion and high-amplitude frames for each subject and scan and computed the correlation between these two variables.
In general, we found weak correlations (r = −0.03 ± 0.06 on average; r = 0.16 maximum absolute.

FIG. S2. Lagged relationships between motion and RSS time series. We generated, for each subject and scan, the
RSS time series (root sum square of inter-regional co-fluctuations). We the computed lagged cross correlation between RSS
and framewise displacement (max lag of ±20 seconds). In general, we found the correlation was weak, negative, and peaked
at a lag of 0. These analyses suggest that at a single-subject level, framewise displacement (a common measure of in-scanner
motion) and RSS are not strongly associated with one another. If anything, these observations suggest that high-amplitude
co-fluctuations tend to occur when motion is low (albeit the relationship is weak).
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FIG. S3. Comparison of co-fluctuation amplitude from observed data and from phase-randomized surrogates.
In the main text we calculate co-fluctuation amplitude as root sum square of edge co-fluctuations at each moment in time.
Here, we compare these observed amplitudes with those estimated from phase-randomized surrogate time series. The phase
randomization procedure has been described in detail elsewhere [42]. Briefly, this procedure entails taking the discrete Fourier
transform of each regional BOLD time series, adding random phase at each frequency bin, and taking the inverse Fourier
transform, generating a surrogate time series for that region with same power spectrum but random phase properties. We
repeat this procedure for all N = 200 regions, uniformly adding the same random phase to each frequency bin, thus ensuring
that the surrogate time series preserve the correlation structure of the original data. We repeated this procedure 100 times per
scan and subject and found that, as expected, the distribution of co-fluctuation amplitude for both the observed and synthetic
data was broad and included a heavy tail. However, upon more detailed examination, we found that the observed data exhibited
a greater proportion of very high- and low-amplitude frames. These observations suggest that truly high-amplitude frames are
rare, even when compared directly against surrogate data that preserved the spectral properties of regional times series and
the multivariate correlation structure of observed fMRI BOLD time series.

