Supplementary Information

Enhancing near-infrared photoluminescence from single-walled carbon nanotubes by defect-engineering using benzoyl peroxide

Lukasz Przypis^a, Maciej Krzywiecki^b, Yoshiaki Niidome^c, Haruka Aoki^c, Tomohiro Shiraki^c, Dawid Janas^{a,*}

^a Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland

^b Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland

^c Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan

*Corresponding author: Dawid.Janas@polsl.pl

Figure S1 2D PLE map of (6,5)-enriched SWCNTs dispersed in 2% sodium cholate aqueous solution.

Figure S2 2D PLE map of (6,5)-enriched SWCNTs dispersed in 2% sodium cholate aqueous solution after treatment with BPO at 100°C for 1h in water.

Figure S3 Deconvolution of an exemplary PL spectrum of (6,5) SWCNT dispersion in PFO-Bpy/toluene solution after the treatment with BPO at 60 μ g/mL at 100°C for 1h. Voigt profile was utilized for the resolution of the E₁₁, E₁₁^{*}, and E₁₁^{*-} signatures. The integrated area under these curves was used for analysis in Figs. 5b, 6b-c.

Figure S4 (a) Absorption spectra of (6,5) SWCNT dispersion in PFO-Bpy/toluene solution before (grey line) and after the treatment with BPO at 500 μ g/mL at 100°C for 1h (red line). (b) D/G+ ratios measured by Raman spectroscopy and (c) corresponding Raman spectra.

Figure S5 2D PLE map of BPO in PFO-Bpy and toluene mixture in the absence of SWCNTs.