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1 sNODF vs. SNES

Figure A. sNODF vs SNES (left) and vs nSNES (right) for the 40 networks of the Bascompte dataset. Spearman correlation
coefficients are, respectively, -0.26 and 0.96. The figure is very similar to Fig. 1 in the main text, so we included only one in it.

In the main text we showed the correlation between the NODF and the SNES, in its two different normalizations. In Fig. A
it is possible to observe that an analogous relation is present between the sNODF and the SNES measures.

2 Perfectly Nested Networks
For a PNN, the corresponding ensembles (both microcanonical and canonical) are singular, i.e. the only matrix in the ensembles
is the PNN itself. In this section we explain this fact.
Let us start from the microcanonical ensemble. First, let us summarise the main steps of the Curveball:

1. Select at random a couple of nodes on the same layer (for making the example clearer let us consider, in full generality,
i, j ∈ NL);



2. Check that the neighbourhoods of the nodes are not perfectly overlapping: if so, start again.

3. Take the set of uncommon neighbours U(i, j) = {α ∈ NΓ|(miα = 0&&m jα = 1)||(miα = 1&&m jα = 0)} and remove
them from the neighbourhood of both;

4. Assign ki−∑α miα m jα new neighbours to node i, chosen at random from U(i, j) and the rest of the nodes in U(i, j) to
node j.

Consider the case in which ki = k j: due to PNN nature, U(i, j) = /0 and the algorithm stops at the step 2. Then, consider the
case ki > k j: U(i, j) contains only the connections that i has and j has not (due to the perfect nestedness of the network, all
connections of j are connections of i too). Then, at step 4, the number of new neighbours of j is k j−∑α miα m jα = 0, while the
same quantity is exactly |U(i, j)| for i, thus the algorithm is stuck in the present configuration. A similar intuition can be found
in1.

In the canonical ensemble the situation is a little more involved. Let us consider, as an example, the biadjacency matrix in
Fig. 2 in the main text, representing a PNN; the presented arguments can be generalised to any PNN. Due to the ordering we
imposed on the biadjacency, if rows and columns represent respectively the L and the Γ layers, we have:

〈k1〉=
NΓ

∑
α

p1α = k∗1 = NΓ;

〈h1〉=
NL

∑
i

pi1 = h∗1 = NL,

(1)

which can be satisfied if and only if p1α = 1, ∀α ∈ Γ and pi1 = 1, ∀i ∈ L. Thus all entries involving the fully connected nodes
are deterministic. Such a conclusion has implications, on the opposite side of the biadjacency matrix:

〈kNL〉=
NΓ

∑
α>1

pNLα +1 = k∗NL
= 1;

〈hNΓ
〉=

NL

∑
i>1

piNΓ
+1 = h∗NΓ

= 1,

(2)

which, in turns, implies pNLα = 0, ∀α > 1 ∈ Γ and piNΓ
= 0, ∀i > 1 ∈ L, i.e. the entries of nodes with only a single connection

are deterministic too. Then let us pass to consider again the first nodes:

〈k2〉=1+
NΓ−1

∑
α>1

p2α +0 = k∗2 = NΓ−1; (3)

〈h2〉= 〈h3〉=1+
NL−1

∑
i>1

pi2 +0 = 1+
NL−1

∑
i>1

pi3 +0 = h∗2 = h∗3 = NL−1

(in the second line we use the fact that columns 2 and 3 have the same degree, thus their Lagrangian multipliers are equal
and so pi2 = pi3, ∀i ∈ L). Let us first focus on equation 3: we have NΓ−2 unknown probabilities, summing to NΓ−2. Thus
p2α = 1 for 1 < α < NΓ. Analogous considerations are valid for all pi2s and pi3s and thus these entries are again deterministic.
Iteratively discounting the information obtained at the previous steps, it is possible to show that the canonical ensemble of a
PNN is composed by a single graph, or, more correctly, the probability for every representative in the ensemble is 0 but for the
PNN itself (which, instead has P(PNN) = 1).

3 Isolated nodes in the canonical ensemble
In the canonical ensemble, the degree sequence is fixed on average, thus there are fluctuations from realisation to realisation.
Therefore, nodes with low degree, say close to 1, in the real network, can result as isolated in some realisations of the ensemble.
As it can be seen from Fig. B, the average of isolated nodes over the size of the network is nearly constant all over the dataset.
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4 SNES dependence on the number of nodes
In the paragraph III.C.2 in the main text, we observed on the canonical samples that spectral radius is a little greater than the true
value. Our intuition is that on average, out of two matrices with the same number of links, the one with the smallest number of
nodes has the largest radius. Fig. C shows a little experiment confirming our guess: we generate synthetic networks of various
sizes, but with the same number of links. As it can be seen, as the size increases, the average nSNES reduces. Something
similar happens for the sNODF.