FIG. S4. Reconstructing the correlation structure of synthetic data using high- and low-amplitude frames.
Here, we generate 100 sets of synthetic time series from a fixed covariance structure (defined as the sample correlation matrix
estimated from recorded fMRI data). We repeat the primary analysis from the main text using these data. Namely, we
estimate co-fluctuation (edge) time series for each sample and use high- and low-amplitude frames to reconstruct the ground-
truth covariance matrix used to generate the time series data. (a) As in the main text, we exhibit disparities in the similarity
of reconstructed matrices using the top and bottom 5% frames (in descending order of RSS amplitude). Specifically, we find
that high-amplitude frames yield better estimates than low-amplitude frames (p < 0.05; t-test). (b) We generalized this
analysis, sampling different proportions of frames beginning with either the highest- or lowest-amplitude and reconstructing
the correlation matrix using only those frames. We found that the similarity of the matrix reconstructed from high-amplitude
frames increased quickly, requiring ≈ 30 ± 10 frames to achieve a similarity of r = 0.9. Beginning with, low-amplitude frames,
we found that ≈ 497 ± 44 samples were required to achieve a comparable level of similarity.
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FIG. S5. Duration and intervals of high-amplitude co-fluctuations. For each scan session, we calculated the co-
fluctuation amplitude at every frame. We imposed percentile-based thresholds on these data (percentiles calculated based on
pooled data from all subjects and all scan sessions). Thresholding the co-fluctuation amplitude time series results in a binary
classification of time points as either “high-” or “low-amplitude”. From these observations, we calculated two quantities:
“duration” as the number of consecutive frames classified as high-amplitude and “intervaks” as the number of frames between
successive high-amplitude frames. We repeated this analysis for both the HCP and MSC datasets. Panels a and b show
durations for HCP and MSC datasets, respectively. Note that the distribution is broad and includes a heavy tail, indicating
a lack of periodicity. Panels c and d depict intervals for HCP and MSC datasets. Additionally, we assessed the size of high-
amplitude co-fluctuations, as measured by the fraction of all edges whose co-fluctuation amplitude at a given frame exceeded
some threshold. Here, we identified high-amplitude frames as time points at which the co-fluctuation amplitude was in the top
1%, 2.5%, 5%, 10%, and 25% (thresholds are indicated by different colors in each plot). Then, for each time point classified
as high-amplitude, we calculated the fraction of all edges whose absolute co-fluctuation amplitude exceed the 75th percentile.
We performed this procedure using both HCP (e) and MSC (f ) data and found that size follow a broad and heavy-tailed
distribution, suggesting that high-amplitude frames follow no characteristic scale of description.
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FIG. S6. Similarity of time-averaged FC with FC estimated using fewer frames. In the main text, we showed that
rsFC, when estimated using the top 5% of frames (ordered by co-fluctuation magnitude) resulted in a connectivity matrix that
much more similar to time-averaged FC than the matrix generated using the bottom 5% of frames. Here, we show that this
relationship persists irrespective of percentile. To do this for a given subject and scan session, we ordered frames according
to co-fluctuation magnitude from greatest to least. Then, we extracted the top and bottom k frames (varying k from 3 to
to T , where T is the total number of frames in the scan session), estimating FC using those k frames, and calculating the
similarity with time-averaged FC. This procedure results in a similarity value at every k for both the top and bottom frames.
We repeated this analysis for all 100 subjects in the HCP dataset. We find that across the full range of k, FC estimated using
frames corresponding to high-amplitude co-fluctuations was always more similar to the time-averaged FC than those estimated
using low-amplitude frames.
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FIG. S7. Co-fluctuation time series reveal burst structure of resting-state functional connectivity for MSC
dataset. (a) We use a “temporal unwrapping” of the Pearson correlation to generate co-fluctuation time series for every pair
of brain regions (edges). The elements of the co-fluctuation time series are the element-wise products of z-scored regional BOLD
time series that, when averaged across time, yield vectors that are exactly equal to the Pearson correlation coefficient and can
be rearranged to create an resting-state functional connectivity matrix. (b) We find that the co-fluctuation time series contains
moments in time where many edges collectively co-fluctuate. We can identify these moments by calculating the root sum square
across all co-fluctuation time series and plotting this value as a function of time. In panel b we label high- and low-amplitude
frames. The distribution of edge co-fluctuation amplitude is heavy tailed. We wanted to assess the contribution of high- and
low-amplitude frames to the overall pattern of functional connectivity. To do this, we extracted the top and bottom 5% of all
time points (ordered by co-fluctuation amplitude) and estimated functional connectivity from those points alone. (c) Average
functional connectivity across 100 subjects using top 5% (left) and bottom 5% (right). (d) In general, the networks estimated
using the top 5% of time points were much more similar to traditional functional connectivity than those estimated using the
bottom 5% of time points. (e) We performed a similar comparison of network modularity using networks reconstructed using
top and bottom 5% frames.
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FIG. S8. Effect of frame-censoring. In the main text, we demonstrated that FC estimated using frames corresponding to
high-amplitude co-fluctuations was more similar to time-averaged FC than the FC estimated using low-amplitude co-fluctuation
frames. Here, we perform an identical analysis using only the bottom 50% frames in terms of in-scanner motion [43]. Note
that this procedure results in time series that include exactly half of the original frames. (a) Correlation of FC estimated using
top and bottom 5% of frames, ordered by co-fluctuation amplitude. As in the main text, the top 5% are more correlated with
time-averaged FC than the bottom 5%. (b) Modularity of FC estimated using only the top and bottom 5% of frames. As in
the main text, the top 5% are more modular than the bottom. (c) Group-averaged FC matrices estimated using the top 5% of
frames (left) and the bottom 5% of frames (right). Panels a, b, and c depict results using HCP data, while d, e, and f depict
analogous results using data from the MSC.
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FIG. S9. Alternative strategy for estimating FC from a limited number of frames. In the main text, we estimated
FC from the top and bottom 5% of frames by extracting fMRI BOLD activity from computing the correlation structure. An
alternative strategy for estimating FC is to simply average co-fluctuation time series over the top/bottom frames, ordered by
co-fluctuation amplitude. Here, we perform this analysis on HCP data and show that (a) FC from the top 5% of frames in
terms of co-fluctuation amplitude is more similar to time-averaged FC than FC from the bottom 5% of frames and that (b) FC
from the top 5% results in more modular networks than FC from the bottom 5%. These results are in exact agreement with
what was reported in the main text.

