
 

 

Supplementary Note: 
 
Implementation of Deaths from Comorbidities and Failure Rates 
To accurately model progression free survival (PFS) in a lung cancer population for which 
comorbidities can be significant, a non-cancerous death rate from comorbidities must be 
considered. Non-cancer related death rates during the 5 yrs. after CRT for lung cancer patients 
were retrieved from an analysis of the Surveillance, Epidemiology, and End Results (SEER) (1, 
2). This analysis stratified the 5 yr. survival probability, death probability from locally-advanced 
lung cancer, and non-cancerous death probability by age, sex, and severity of comorbidity 
status. The overall 5 yr. survival probability, cancerous death probability, and non-cancer death 
probability for the population was calculated to be 15.2%, 71.3%, and 13.5% respectively, 
given the patient age and sex frequency in the SEER analysis (2) and also the frequency of 
each comorbidity severity level reported in a separate analysis of SEER data (1). With the 
current standard of care including PET staging, concurrent chemotherapy, and intensity 
modulated radiotherapy, the current 5 yr. survival probability from locally-advanced lung 
cancer was approximated to be 28.8% (averaged 5 yr. overall survival from each arm of the 
recent PROCLAIM concurrent CRT trial). Assuming the same proportion of deaths from lung 
cancer and non-cancerous comorbidities but with this same survival probability, the adjusted 5 
yr. death probability from cancer and comorbidities was estimated as 59.9% and 11.3%, 
respectively. The monthly death rate from comorbidities, 𝑟!"#$%, was then estimated to be 
0.55%. The probability of dying from comorbidities on a given discrete month, 𝑡&'($% ∈ ℕ, and 
the cumulative probability of dying at 𝑡!"#$% on or before 𝑡&'($%, were be then calculated by 
monthly compounding of 𝑟!"#$% (Eqs. S1-S2). This cumulative distribution function was then 
inverted and sampled by a drawing a random number, 𝜁 ∈ [0,1], to generate a single, 
stochastic drawing of the time of death by comorbidity 𝑡!"#$% ∈ [0,∞] for each simulated patient 
(Eqs. S3-S4). Finally, the time to progression for an individual patient (Eq. S7) was defined as 
the earliest of time of local failure (𝐿𝐹, Eq. S5), time of distant failure (𝐷𝐹, Eq. S6), or time of 
death from comorbidity (𝑡!"#$% , Eq. S4). Note that 𝐿𝐹 and 𝐷𝐹 were assumed to be a multiple of 
3 months since the start of treatment, in order to mimic the clinical practice post-treatment 
evaluation with CT approximately every 3 months. 
 

 
 
Hazard Ratio Calculation & Kaplan Meier Analysis 

The lifelines v0.24 package (3) installed in Python 3.7 was used for creating Kaplan Meier (K-
M) curves and corresponding 95% confidence intervals. The input to the K-M estimator was a 
list of time to events (local failure, distant failure or progression) of length N, where N is the 



 

 

number of simulated patients. For the K-M analysis of the simulated data, patients were 
assumed to have all started treatment simultaneously with no censorship of patients. Hazard 
ratios between two population endpoints receiving different treatment schemes were 
calculated using the Mantel-Haenszel method (4), using the events table of each arm reported 
by the lifelines v0.24 package. Statistical significance between two treatments was determined 
by a log-rank test, calculated by the lifelines v0.24 python package. 
 
CRT Model Parameter Calibration  

The truncated normal and truncated log-normal model parameter distributions published by 
Geng et al. (5) were used, with the growth and radiosensitivity distributions recalibrated to 
three single institutional reports of freedom from local and distant failure (FFLF and FFDF) 
rates in wildtype (WT) and EGFR-mutant locally advanced (LA) NSCLC populations receiving 
definitive concurrent CRT (6-8). In this analysis, WT specifically refers to a randomly sample 
from the general population not screened for EGFR status, with reported incidences of EGFR 
mutations of 24/118 (20%, US) (8), 26/95 (27%, Japan) (7), 29/184 (16%, South Korea) (6) 
and a mean of 79/397 (20%). The initial stage distribution of the simulated LA-NSCLC 
population was assumed to be 47% for Stage IIIA and 53% for IIIB as reported in a Phase 3 
CRT trial (PROCLAIM) (9). Accordingly, the modeled concurrent CRT treatment was 2 Gy per 
fraction in 30 fractions of RT (per PROCLAIM) (9) with concurrent chemotherapy (per RTOG 
9410 Arm 2) (10) as in our previous work. Optimization was performed where the normalized 
squared summed difference between the model predicted and the mean literature obtained 
FFDF or FFLF at 1, 2, 3, and 4 yrs. was calculated over the entire clinically relevant parameter 
space. For each calibration, five runs with n=1024 simulated patients were performed and 
aggregated at each parameter value to determine the global optimum (Suppl. Fig. 1 (A-F)). 
The standard deviation of the growth distribution,	ρ), and the metastatic fraction, f&"$, were 
simultaneously optimized over the FFDF. These parameters were then fixed, and the mean 
and standard deviation of WT and EGFR-mutant radiosensitivity distributions, 𝛼* 	and α+, were 
simultaneously optimized for the WT and EGFR-mutant FFLF, respectively. Confidence 
intervals (CIs) were estimated via bootstrapping, randomly sampling 512 of the 5120 samples 
and finding the optimal parameters for 1000 iterations. Suppl. Fig. 1 (G-I) shows the 2D joint 
histogram of the frequency of each of the 1000 optimal model parameters. The 95% 
confidence interval was then defined by the convex hull (scipy.spatial.ConvexHull) that 
encompasses the closest 95% (i.e. 950) iterations to our global optimum. Suppl. Fig. 1 (J-L) 
shows that the 1000 K-M curves corresponding to the 1000 optimal solutions match the 
calibration data well and lead to very similar solutions. 
For both the model calibration and validation, data was extracted from the literature reported 
K-M curves with the WebPlotDigitzer V4.2 program (11). Additionally, the relationship between 
the model predicted versus literature reported failure rates were quantified with a linear 
regression, implemented with linregress function in the SciPy library (12). 
 
