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Supplementary Method 1. General description of MILP-based algorithm for metabolic 
pathway design 

We use a similar approach to the OptMDFpathway method 1. We set up a Mixed Integer Linear 
Problem (MILP)-based optimization problem which simultaneously looks for solutions that balance 
an objective reaction (here, 3 CO2 → pyruvate), and maximize the Max-min Driving Force (MDF) 3 
while simultaneously minimizing the number of reactions. In the section titled ‘Alterations to the 
iML1515 model’, we lay out the changes we made to the set of reactions in the iML1515 model 2. In 
the section titled ‘Formulation of the Mixed Integer Linear Problem’, we describe how the MILP 
problem is formulated. In the section titled ‘Iterating the space of solutions’, we describe how we 
use the MILP framework to find also sub-optimal solutions and cover a large part of the feasible 
solution space of carbon fixation pathways. 

 

We made a few changes to the genome-scale model of E. coli (iML1515) 2: 

● Removing all non-cytoplasmic reactions (i.e. exchange or transport reactions), except for 
exchange reactions of inorganic metabolites: protons, water, orthophosphate, ammonium, 
and oxygen 

● Removing all boundary reactions (i.e. sink reactions needed to allow certain co-factors to 
leave the system) 

● Adding co-factor regenerating reactions: ADP → ATP, NADP+ → NADPH, and NAD+ →  
NADH 

● Replacing all flavoredoxins and thioredoxins with NADP(H): We replaced all flavoredoxins 
and thioredoxins with NADP(H), since we do not have a good estimate of their reduction 
potential, and therefore the MDF for pathways using them was artificially high. We can 
assume that the electrons used for reducing CO2 in the carbon fixation cycle ultimately have 
to pass through NADPH, and therefore a simple solution was to replace the electron donor 
with NADPH. This way, we could keep the flavoredoxins/thioredoxins-dependent reactions 
in the model while having a more realistic estimate of their thermodynamics. 

● Removing the formate-tetrahydrofolate ligase reaction (FTHFLi): We found that the reaction 
formate-tetrahydrofolate ligase (FTHFLi) appears in some of the solutions although the gene 
associated with this reaction is unknown. FTHFLi was thus excluded from our model 
altogether. Notably, removing this reaction does not significantly affect the space of 
solutions, because it can be easily replaced by GAR transformylase-T (GART) and the 
reverse reaction of Phosphoribosylglycinamide formyltransferase (GARFT). 

● Add the objective reaction (OBJ): 3 CO2 → pyruvate 
● Setting the bounds (the range of possible fluxes) of all remaining reactions to be between -

10 and 10 
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The mixed integer linear problem was formulated as follows: 

 Maximize 𝐵 − ∑ 𝑧𝑖𝑖  (1) 

Such that:  
 𝑆𝑣 =  0 (2) 

 𝑣𝑂𝐵𝐽 = −1 (3) 

 𝑣 − 𝛽𝑧 ≤ 0 (4) 

 𝐵 ≤ −𝑔0 − 𝑆⊤𝑥 + 𝑀(1 − 𝑧) (5) 

 𝑧 ∈ {0,1}𝑛 (6) 

 0 ≤ 𝑣 ≤ 𝛽 (7) 

 𝑙𝑛 (𝐶𝑚𝑖𝑛)  ≤ 𝑥  ≤𝑙𝑛 (𝐶𝑚𝑎𝑥) (8) 

 0 ≤ 𝐵 (9) 

where the vector v contains the relative reaction rates, z are the Boolean reaction indicators, x are 
the log-scaled metabolite concentrations, and g0 is a vector of all the reactions’ standard Gibbs free 
energies in units of RT (see Equation 10). 

 ∀𝑖 𝑔𝑖
0 ≡ 𝛥𝑟𝐺𝑖′0/𝑅𝑇 (10) 

β is a parameter that limits the maximal rate for each single reaction in the pathway (relative to the 
objective reaction, i.e. 3 CO2 → pyruvate), and was set arbitrarily to 10. The rate of the objective 
reaction (vOBJ) is set to be exactly -1 (Equation 3). This ensures that any pathway solution would 
exactly balance it, i.e. the overall reaction in the pathway would be 3 CO2 → pyruvate. M is a 
parameter which has a large value, much higher than any of the values in g0. The lower and upper 
bounds on the concentrations of most metabolites were set to 1 μM and 10 mM. Only 14 central 
metabolites and co-factors were confined to more specific ranges based on physiological data (see 
Supplementary Table 3). 