FIG. S10. Effect of “jittering” on correspondence between time-averaged rsFC and rsFC estimated using
reduced number of frames. In the main text, we demonstrated that the correspondence between time-averaged rsFC
and rsFC estimated using high-amplitude co-fluctuation frames was significantly greater than the correspondence using low-
amplitude frames. This comparison of the highest- and lowest-amplitude frames can be viewed as a comparison of extremes.
A more general test would be to compare the correspondence of rsFC from high-amplitude frames with rsFC from randomly-
sampled frames. A truly random sample, however, may destroy any temporal autocorrelation in the time series data. Instead,
we identified high-amplitude frames, and used the circular shift operator to move these frames forward and backward in time,
approximately preserving their temporal structure. Here, we show the correlation of time-averaged rsFC with rsFC estimated
using the offset frames (100 frames forward and backward in time). We repeat this analysis with different thresholds for
considering co-fluctuations to be high-amplitude (from left to right,the top 1%, 2.5%, 5%, 10%, and 25%). In general, we find
that the correlation with time-averaged rsFC is peaked exactly at an offset of 0 and rapidly decays to a baseline level. This
observation holds for all thresholds, and suggests that random samples with temporal structure that preserves autocorrelative
properties of the co-fluctuation amplitude time series will, in general, result in estimates of rsFC with poorer correspondence
to time-averaged rsFC than the high-amplitude frames, themselves.



14

FIG. S11. Relationship of network co-fluctuations with BOLD fluctuations for MSC dataset. Here, we replicate
results from the main text using the MSC data. Specifically, we relate high-amplitude co-fluctuations to fluctuations in fMRI
BOLD activity. We subsequently demonstrate that the high-amplitude fluctuations are driven by activity patterns involving
control and default mode networks, and that these patterns are expressed similarly across individuals. As in the main text,
we first calculate the root sum square amplitude of BOLD activity at each time point and compare that to the amplitude of
co-fluctuations. (a) Pooling data from across subjects, we find that these two variables are highly correlated. (b) To investigate
this relationship further, we extract mean activity patterns for each subject and for each scan during the top and bottom 5%
time points, indexed according to co-fluctuation amplitude. Here, we show the correlation matrix of those activity vectors. (c)
We then performed a principal component analysis of this correlation matrix and found that absolute value of coefficients for
the first component (PC1) were greater for the top 5% than the bottom 5%, and (d, e) the PC1 score corresponded to activity
patterns that emphasized correlated fluctuations of default mode and control networks that were weakly or anti-correlated with
fluctuations elsewhere in the brain. These observations suggest that high-amplitude co-fluctuations, which drive resting-state
functional connectivity, are underpinned by instantaneous activation and deactivation of default mode and control network
areas.
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FIG. S12. Joint PCA analysis of movie-watching and resting-state data. In the main text we described a procedure
for comparing modes of brain activity during high-amplitude frames while subjects were either at rest or watching movies.
Here, we present an alternative analysis strategy. The procedure in the main text involved identifying activity patterns
during high- and low-amplitude frames, concatenating these patterns across subjects, and performing a PCA on the resulting
matrix. Importantly, this procedure was carried out separately for resting-state and movie scans. We then compared the first
principal component for each condition. Here, we extract high-amplitude frames from resting-state and movie-watching scans,
concatenate them in the same matrix, and perform a joint decomposition using PCA. Our analysis focuses on the first two
PCs (PC1 and PC2), whose topographic distributions are shown in panels a and c. We note that the pattern of PC1 is highly
similar to the component obtained from our analysis of the movie-watching data described in the main text. Similarly, PC2
is similar to the component obtained from our analysis of the resting-state data described in the main text. Interestingly, we
find that the coefficients loading onto PC1 are stronger for movie-watching scans than for resting-state scans (panel b), while
the opposite is true for PC2 (panel d). We highlight regional and system-level differences in panels e and f. We note that,
as in the main text, we find stronger engagement of dorsal attention and visual networks during movie-watching and stronger
engagement of control and salience/ventral attention networks at rest.