TKI Model Parameter Calibration  

The TKI model parameters for our simulated population were derived from a previous model 
based analysis of n=20 tumor volume trajectories in advanced EGFR-mutant NSCLC patients 
receiving erolitnib (13). Initial persistent fractions of [0.05, 0.2, 0.5] and an initial resistance 
fractions of [10-4, 10-3, 10-2, 10-1] were modeled in equal proportion, representing a range of 



 

 

initial TKI sensitivities observed in the patient specific tumor volume trajectories and in an in-
vitro clonogenic assay of cells derived from human NSCLC solid tumors (14). Similarly, the TKI 
cell kill distribution was estimated to be truncated normal with a mean of 2, a standard 
deviation of 7, and a minimum value of 1, such that the median and maximum TKI cell kill 
value approximately matched those estimated from the patient specific tumor volume 
trajectories (patient specific median = 7.8 versus median of truncated normal = 𝑒* 	= 𝑒,	= 7.4; 
patient specific maximum = 20 versus trunc-norm 99.9th percentile = 21 for n = 1024 simulated 
patients).  
 
Model Validation Against Clinical Trials 
For the model validation against phase 3 clinical trials of CRT alone and TKIs alone, n=1024 
patients were simulated having initial persistent fractions of [0.05, 0.2, 0.5] and initial 
resistance fractions of [10-4, 10-3, 10-2, 10-1] for a total of n=1024x4x3=12288 patients. 
Histograms of the model parameters are shown in Suppl. Fig. 4. The modeled concurrent 
CRT treatment was implemented the same as in the model calibration per PROCLAIM and per 
RTOG 9410 Arm 2 while the sequential CRT was implemented per RTOG 9410 Arm 1 with the 
chemotherapy preceding the radiotherapy (10), resulting in the distant compartment receiving 
the same treatment in both schedules. Both concurrent chemotherapy arms of the PROCLAIM 
trial were averaged as no effect was observed. For the model validation against TKIs alone, 
the TKI treatment was implemented similar to a previous report (13, 15), wherein a daily bolus 
of erlotinib was administered within a first order pharmacokinetic model resulting in a daily 
plasma concentration of the drug (Eq. 14). The daily administration continues until 
progression, as was done in the comparative trials. Additionally, the advanced (stage IV) tumor 
size distribution from Geng et al. (5) was assumed given the comparative trial was similarly 
performed in an advanced population. Finally, both the simulated tumor size change from 
baseline and recurrences were measured every six weeks in accordance with the TKI arm of 
the EURTAC trial (16).  
 
Multimodal Target-Chemoradiotherapy Treatment Modeling 
The two main treatment designs simulated in locally advanced EGFR-mutant NSCLC were TKI 
induction with daily administration up to 16 weeks, followed by definitive concurrent CRT, 
followed with or without adjuvant TKI maintenance until a distant or local tumor recurrence. 
The concurrent CRT was modeled the same as during the model calibration and validation. 
These two treatment schemes are very similar to ongoing combined TKI+CRT trial protocols: 
NCT 01822496 -12 wks. TKI induction followed by definitive CRT and NCT 01553942 - 8 wks. 
TKI induction followed by definitive CRT, followed by surgery if possible, followed by 6 wks. 
chemotherapy, and finally adjuvant TKI maintenance if there was initial response. Breaks 
between TKIs and CRT or CRT and TKIs to allow for treatment planning or recovery from 
symptoms were not explicitly modeled. 
 
Statistical Power Estimation  

To analyze the statistical significance of differences in the endpoints between various induction 
lengths, a Monte Carlo based power calculation was performed to simulate several iterations 
of a two-arm trial. A short (2 wk.) and a long (12 wk.) induction length arm were simulated with 
6 wks. concurrent CRT and adjuvant TKI therapy with ni = [16, 32, 64,128, 256, 512,1024] 



 

 

patients in each arm. This was iterated 1000 times by randomizing all N=12288 patients using 
the numpy.random.shuffle routine and again analyzing the first ni patients (17). For each 
iteration of each sample size ni, the median PFS or FFDF of each arm was recorded. The 
difference in rate of progression or distant failure between the short and long induction lengths 
was determined to be statistically significant by a log-rank test, which was implemented using 
the lifelines v0.24  python package (3). The power as function of sample size was then 
estimated as the fraction of the 1000 iterations which did reach statistical significance (p < 
0.05). 
 
