Geometry influences inflammatory host cell response and remodeling in tissue-engineered heart valves in vivo

Sarah E. Motta ^{1,2,9}, Emanuela S. Fioretta^{1,9}, Valentina Lintas², Petra E. Dijkman¹, Monika Hilbe³, Laura Frese¹, Nikola Cesarovic^{4,5}, Sandra Loerakker^{6,7}, Frank P. T. Baaijens⁶, Volkmar Falk^{4,5,8} Simon P. Hoerstrup^{1,2}, Maximilian Y. Emmert^{1,2,4,8,*}

¹ Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland

² Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland

³ Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland

⁴ Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany

⁵ Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland

⁶ Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

⁷ Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands

⁸ Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany

⁹These authors contributed equally and share first authorship

*Corresponding author:

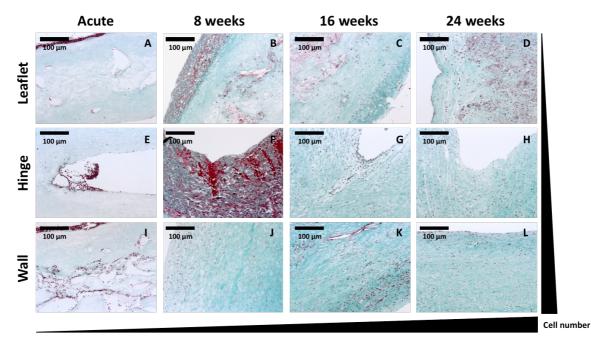
Maximilian Y. Emmert, MD, PhD

Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland. Tel.: +41 44 634 5610, E-mail: <u>maximilian.emmert@irem.uzh.ch</u>

Material and Methods

Scanning electron microscopy (SEM)

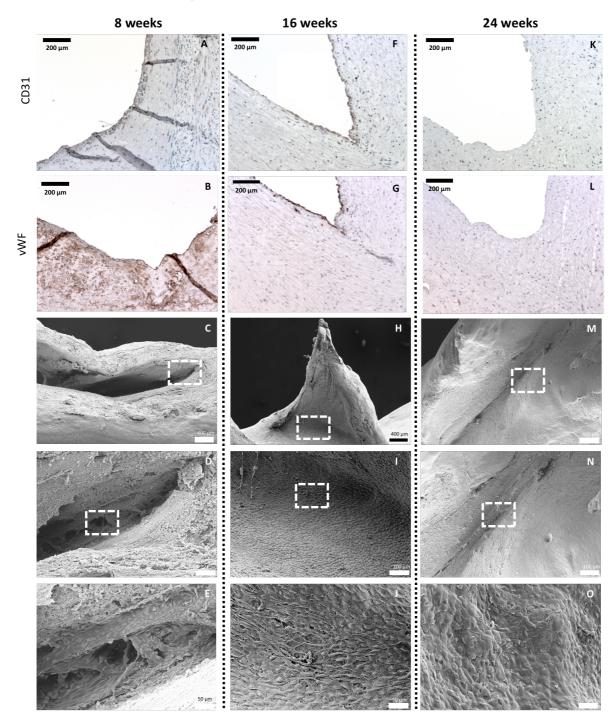
SEM was used to assess and confirm the degree of endothelialization for the two TEHVs designs (JACC, Emmert). Briefly, samples were fixed in 2% glutaraldehyde (Sigma-Aldrich; Switzerland), dehydrated with a sequence of different EtOH concentrations, and embedded in a solution of EtOH with increasing concentration of plastic components. Sections were then cut in an ultramicrotome and finally platinum-sputtered for imaging.


First-generation TEHV	Primary AB	Secondary AB
M1	Rabbit anti-CCR7 (Abcam, ab32527)	Goat anti-rabbit Alexa 568
M2	Mouse anti-rat CD163 (Abd serotec, MCA342GA)	Goat anti-mouse Alexa 488
Second-generation TEHV	Primary AB	Secondary AB
Second-generation TEHV M1	Primary AB Rabbit anti-CCR7 (Abcam, ab32527)	Secondary AB Goat anti-rabbit Alexa 568