FIG. S13. Inter-subject correlations of brain activity during rest. In the main text we demonstrated that ‘high-
amplitude frames were characterized by a shared mode of brain activity. The procedure for doing so involved extracting
high- and low-amplitude frames using an arbitrary threshold of 5%. Here, we show similar results by rank-ordering frames.
Specifically, we calculate the mean inter-subject similarity (absolute Pearson correlation) of brainwide activity patterns. We
do this, first, without reordering the resting-state time series (black curve). Because subjects are not locked to a specific
stimulus, we find that, on average, subjects’ activity patterns are uncorrelated. The original ordering of the data preserves,
at a single-subject level, autocorrelative properties of the fMRI BOLD time series. Next, we destroy this autocorrelation by
randomly reordering each subject’s time series and recomputing mean intersubject similarity. While the overall similarity is
slightly greater it is still modest. However, when we reorder frames by their overall amplitude (descending order), we find
that high-amplitude frames tend to be more strongly correlated with one another, complementing results in the main text and
suggesting that high-amplitude co-fluctuations are underpinned by a shared pattern of brain activity.
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FIG. S14. Effect of global signal regression on main results. In the main text, we analyzed resting-state and movie-
watching data that had been pre-processed using pipelines that included global signal regression (GSR). Here, we show the
effect of omitting GSR from pre-processing pipelines. (a) Comparison of mean static FC (average over all pairs of nodes). As
expected, omitting GSR results in an increase in mean FC. (b) Side-by-side comparison of edge (co-fluctuation) time series
calculated with (top) and without GSR (middle) for representative scan. Note that the co-fluctuation amplitude time series
remains correlated (bottom). (c) Two-dimensional histogram comparing the amplitude of co-fluctuation time series for data
processed with/without GSR. As in the main text, we find that FC estimated from the top and bottom 5% of frames (ordered
by RSS) is dissimilar (panel d), and that FC estimated from the top 5% of frames was more similar to the static FC estimated
using all frames (panel e). We then extracted activity patterns during high-/low-amplitude frames from all subjects and scans
and performed PCA on the complete set. We found that the first component indexed high-amplitude frames (panel f ) and
corresponded to a mode of activity that emphasized the division between DMN/CONT networks and the rest of the brain (panel
g). Next, we reanalyzed movie-watching data and found that, as before, subjects’ co-fluctuation time series are more correlated
during movie-watching than at rest (panel h). In panels i and j we show inter-subject similarity matrices for movie-watching
and rest, respectively. Lastly, we reanalyzed MSC data. Replicating results from the main text, we found that without GSR,
subjects were still more identifiable based on their high-amplitude frames (panel k). In panels l and m we show example
identifiability matrices estimated using FC reconstructed from top/bottom 5% frames (ordered by RSS).
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FIG. S15. Associating co-fluctuations with behavior, traits, and demographics. (a) First principal component (PC1)
obtained from decomposition of standardized behavioral, trait, and demographic data from HCP U100 dataset. We computed
the correlation of PC1 with every edge using FC reconstructed from top/bottom 5% frames (ordered by RSS) (b) Scatterplot
of correlation patterns. Note that, in general, correlation magnitude is weak. (c) Correlation patterns from top (left) and
(bottom) frames. (d) System-averaged correlation magnitude. (e) Pairs of systems whose average correlation magnitude
survived statistical testing (random permutation of regions’ system labels). (f ) Individual connections that pass system-level
significance testing (corrected for multiple comparisons; false discovery rate fixed at 5%; padjusted = 2.01 × 10−4) and p < 0.05
at the level of connections (uncorrected). We note that this anatomical representation of brain-behavior correlations is intended
for the purposes of visualization only. The primary statistical analysis was carried out at the level of brain systems, where we
controlled for multiple comparisons. (g) Comparison of absolute system-level correlations for first ten PCs.
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Scan Title Genre Runtime
1 Man Up and Go documentary/emotional 4m20s
1 The First 70 documentary 3m
1 Fixation documentary/adventure 1m42s
1 The Living drama 2m
1 SAMSARA documentary/“unparalleled sensory experience” 1m35s
1 Blood Brother documentary 2m20s
2 Birdmen documentary/adventure 3m59s
2 Groomed drama 1m30s
2 Cold outdoor/sports 2m
2 Sleepwalkers drama 2m
2 A Kind of Show comedy 1m
3 Geofish documentary/adventure 4m40s
3 The Debut outdoor/sports 3m23s
3 Dreams of a Life documentary/mystery 2m10s
3 The Front Man documentary 2m30s
3 This Is Vanity drama 1m
4 Planetary documentary 4m30s
4 Sign Painters documentary 2m50s
4 Florida Man documentary/drama 2m
4 The Sleeping Bear drama 3m40

TABLE S1. Movies included in each movie scan.
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