Note that as a pre-processing step, we split all reactions to a forward and backward reaction and 
therefore all (uni-directional) rates must be positive. Equation 4 ensures that each reaction 
indicator (zi) can be equal to 0, only if the rate is 0. We don’t need to care about it being equal to 1 
even if a reaction is not active, since the optimization goal (which maximizes the sum of all 
indicators) will prevent that. 

Equation 5 ensures that every active reaction has a positive driving force (which is given by 
−𝑔𝑖

0 − ∑   
𝑗 𝑆𝑖𝑗𝑥𝑗). If 𝑧𝑖 = 1, the driving force must be larger than B, which is a positive number that 

represents a margin. We add B to the optimization function, in order to maximize this margin. This 
approach is based on the Max-min Driving Force 3 and aims to prioritize pathways that can be 
operated as far from equilibrium as possible. The method for using Max-min Driving Force 
optimization for finding feasible pathways in the genome-scale E. coli model was introduced by 
Hädicke et al. 1, and denoted OptMDFpathway. 

Our MILP objective function is the margin (B) minus the sum of all indicators (which is equal to the 
number of reactions in the pathway). Maximizing this function will simultaneously maximize the 
MDF and minimize the pathway length. Importantly, when combining two optimization functions, 
the relative weight given to each one is very important. Since the MDF is given in units of RT, and 
the pathway length is an integer, using equal weights is an arbitrary choice. For example, giving a 
much higher weight to the MDF (by changing the units, or multiplying it by a large pre-factor) would 
likely change the MILP solution. In this work, we wanted to avoid tuning the relative optimization 
weights. Instead, we iterate the space of sub-optimal solutions and try to identify pathways that are 
Pareto-optimal (i.e., no other solution outperforms them in both MDF and length). This procedure is 
explained in detail in the next section. 
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In order to cover the space of thermodynamically feasible solutions (i.e. pathways with MDF > 0), 
we iteratively use integer-cuts to eliminate all previous solutions and find the next optimal one 4. 
Formally, if P0 , … , Pm are the set of solutions already discovered by our algorithm (where 

𝑃𝑗 ⊂ {0, . . . , 𝑛}) then the added constraints will be: 

 ∀𝑗 ∑  

 

𝑖∈𝑃𝑗

𝑧𝑖 < |𝑃𝑗| (11) 

where |Pj| is the size of the pathway (i.e. the number of reactions). Each one of these constraints 
eliminates Pj and any pathway which is a superset of Pj from the solution space. 

Using the Gurobi solver, we could recover only ∼100 solutions per day, on an Intel Core i7-4770S 
CPU (with 8 cores). However, when running the iterative search for about 3 days, we noticed that 
even though the solutions were different by at least one reaction, the overlap between them was 
quite large and running the search exhaustively would take a significant amount of time. Therefore, 
in order to increase the diversity of the solutions and shorten the run-time, we changed the solution 
elimination process, so that each time all solutions within a radius of 3 reactions would also be 
eliminated. To achieve that, we subtract 3 from the right-hand side of each constraint: 

 ∀𝑗 ∑  

 

𝑖∈𝑃𝑗

𝑧𝑖 < |𝑃𝑗| − 3 (12) 

After this modification, the diversity of the pathways within the first 50 was much larger, which we 
measure by counting which carboxylating enzymes were used in each pathway (see 
Supplementary Figure 5 and Supplementary Table 4). Since we optimize both the MDF and 
number of reactions in each iteration, it is very unlikely that pathways that are Pareto-optimal would 
be excluded from the results due to the 3-radius rule. Nevertheless, we verified that the set of 
Pareto-optimal solutions is not affected by the exclusion radius. 

We find that only 2 pathways are Pareto-optimal in terms of MDF and pathway length. The first one 
(pathway 0) is the GED cycle, with 17 reactions and an MDF of 3.3 kJ/mol. This is the shortest 
possible CO2 fixating pathway in E. coli. The only other Pareto-optimal pathway, comprising 20 
reactions and an MDF of 5.1 kJ/mol, uses the reverse glycine cleavage system as its carboxylating 
mechanism. 

Graphical depictions of these pathways can be found at https://gitlab.com/elad.noor/ged-cycle/-
/tree/master/gdot. 