5 Canonical vs microcanonical ensemble: more examples of ensembles distributions
In Fig. 5 in the main text we showed the realizations of the canonical and microcanonical ensembles. In Fig. D we show the
same plot for two more real networks. While the observed values are not as extreme as the one presented in the Fig. 5 of the
main text, still the same behaviours are present: a positive correlation between the nSNES and sNODF in the canonical ensemble
and a negative one in the microcanonical case. Let us remark that the observed values of both nSNES and (heterogeneous)
sNODF represent the negative extremes in the case of the canonical ensemble in the dataset 5 (left panel of Fig. D), while they
fall almost in the center of the distribution of the microcanonical ensemble. Even more striking is the case of the dataset 1
(right panel of Fig. D): while the observed (heterogeneous) sNODF is extremely low both for the canonical and microcanonical
ensembles, the observed nSNES is much greater than expected in the microcanonical ensemble, while it stays in the middle of
the distribution in the canonical one. As already mentioned in the main text, the value of the homogeneous and heterogeneous
sNODF have opposite behaviours in the canonical ensemble, as it can be seen in both panels of Fig. D.

6 Assortativity vs. nestedness in the microcanonical and canonical ensemble
In the paragraph III.C.3 in the main text, we observed a high correlation between nSNES and the assortativity of the sampled
networks, and an anticorrelation of both with the sNODF in the microcanonical ensemble. In Fig. 7 of the main text, in the
panels on the left, we show that this is not as evident on the measurements of our dataset without filtering and both nSNES and
sNODF show a weak anticorrelation with the assortativity. When, instead, the measures on the real data are compared with
the microcanonical ensemble, a strong correlation is evident. In particular, the z-scores of the sNODF (SNES) anticorrelate
(correlate) with the z-scores of assortativity, showing different behaviours for the two metrics, see the two panels on the right of
Fig. 7 of the main text.

Figure B. The average number (left) and ratio (right) of isolated nodes in the canonical ensemble samples as a function of the
total nodes, with error bars representing one standard deviation. The relative Spearman correlation coefficients are 0.96 (left)
and 0.36 (right).
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Figure C. In this experiment we generate random bipartite networks of various sizes, filling them with exactly 2000 links in
random positions. For every size considered, 1000 samples have been generated and we measured the resulting average nSNES
and sNODF. We omit the corresponding standard deviations because they are negligible. Although this is not a rigorous
argument since many of the considered networks could have isolated nodes, it indicates that reduced average dimension with
fixed average links number can generate a bias in the nSNES and NODF/sNODF measures in the canonical ensemble.

In the canonical ensemble instead, the correlations that we find in the microcanonical ensemble are almost completely
lost, as it can be seen in Fig. F. Here the fluctuations cover completely the relations between the assortativity and the various
nestedness metrics.

Another example of the behaviour of assortativity in the canonical ensemble is provided in Fig. E, in which we present the
analogous of Fig. 6 in the main text for the canonical ensemble. As it can be seen from the second and third panels, almost
no correlation between the assortativity and the various nestedness measures can be observed, while the correlation between
the two nestedness metrics is evident in the first panel. Also in this case, the overestimation of the measures in the canonical
ensemble screens the anticorrelation observed in Fig. 6.

7 Homogeneous vs microcanonical sNODF
Although the homogeneous sNODF seems correlated with the microcanonical one by looking at Fig. 3 in the main text,
quantifying their differences is not an easy task. In Fig. G we show that the difference in the respective z-scores seems to be
uncorrelated with the average number of isolated nodes in a network sampled from the canonical ensemble.
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Figure D. The equivalent of Fig. 5 of the main text but for two more networks, specifically dataset 5 (left) and 1 (right). The
position of the real network values with respect to the ensembles may vary.

Figure E. The equivalent of Fig. 6 of the main text but for the canonical ensemble. The blue and violet realizations are the
matrices of maximum sNODF and SNES of the microcanonical ensemble.
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Figure F. The correlation between the nestedness measures and assortativity is hidden in the canonical ensemble. The
Spearman correlation coefficients are, from top to bottom: -0.51 and -0.04 for the top figure, -0.17 and -0.51 for the middle
figure, 0.97 and 0.23 for the bottom one.

Figure G. The correlation between the number of isolated nodes in the samplings and the difference between the sNODF
homogeneous canonical z-scores and the sNODF microcanonical z-scores. Neither the number of isolated nodes nor their ratio
seem to be factors, with Spearman correlation coefficients of 0.02 and -0.25 respectively.
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