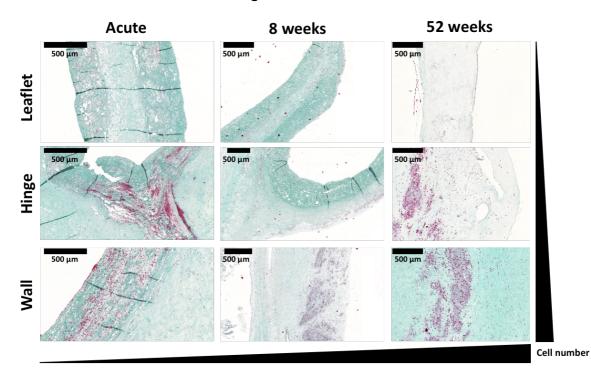
Supplementary Table 1: Summary of the antibodies used for immunofluorescence.

Supplementary Table 2: *First-* and *second-generation* TEHVs leaflet lengths and hinge thickness measurements. Measurements are represented as mean value ± standard deviation

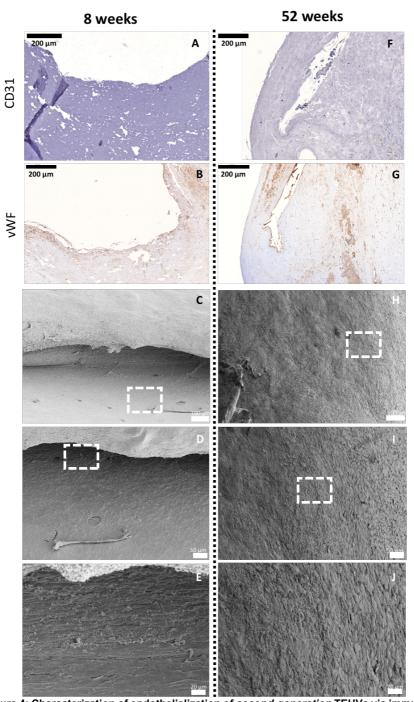
Follow-up [weeks]	First-generation TEHV	
	Leaflet length [µm]	Hinge thickness [µm]
Control	11533.33 ± 1042.43	754.17 ± 12.81
8	9365.83 ± 273.14	1686.67 ± 784.39
16	6597.16 ± 1703.23	2715 ± 700.72
24	3612.916 ± 1848.99	2255.83 ± 355.41
	Second-generation TEHV	
	Leaflet length [µm]	Hinge thickness [μm]
Control	14451.43 ± 1081.86	870.57 ± 107.34
8	11415.55 ± 2017.84	1996.67 ± 1001.77
52	13538.33 ± 2014.32	651.33 ± 445.42


Results

Host cellular infiltration in first-generation TEHVs


Supplementary Figure 1: Representation of endogenous cellular infiltration in *first-generation* **TEHVs.** Host cells gradually repopulate TEHVs over time starting from the wall and progressively migrating towards the hinge and the leaflet area (scale bars 100 µm).

Endothelialization of first-generation TEHVs


Supplementary Figure 2: Assessment of endothelialization of *first-generation* TEHVs via immunohistochemistry and SEM imaging. Images of the TEHVs hinge area stained for CD31 and vWF at different time-points (8, 16, and 24 weeks) (scale bars 100 μ m). SEM images of the hinge area of at different time-points (8, 16, and 24 weeks) and at three different magnifications. Endothelial cells are visible already at 8 weeks, but they form a confluent layer only at later time-points.

Host cellular infiltration in second-generation TEHVs

Supplementary Figure 3: Representation of endogenous cellular infiltration in *second-generation* **TEHVs.** Host cells gradually repopulate TEHVs over time starting from the wall and progressively migrating towards the hinge and the leaflet area (scale bars 500 µm).

Endothelialization of second-generation TEHVs

Supplementary Figure 4: Characterization of endothelialization of second-generation TEHVs via immunohistochemistry and SEM imaging. Images of the TEHVs hinge area stained for CD31 and vWF at different time-points (8 and 52 weeks). Endothelial cells are visible and lining the surface of TEHVs. Cutting artefacts might prevent the correct representation of endothelial cells presence at 8 and 52 weeks for the CD31 staining (scale bars 200 µm). SEM images of the hinge area of second-generation TEHVs at different time-points (8 and 52 weeks) and at different magnifications. A confluent and oriented endothelium is already visible at 8 weeks and retained also after 52 weeks in-vivo.