Robustness of Results to Pre-existing Resistance and Persistence 

The benefit of a shorter induction length was predicted in a generalized population with a 
spectrum of initial TKI resistant and persistent fractions (Vr(0) and Vp(0) respectively). To 
analyze the robustness of this result to the level of pre-existing resistance and persistence, the 
short (2 wk.) and long (12 wk.) induction length arms were again simulated with 6 wks. 
concurrent CRT and adjuvant TKI therapy, for all n=1024 patients of each given combination of 
Vr(0) and Vp(0). Kaplan Meier curves of FFDF and corresponding hazard-ratios were 
calculated for all 12 combinations	Vr(0) and Vp(0), shown in Suppl. Fig. 7. 
  



 

 

Supplementary Data: 
 
Full Parameter Space Analysis of Model Calibration 
 

 

 
 
Figure S 1: The model parameter calibration space showing the changes in the loge χ2 residual as a function of initial 
fraction of metastatic cells and the standard deviation of the growth rate distribution (A, D), the mean and standard 
deviation of the radiosensitivity distribution for the wildtype (B, E) and EGFR-mutant (C, F) populations. In (A, B, C), 
the parameter space is shown as a 2D contour map with the optimal parameter values resulting in minimum χ2 
residual denoted with a black dashed line. In (D, E, F) the parameter space is shown as a 3D surface. In (G, H, I), 
two-dimensional joint histograms of the optimal parameter values for 1000 sub-sampled fits are shown, with the solid 
red line marking the convex hull in which 95% of the fits closest to the global minimum lie (95% confidence interval). 
In (J, K, L) K-M curves corresponding to the optimal parameter values for 1000 sub-sampled fits are shown. 

 



 

 

Model Simulated PFS for WT and EGFR-mutant Populations Receiving Concurrent 
Chemoradiotherapy 
 
 

 
Figure S 2: Simulated progression free survival K-M curves for WT and EGFR-mutant populations with the calibrated 
model parameters. Even though the radiosensitivity and therefore local control in these two populations differs 
significantly, the similar distant failure rates lead to similar PFS curves. 

 
  



 

 

Model Predicted Local versus Distant Recurrence Patterns Receiving Sequential Versus 
Concurrent Chemoradiotherapy  
 

 
Figure S 3: Model predicted freedom from local failure (A) and distant failure (B) K-M curves for both concurrent and 
sequential chemoradiotherapy. 

 
  



 

 

Histograms of Model Parameters for Simulated Population 
 
 

 
Figure S 4: Distributions of key model parameters used in this work for n=1024 simulated patients with 3 different 
initial persistent cell fractions and 4 different resistant cell fractions, yielding a total of 3x4x1024 = 12288 simulated 
patients. 

 
  



 

 

Model Predictions of Full Multimodal Treatment Design Space  
 

 
Figure S 5: Plots of FFLF (A), FFDF (B), and PFS (C) as function of induction length both with (solid line) and without 
(dashed line) adjuvant TKI maintenance at 2 yrs. (top row), 3 yrs. (middle row), and 5 yrs. (bottom row) from start of 
treatment.  

 

 
 
  



 

 

Table of Outcomes for Complete Multimodal Treatment Design Parameter Space 
 

 
Figure S 6: Table of outcomes for complete multimodal treatment design parameter space, color coded by range of 
effect. NR= not reached.  

 
  



 

 

Effect of Pre-existing Resistance and Persistence on Benefit of Shorter Induction  
 

 
Figure S 7:  Simulated in-silico induction trial stratified by initial resistance and persistent fractions. Simulated FFDF 
K-M curves of 2 wk. versus 12 wk. induction lengths for each of the 12 combinations of Vr (Columns) and Vp (Rows). 
For each Vr, Vp combination the full n=1024 patients were included, and hazard ratios (HR) with 95% confidence 
intervals are reported. The bounds of all confidence intervals are <1, meaning the benefit of the 2 wk. induction over 
12 wk. holds regardless of the initial TKI sensitivity.    



 

 

 
Estimated Power of Varying Induction Length on PFS as a Function of Sample Size 
 

 
Figure S 8:  (A) Simulated PFS K-M curves for 2 wk. and 12 wk. induction lengths with increasing number of 
simulated patients. (B) A heatmap of log rank p-values testing statistical difference between the 2 wk. versus 12 wk. 
PFS K-M curves for 1000 iterations of the simulation at each sample size. Histograms of the median PFS (C) and log 
rank p-values (D) for the 1000 iterations of the 2 wk. and 12 wk. induction simulations at each sample size. Estimated 
statistical power as a function of sample size. Here statistical was estimated as the fraction of iterations resulting in a 
p-value<0.05. 
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