 

The source code and all input and output files can be found at GitLab 
(https://gitlab.com/elad.noor/ged-cycle) or Zenodo (https://doi.org/10.5281/zenodo.4066984) under 
an open-source license (MIT). Specifically, a Jupyter Notebook which was used to create 
Supplementary Figure 5 and Supplementary Table 4 can be found at 
https://gitlab.com/elad.noor/ged-cycle/-/blob/master/make_supplementary_figures.ipynb.

https://gitlab.com/elad.noor/ged-cycle/-/tree/master/gdot
https://gitlab.com/elad.noor/ged-cycle/-/tree/master/gdot
https://gitlab.com/elad.noor/ged-cycle
https://gitlab.com/elad.noor/ged-cycle
https://gitlab.com/elad.noor/ged-cycle
https://doi.org/10.5281/zenodo.4066984
https://gitlab.com/elad.noor/ged-cycle/-/blob/master/make_supplementary_figures.ipynb
https://gitlab.com/elad.noor/ged-cycle/-/blob/master/make_supplementary_figures.ipynb
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Supplementary Table 1: Mutations identified in the evolved ∆PZF (∆pfkAB ∆zwf ∆fsaAB ∆fruK) strains.  

Locus / Gene 
Name 

Position 
(NC_000913.3) 

Annotation Mutation Type 
Reference 

bases 
Variant 
bases 

Description/Comments 
Ancestral 

Strain (∆pfkAB 
∆zwf ∆fsaAB) 

Parental Strain 
(∆PZF* +pGED) 

∆PZF 
+pGED 

- 
Mutant 

A1 

∆PZF 
+pGED 

- 
Mutant 

A2 

∆PZF 
+pGED 

- 
Mutant 

A3 

∆PZF 
+pGED 

- 
Mutant 

B1 

∆PZF 
+pGED 

- 
Mutant 

B2 

∆PZF 
+pGED 

- 
Mutant 

B3 

∆PZF 
+pGED 

- 
Mutant 

C1 

∆PZF 
+pGED 

- 
Mutant 

C2 

∆PZF 
+pGED 

- 
Mutant 

C3 

Cra 88,283 coding region (Q86*) SNP C T 
DNA-binding transcriptional 

dual regulator  
+ + + + + + + + + + 

cydA 771,121 intergenic (-336nt) 
IS element 
insertion 

- - 
cytochrome bd-I ubiquinol 

oxidase subunit I  
+ + + + + + + + + + 

rne 1,142,413 
coding region (1954th 

nt) 
Δ2 bp deletion / 

frameshift 
TC - ribonuclease E 

  
+ + + 

      

dhaM 1,248,151 coding region 
IS element 
insertion 

- - 
dihydroxyacetone kinase, 

phosphotransferase component  
+ + + + + + + + + + 

clsA 1,307,916 coding region (D244N) SNP C T cardiolipin synthase A 
  

+ + + 
      

flhD 1,978,503 intergenic (-400nt) 
IS element 
insertion 

- - 
DNA-binding transcriptional 

dual regulator  
+ + + + + + + + + + 

gatC 2,173,363 coding region Δ2 bp deletion CC - 
galactitol-specific PTS enzyme 

IIC component  
+ + + + + + + + + + 

ptsI 2,535,329 coding region (E422*) SNP G T 
phosphoenolpyruvate-protein 

phosphotransferase PTS 
enzyme I 

 
+ + + + + + + + + + 

avtA 3,740,351 
coding region (647th 

nt) 
Δ2 bp deletion TG - 

valine-pyruvate 
aminotransferase         

+ 
 

+ 

avtA 3,740,466 
coding region 

(G254GG) 
3bp insertion - TGG 

valine-pyruvate 
aminotransferase      

+ 
 

+ 
   

glpF / zapB 4,118,275 intergenic (-184nt) 
IS element 
insertion 

- - glycerol facilitator 
 

+ + + + + + + + + + 

eptA 4,334,799 coding region (silent) SNP C T 
phosphoethanolamine 

transferase  
+ + + + + + + + + + 

leuX (tRNA)** 4,496,406 coding region (2nd nt) SNP C T tRNA-Leu(CAA) 
     

+ + + + + + 

fimA 4,543,603 
coding region (502nd 

nt) 
IS element 
insertion 

- - 
type 1 fimbriae (pili) major 

subunit       
+ 

    

yjjY 4,640,422 coding region 
IS element 
insertion 

- - protein of unknown function 
 

+ + + + + + + + + + 

 
* abbreviation: ∆PZF = ∆pfkAB ∆zwf ∆fsaAB ∆fruK 
 
** The identified mutation in the L-leucyl-tRNA (leuX) was found in all mutant clones from the independent evolution cultures ‘B’ and ‘C’, which 
display considerably faster growth than mutants from culture ‘A’. The mutation is a single-nucleotide polymorphism, located at the second base from 
the 5’-end of the mature tRNA (i.e. not within its anticodon loop). We hypothesize that this mutation negatively affects maturation and/or folding of 
the tRNA and thereby modifies translation rates of genes containing UUG-codons (approx. 13% of all leucine-encoding codons), although other 
leucyl-tRNAs are known to compensate partially for loss-of-function or deletion of leuX (FEBS Letters 344 (1994) 31-34; J. Mol. Biol. (1979) 129, 
567-585). Notably, the edd gene (encoding 6-phosphogluconate dehydratase, one of the key enzymes in the GED pathway) contains 12 codons 
normally recognized by leuX. Therefore it is possible that a loss-of-function in leuX optimized expression of edd at the translational level, possibly by 
reducing its protein abundance or by improving edd maturation (e.g. incorporation of the required iron-sulfur cluster) via slowed translation. 

 

This 
strain is 
referred 

to as 
Mutant 

'A' in the 
main 
text 

 

This 
strain is 
referred 

to as 
Mutant 

'B' in the 
main 
text 

 

This 
strain is 
referred 

to as 
Mutant 

'C' in the 
main 
text 

 

These three colonies were 
isolated from a single culture 
evolved for growth on xylose 

These three colonies were 
isolated from a single culture 
evolved for growth on xylose 

These three colonies were 
isolated from a single culture 
evolved for growth on xylose 

Note: Plus symbols indicate the presence of an identified mutation.
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Supplementary Table 2: List of DNA oligo primers used in this study. 

Name Function Sequence (5’→3’) 
rpe-V1 Verification of ∆rpe GTTTTACGCTGAGTCGCACGTTCCTG 

rpe-V2 CGAAGGTCTGGTTGAGCGCCATATTCC 

tktA-V1 Verification of ∆tktA ACAACAAATGTCAATACGCATATCGT 

tktA-V2 GTTCCATGTACATGACGCGC       

tktB-V1 Verification of ∆tktB CCACCTTCTCAGACGTTCCC 

tktB-V2 GCTTTGACGGTCAGCGTTTT 

zwf-V1 Verification of ∆zwf GCACGAGGCCTGAAAGTGTA 

zwf-V2 AAAGCAGTACAGTGCACCGT 

sthA-V1 Verification of ∆sthA (∆udhA) GTTTCTGTTTTGAAGCCGGGGC 

sthA-V2 AAACAGACAAAGCAAAGGCCGC 

gndA Amplification of gnd from E.coli 
genomic DNA 

GAATGCATCATCACCATCACCACTCCAAGCAACAGATCGGCGTAGTCGG 

gndB GCATCGGTGATTTTTTGCAGGAACTGCGC 

gndC GCGCAGTTCCTGCAAAAAATCACCGATGC 

gndD CGCTAGCTCTAGATTAATCCAGCCATTCGGTATGGAACACACCTTC 

edaA Amplification of eda from E.coli 
genomic DNA 

GAATGCATCATCACCATCACCACAAAAACTGGAAAACAAGTGCAGAATCAATCCTGAC
CAC 

edaB GAACGGACCCGCAATCGCTTGCAGGGCTTTCAC 

edaC GTGAAAGCCCTGCAAGCGATTGCGGGTCCGTTC 

edaD CGCTAGCTCTAGATTACAGCTTAGCGCCTTCTACAGCTTCACG 

eddA Amplification of edd from E.coli 
genomic DNA 

GAATGCATCATCACCATCACCACAATCCACAATTGTTACGCGTAACAAATCGAATCATT
GAACG 

eddB CGCTAGCTCTAGATTAAAAAGTGATACAGGTTGCGCCCTGTTCGG 

q-rrsA1 qPCR of rrsA (reference gene) CTCTTGCCATCGGATGTGCCCA 

q-rrsA2 CCAGTGTGGCTGGTCATCCTCTCA 

q-pntA1 qPCR of pntA GCCAATCTGCAACAGTGCTC 

q-pntA2 TTTTTGGCTGGATGGCAAGC 

CmR-1 Engineering of the pntAB 
promotor region 

TAATACGACTCACTATAGGGCTCCATATGAATATCCTCCTTAG 

CmR-2 AATTAACCCTCACTAAAGGGCGGAGCTGCTTCGAAGTTCCTA 

PromW-Fwd GAGCCCTATAGTGAGTCGTATTATCCCTTTGATATTGCATCCCGCGTATATAATATG 

PromM-Fwd GAGCCCTATAGTGAGTCGTATTAACCTATTGACAATTAAAGGCTAAAATGCTATAATTC
CAC 

PromS-Fwd GAGCCCTATAGTGAGTCGTATTAAATACTTGACATATCACTGTGATTCACATATAATATG
CG 

pntA-Prom1 GTACTGGTATTGTTATTAACGAGAAACGTGGCTGATTATTGCATTTAAACAATTAACCCT
CACTAAAGGGCG 

pntA-Prom2 GCAACACGGGTTTCATTGGTTAACCGTTCTCTTGGTATGCCAATTCGCATTCTTGCCTC
TTAACTTTAAAGTTAAACAAAATTATTTCTATTA 

pntA-V1 Sequencing of pntA promotor 
region 

AACCCAGTTTCAGCAGCTG 

pntA-V2 CCAGGAGGGTGTTCTTAAGC 

pfkA-V1 Verification of ∆pfkA CGTTGGATCACTTCGATGTGC 

pfkA-V2 CGAAGCGCATCAGGCATTTT 

pfkB-V1 Verification of ∆pfkB TCTGCAAAATTTTAAATAAAGCTCCAA 

pfkB-V2 GAGCATAGTCGGAGAAACGC 

fsaA-V1 Verification of ∆fsaA GCAGCCCAGCGAACAGCCTTTAAG 

fsaA-V2 GCTGGCAGGTTATGGCAAACCGG 

fsaB-V1 Verification of ∆fsaB GCCAAACGGCGCAATTTCTACTACC 

fsaB-V2 GGGCGATGATGAAGCGCAATTCATC 

fruK-V1 Verification of ∆fruK GGCTTCACTCAGGAACAGCT 

fruK-V2 GTTAAGCGCGGAGTTTGTGG 
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Supplementary Table 3: The allowed concentration ranges for metabolites in the model.   

Compound BiGG identifier Concentration range 

ATP atp_c 5 mM 

ADP adp_c 0.5 mM - 2.5 mM 

AMP amp_c 0.5 mM - 2.5 mM 

NAD+ nad_c 1 mM 

NADH nadh_c 10 μM - 100 μM 

NADP+ nadp_c 10 μM 

NADPH nadph_c 10 μM - 100 μM 

O2 o2_c 273 μM 

CO2 co2_c 6.3 mM 

CoA coa_c 1 mM - 5 mM 

orthophosphate pi_c 1 mM - 10 mM 

pyrophosphate ppi_c 0.5 mM - 1.5 mM 

ammonia nh4_c 1 mM - 10 mM 

alpha-ketoglutarate akg_c 0.5 mM - 5 mM 

glutamate glu__L_c 30 mM - 150 mM 

Note: All metabolites that do not appear in this table were constrained by the default ranges of 1 μM to 10 mM.    
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Supplementary Table 4: The Max-min Driving Force and number of reactions of all 50 top pathways.  

carboxylators 
Max-min Driving Force 

(kJ/mol) 
Sum of absolute fluxes 

Number of unique 
reactions 

GND 3.29 33 17 

ME1 + GND 2.93 37 19 

GLYCL 5.13 49 20 

GND 0.16 35 18 

GND 2.19 37 19 

GND 1.01 37 19 

GND 1.74 39 20 

GND 1.4 41 21 

ME1 + GND 1.35 37 21 

ME1 + GND 0.89 41 21 

ME1 + GND 0.89 41 21 

GND 0.7 40 22 

ME1 + GLYCL 3.12 45 23 

ME1 + GND 1.6 44 23 

GND 1.42 42 23 

GND 1.42 48 23 

GND 0.55 45 23 

GND 0.46 45 23 

GND 0.09 47 23 

GND 1.74 47 24 

ME1 + GND 1.6 46 24 

ME1 1.32 63 24 

GND 0.43 47 24 

ME1 + GND 1.53 49 25 

GND 0.95 58 25 

GND 0.9 59 25 

ME1 + GND 0.75 46.666 25 

GND 0.53 49 25 

GND + PPC 2.78 51 26 

GND 0.26 44 25 

GND + PPC 0.09 46.334 25 

GND 0.08 44 25 

GND 0.05 46 25 

ME1 + GLYCL 3.92 49.334 27 

GND 0.75 45.334 26 

ME1 + GND 0.75 54 26 

GND + PPC 0.75 54 26 

GND 0.75 48 26 

PPCK 3.12 65.334 27 

GND 1.31 48 27 

GLYCL + GLXCL 1.23 46 27 

GND 0.75 50 27 

GND 0.75 50 27 

ME1 + GND 0.45 55 27 

ME1 + GLYCL 2.87 54 28 

ME1 + GLYCL 2.87 55 28 

GND 0.16 48 27 

GND 0.9 52.334 28 

ME1 + GND 0.75 58 28 

GND 0.47 58 28 

Note: For a graphical depiction of these pathways, see https://gitlab.com/elad.noor/ged-cycle/-/tree/master/gdot.

https://gitlab.com/elad.noor/ged-cycle/-/tree/master/gdot
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